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Abstract. The actinide elements U and Th undergo radioac-
tive decay to three isotopes of Pb, forming the basis of three
coupled geochronometers. The 206Pb/238U and 207Pb/235U
decay systems are routinely combined to improve accuracy.
Joint consideration with the 208Pb/232Th decay system is
less common. This paper aims to change this. Co-measured
208Pb/232Th is particularly useful for discordant samples
containing variable amounts of non-radiogenic (“common”)
Pb.

The paper presents a maximum likelihood algorithm for
joint isochron regression of the 206Pb/238Pb, 207Pb/235Pb
and 208Pb/232Th chronometers. Given a set of cogenetic
samples, this total−Pb/U−Th algorithm estimates the com-
mon Pb composition and concordia intercept age. U–Th–
Pb data can be visualised on a conventional Wetherill or
Tera–Wasserburg concordia diagram, or on a 208Pb/232Th
vs. 206Pb/238U plot. Alternatively, the results of the
new discordia regression algorithm can also be visualised
as a 208Pbc /

206Pb vs. 238U/206Pb or 208Pbc /
207Pb vs.

235U/206Pb isochron, where 208Pbc represents the com-
mon 208Pb component. In its most general form, the
total−Pb/U−Th algorithm accounts for the uncertainties of
all isotopic ratios involved, including the 232Th/238U ratio,
as well as the systematic uncertainties associated with the
decay constants and the 238U/235U ratio. However, numeri-
cal stability is greatly improved when the dependency on the
232Th/238U-ratio uncertainty is dropped.

For detrital minerals, it is generally not safe to assume a
shared common Pb composition and concordia intercept age.
In this case, the total−Pb/U−Th regression method must be
modified by tying it to a terrestrial Pb evolution model. Thus,
also detrital common Pb correction can be formulated in a
maximum likelihood sense.

The new method was applied to three published datasets,
including low Th/U carbonates, high Th/U allanites and
overdispersed monazites. The carbonate example illustrates
how the total−Pb/U−Th method achieves a more precise
common Pb correction than a conventional 207Pb-based ap-
proach does. The allanite sample shows the significant gain
in both precision and accuracy that is made when the Th–
Pb decay system is jointly considered with the U–Pb system.
Finally, the monazite example is used to illustrate how the
total−Pb/U−Th regression algorithm can be modified to in-
clude an overdispersion parameter.

All the parameters in the discordia regression method (in-
cluding the age and the overdispersion parameter) are strictly
positive quantities that exhibit skewed error distributions
near zero. This skewness can be accounted for using the pro-
file log-likelihood method or by recasting the regression al-
gorithm in terms of logarithmic quantities. Both approaches
yield realistic asymmetric confidence intervals for the model
parameters. The new algorithm is flexible enough that it can
accommodate disequilibrium corrections and intersample er-
ror correlations when these are provided by the user. All
the methods presented in this paper have been added to the
IsoplotR software package. This will hopefully encourage
geochronologists to take full advantage of the entire U–Th–
Pb decay system.
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1 Introduction

The Pb content of U-bearing minerals comprises two com-
ponents:

1. Non-radiogenic (a.k.a. initial or “common”) Pb is in-
herited from the environment during crystallisation. It
contains all of lead’s four stable isotopes (204Pb, 206Pb,
207Pb and 208Pb) in fixed proportions for a given sam-
ple.

2. Radiogenic Pb is added to the common Pb after crys-
tallisation due to the decay of U and Th. It contains only
three isotopes (206Pb, 207Pb and 208Pb), which occur in
variable proportions as a function of the Th/U ratio and
age.

Denoting the measured and non-radiogenic components with
subscripts “m” and “c”, respectively, and assuming initial
secular equilibrium, we can write

204Pbm =
204Pbc (1)

206Pbm =
206Pbc+

238Um
(
eλ38t − 1

)
(2)

207Pbm =
207Pbc+

235Um
(
eλ35t − 1

)
(3)

208Pbm =
208Pbc+

232Thm
(
eλ32t − 1

)
, (4)

where λ38, λ35 and λ32 are the decay constants of 238U, 235U
and 232Th, respectively, and t is the time elapsed since iso-
topic closure. In order to accurately estimate t , the common
Pb composition is needed. One way to account for common
Pb is to normalise all the measurements to 204Pb. For exam-
ple, using the 238U–206Pb decay scheme:[ 206Pb

204Pb

]
m
=

[ 206Pb
204Pb

]
c
+

[ 238U
204Pb

]
m

(
eλ38t − 1

)
. (5)

Applying Eq. (5) to multiple cogenetic aliquots of the same
sample defines an isochron with slope

(
eλ38t − 1

)
and inter-

cept
[206Pb/204Pb

]
c
. Alternatively, and equivalently, an “in-

verse” isochron line can be defined as[ 204Pb
206Pb

]
m
=

[ 204Pb
206Pb

]
c

{
1−

[ 238U
206Pb

]
m

(
eλ38t − 1

)}
. (6)

In this case, the isochron is a line whose y intercept defines
the common 204Pb/206Pb ratio, and the x intercept deter-
mines the radiogenic 238U/206Pb ratio.

The isochron concept can easily be applied to the 235U–
207Pb system, by replacing 206Pb with 207Pb, 238Pb with
235Pb and λ38 with λ35 in Eqs. (5) and (6). The accuracy
and precision of the calculation can be further improved by
solving the 206Pb/238U and 207Pb/235U isochron equations
simultaneously and requiring t to be the same in both sys-
tems. The resulting three-dimensional constrained isochron
is known as a total-Pb/U isochron (Ludwig, 1998).

In igneous samples, the conventional total-Pb/U isochron
requires isotopic data for two or more cogenetic aliquots. In

the simplest case, a two-point isochron can be formed by
analysing the U–Pb composition of the U-bearing phase of
interest along with a cogenetic mineral devoid of U (e.g.,
feldspar). In detrital samples, the common Pb intercept of
the isochron can be anchored to some nominal value or to
a terrestrial Pb evolution model (e.g., Stacey and Kramers,
1975). Thus, the 204Pb-based total-Pb/U isochron method is
beneficial to nearly all applications of the U–Pb method.

Unfortunately, 204Pb-based common Pb correction is not
always practical. First, not all mass spectrometers are able
to measure 204Pb with sufficient precision and accuracy. In
some inductively coupled plasma mass spectrometry (ICP-
MS) instruments, the presence of an isobaric interference
with 204Hg precludes accurate 204Pb measurements. And
second, because 204Pb is by far the least abundant of lead’s
four naturally occurring isotopes, it requires the longest
dwell times. For single collector instruments, this reduces the
precision of the other isotopes.

To overcome these problems, alternative common Pb cor-
rection schemes have been proposed that use 207Pb or 208Pb
instead of 204Pb. The semitotal-Pb/U isochron method is
based on linear regression of 206Pb–207Pb–238U data in Tera–
Wasserburg space (Ludwig, 1998; Williams, 1998; Chew
et al., 2011). It assumes that all the samples are cogenetic and
form a simple two-component mixture between common Pb
and radiogenic Pb. The common Pb then marks the intercept
with the 207Pb/206Pb axis, and the radiogenic Pb can be ob-
tained from the intersection of the isochron with the concor-
dia line. The 207Pb-based common Pb correction only works
if the assumption of initial concordance is valid, if 207Pb can
be measured with sufficient precision, and if there is enough
spread in the initial Pb/U ratios to produce a statistically ro-
bust isochron.

Andersen (2002) introduced a 208Pb-based common Pb
correction scheme that does not require initial concordance.
His method assumes that U–Th–Pb discordance can be ac-
counted for by a combination of Pb loss at a defined time and
the presence of common Pb of known composition. However,
in most cases, neither the timing of Pb loss nor the composi-
tion of the common Pb are known. Furthermore, the assump-
tions that underlie the Andersen (2002) method were tailored
to the mineral zircon but do not apply so much to other miner-
als such as carbonates, which crystallise at low temperatures
and do not experience diffusive Pb loss.

This paper introduces a total−Pb/U−Th isochron algo-
rithm that uses the 232Th–208Pb decay scheme to determine
the common Pb component. Unlike the Andersen (2002)
method, it does not require the common Pb composition to
be pre-specified but assumes that no Pb loss has occurred.
The new algorithm is based on Ludwig (1998)’s total-Pb/U
isochron method but uses 208Pbc instead of 204Pb in Eq. (5):

206Pbm
208Pbc

=

[ 206Pb
208Pb

]
c

+

238Um
208Pbc

(
eλ38t − 1

)
, (7)

Geochronology, 2, 119–131, 2020 www.geochronology.net/2/119/2020/



P. Vermeesch: U–Th–Pb discordia regression 121

and similarly for Eq. (6) and the 235U–207Pb equivalents of
Eqs. (5) and (6).

The algorithms introduced in this paper will be illustrated
using three published U–Th–Pb datasets, which showcase
how the combined U–Th–Pb approach improves both the
precision and accuracy of U–Pb geochronology (Sect. 4).
The cases studies include a carbonate dataset of Parrish et al.
(2018), an allanite dataset of Janots and Rubatto (2014) and
an overdispersed monazite dataset of Gibson et al. (2016).
The carbonate dataset is an example of a low Th/U setting
in which the 208Pb-based common Pb correction is more pre-
cise than a conventional 207Pb/206Pb-based common Pb cor-
rection. The allanite dataset is an example of a high Th/U
setting in which the 208Pb/232Th method offers greater pre-
cision than the U–Pb method. The Janots and Rubatto (2014)
study used the Secondary Ion Mass Spectrometer (SIMS) and
therefore also offers an opportunity to compare the new 208Pb
method with a conventional 204Pb-based common Pb correc-
tion.

Section 5 shows how the isochron regression algorithm
can be modified to accommodate strongly skewed uncer-
tainty distributions, using a simple logarithmic change of
variables. The total−Pb/U−Th isochron algorithm assumes
that all aliquots are cogenetic. However, Sect. 6 shows how
the algorithm can be adapted to detrital samples, by tying it
to the two-stage Pb evolution model of Stacey and Kramers
(1975). This procedure is similar in spirit to the iterative al-
gorithm of Chew et al. (2011) but uses a maximum likelihood
approach that weights the uncertainties of all isotopes in the
coupled U–Th–Pb decay system. Finally, Sect. 7 introduces
an implementation of the algorithms described herein using
the IsoplotR software package.

2 U–Th–Pb concordia and the total−Pb/U−Th
isochron

In conventional U–Pb geochronology, the set of concordant
206Pb/238U and 207Pb/235U ratios defines a Wetherill con-
cordia line. Similarly, U–Th–Pb data can be visualised in
208Pb/232Th- vs. 206Pb/238U-ratio space. In the absence of
common Pb, samples whose 208Pb/232Th ages equal their
206Pb/238U ages plot on a U–Th–Pb concordia line. The ad-
dition of common Pb pulls samples away from this line. Bi-
nary mixing between common Pb and radiogenic Pb forms
linear trends in conventional concordia space but not in U–
Th–Pb concordia space. For example the Janots and Rubatto
(2014) data plot above or below the concordia line depending
on the Th/U ratio (Fig. 1a).

An alternative visualisation is to plot 208Pb/206Pb against
238U/206Pb (Fig. 1b). The radiogenic 208Pb component can
be removed by rearranging Eq. (4) for 208Pbc /

232Thm and
subtracting it from [208Pb/232Th]m. Doing this for differ-
ent values of t moves the various aliquots vertically on the
diagram. Each value of t also corresponds to a radiogenic

Figure 1. U–Th–Pb data for allanite sample MF482 of Janots and
Rubatto (2014) shown on (a) a U–Th–Pb concordia diagram and
(b) a 208Pbc /

206Pb–238U/206Pb isochron plot. The raw data are
shown in shades of green to red on the concordia diagram, in pro-
portion to the Th/U ratio. The same raw data are shown as green
ellipses on the isochron diagram. Red, light and dark blue ellipses
show the measurements with 5, 23 and 40 Myr worth of radiogenic
208Pb removed, respectively. The misfit of the radiogenic 208Pb-
corrected data around the best fit line are expressed as the mean
square of the weighted deviates (MSWD; McIntyre et al., 1966)
values. Error ellipses are shown at 1σ .

238U/206Pb ratio, thus marking a point on the horizontal
axis of the diagram. We can fit a line through this point
and minimise the residual scatter of the data around it, us-
ing a least squares criterion such as the mean square of
the weighted deviates (MSWD; McIntyre et al., 1966). For
the Janots and Rubatto (2014) data, the residual scatter is
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minimised when t ≈ 23 Myr (Fig. 1b). At this value, the
aliquots plot along a simple binary mixture between com-
mon Pb and radiogenic Pb. This marks the best estimate for
the concordia age. The corresponding common-Pb-corrected
208Pb/232Th–206Pb/238U composition is shown as a tight
cluster of blue error ellipses on Fig. 1a.

In order to formalise this procedure in a mathematical
sense, let us first define a number of variables. In analogy
to the variable names used by Ludwig (1998), we will refer
to the blank corrected isotopic ratios as X, Y , Z, W and U :

X =

[ 207Pb
235U

]
m
, Y =

[ 206Pb
238U

]
m
, Z =

[ 208Pb
232Th

]
m
,

W=
[ 232Th

238U

]
m
, U =

[ 238U
235U

]
, (8)

where X, Y and Z are vectors, W is a diagonal matrix, and
U is a scalar; we will use Greek characters for the unknown
common Pb ratios:

α =

[ 206Pb
208Pb

]
c

, β =

[ 207Pb
208Pb

]
c

, γ =
208Pbc
232Thm

, (9)

where α and β are scalars and γ is a vector; and finally, we
will use t as the concordia age so as to satisfy Eqs. (1)–(4).[ 208Pb

232Th

]
∗

= eλ32t − 1,
[ 207Pb

235U

]
∗

= eλ35t − 1,[ 206Pb
238U

]
∗

= eλ38t − 1 (10)

Next, we define three misfit vectors (K ,L andM) contain-
ing the difference between the measured and the predicted
(i.e., common plus radiogenic) isotope ratios:

K =X−UβWγ − eλ35t + 1 (11)

L= Y −αWγ − eλ38t + 1 (12)

M = Z− γ − eλ32t + 1. (13)

This formulation is a straightforward adaptation of Lud-
wig (1998)’s 204Pb-based total-Pb/U isochron equations.
And like Ludwig (1998), we can then estimate t , α and β
by minimising the sum of squares:

S =16−1
1 1T, (14)

where1 is the amalgamated misfit vector and1T is its trans-
pose (i.e., 1T

=
[
KTLTMT]). 61 is the covariance matrix

of 1, which can be estimated by error propagation:

61 =
[

Jx Jλ
][ 6x 04n×4

04×4n 6λ

][
JT
x

JT
λ,

]
(15)

in which 0a×b is an a× b matrix of zeros, 6x is the 4n× 4n
covariance matrix of the collated data measurementsX, Y , Z

and W; 6λ is the 4× 4 covariance matrix of the decay con-
stants andU , and Jx and Jλ are Jacobian matrices with partial
derivatives of 1 with respect to the isotopic ratio measure-
ments and the decay constants (plus U ), respectively. Further
details for 6x , 6λ, Jx and Jλ are provided in Appendix A.

Equation (14) can be solved for t , α and β by iterative
methods, but the numerical stability of these methods is not
guaranteed. Numerical stability and speed of convergence are
greatly improved by removing the uncertainties of W from
the data covariance matrix 6x . If the sum of squares S does
not depend on the uncertainty of W, then the partial deriva-
tives of S with respect to α, β, γ and t can be calculated
manually, which greatly simplifies the optimisation. Further
details about this simplified algorithm are provided in Ap-
pendix B.

3 Error propagation and overdispersion

The log likelihood of the isochron fit is given by

L=−
1
2

[3n ln(2π )+ ln |61| + S] , (16)

where |61| marks the determinant of 61. The covariance
matrix of the fit parameters is then obtained by inverting the
matrix of second derivates of the negative log likelihood with
respect to the vector γ and the scalars t , α, β. This is also
known as the Fisher information matrix:

6γ s[γ , t] s[γ ,α] s[γ ,β]

s[t,γ ] s[t]2 s[t,α] s[t,β]

s[α,γ ] s[α, t] s[α]2 s[α,β]

s[β,γ ] s[β, t] s[β,α] s[β]2

=

−


∂2L
∂γ 2

∂2L
∂γ ∂t

∂2L
∂γ ∂α

∂2L
∂γ ∂β

∂2L
∂t∂γ

∂2L
∂t2

∂2L
∂t∂α

∂2L
∂t∂β

∂2L
∂α∂γ

∂2L
∂α∂t

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂β∂γ

∂2L
∂β∂t

∂2L
∂β∂α

∂2L
∂β2


−1

, (17)

where 6γ is an n× n matrix; s[γ , t], s[γ ,α] and s[γ ,β]
are n-element row vectors, s[t,γ ], s[α,γ ] and s[β,γ ] are
n-element column vectors, and all other elements are scalars.
The second derivatives are given in Appendix C. The Fisher
information matrix is best solved by block matrix inversion.
This is achieved by partitioning Eq. (17) into four parts, with
∂2L/∂γ 2 defining the first block.

If analytical uncertainty is the only source of data scatter
around the discordia line, then the sum of squares S follows
a central χ2 distribution with 2n−3 degrees of freedom (i.e.,
χ2

2n−3). Normalising S by the degrees of freedom gives rise
to the so-called reduced χ2 statistic, which is also known as
the mean square of the weighted deviates (MSWD):

MSWD=
S

2n− 3
. (18)
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Datasets are said to be overdispersed if S is greater than
the 95 % percentile of χ2

2n−3 or, equivalently, if MSWD� 1
Wendt and Carl (1991). The overdispersion can either be at-
tributed to geological scatter in the concordia intercept age
t , or to excess variability in the common Pb ratios α and β.
Suppose that the scatter follows a normal distribution with
zero mean and let ω be the standard deviation of this distri-
bution. Then we can redefine Eq. (15) as

61 =
[

Jx Jλ
][ 6x 04n×4

04×4n 6λ

][
JT
x

JT
λ

]
+ Jωω2JT

ω, (19)

where Jω is the Jacobian matrix with the partial derivatives of
1 with respect to the dispersion parameter ω. If the overdis-
persion is attributed to diachronous isotopic closure, then

Jω =

 −λ35e
λ35tIn×n

−λ38e
λ38tIn×n

−λ32e
λ32tIn×n

 , (20)

where In×n is the n× n identity matrix.
Alternatively, if the overdispersion is attributed to excess

scatter of the common Pb ratios, then

Jω =

 −UWγ

−Wγ

0n×1

 .
ω can then be found by plugging Eq. (19) into Eq. (16) and
maximising L. Like before, the uncertainty of ω is obtained
by inverting the Fisher information matrix, replacing Eq. (17)
with

6γ s[γ , t] s[γ ,α] s[γ ,β] s[γ ,ω]

s[t,γ ] s[t]2 s[t,α] s[t,β] s[t,ω]

s[α,γ ] s[α, t] s[α]2 s[α,β] s[α,ω]

s[β,γ ] s[β, t] s[β,α] s[β]2 s[β,ω]

s[ω,γ ] s[ω,t] s[ω,α] s[ω,β]2 s[ω]2

=

−



∂2L
∂γ 2

∂2L
∂γ ∂t

∂2L
∂γ ∂α

∂2L
∂γ ∂β

∂2L
∂γ ∂ω

∂2L
∂t∂γ

∂2L
∂t2

∂2L
∂t∂α

∂2L
∂t∂β

∂2L
∂t∂ω

∂2L
∂α∂γ

∂2L
∂α∂t

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂ω

∂2L
∂β∂γ

∂2L
∂β∂t

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂ω

∂2L
∂ω∂γ

∂2L
∂ω∂t

∂2L
∂ω∂α

∂2L
∂ω∂β2

∂2L
∂ω2



−1

. (21)

In this case, manual calculation of the second derivatives
is only possible if the overdispersion is attributed to t , with
formulae shown in Appendix D. The second derivates are
not tractable if the excess dispersion is assigned to α and β.
In this case, the Fisher information matrix must always be
calculated numerically, which can be difficult.

4 Application to literature data

This section applies the U–Th–Pb isochron algorithm to two
published datasets: a carbonate dataset of Parrish et al. (2018)

and an allanite dataset of Janots and Rubatto (2014). Parrish
et al. (2018) investigated the Palaeogene deformation his-
tory of southern England by dating calcite veins in chalk and
greensand. The measurements were made by quadrupole LA-
ICP-MS, for which it was not possible to measure 204Pb with
sufficient precision or accuracy. Figure 2a shows the U–Pb
data of one particular sample (CB-2, Isle of Wight) on a con-
ventional Tera–Wasserburg diagram. In the absence of 204Pb,
conventional data processing would apply a common Pb cor-
rection using the 207Pb-method. That is, it would infer the
concordia intercept age by regression of a semitotal-Pb/U
isochron. Doing so suggests a U–Pb age of 29.72±1.23 Myr.
However, this isochron exhibits significant overdispersion
with respect to the analytical uncertainties (MSWD of 3.2),
casting doubt on the accuracy of the date. The fit also suffers
from low precision, caused by the large uncertainties of the
207Pb-measurements. These cause the error ellipses of some
spots to cross over into negative 207Pb/206Pb space.

The Th/U ratios of CB-2 are extremely low (< .12, as
shown on the colour scale of Fig. 2). These low ratios are
caused by the low solubility of Th in the vein-forming flu-
ids. As a consequence, less than 1 % of the measured 208Pb
is of radiogenic origin. At the same time, the sample contains
between 2 and 20 times more 208Pb than it does 207Pb. This
makes the 208Pb-based total−Pb/U−Th correction far more
precise than the conventional 207Pb-based semitotal-Pb/U
correction. Figure 2b shows the total−Pb/U−Th isochron
of CB-2 in 208Pbc /

206Pb–238U/206Pb space. The scatter
around this line is much tighter than that of the semitotal-
Pb/U fit, and the MSWD is only 2.5 despite the high preci-
sion of the added 208Pb data. The isochron intercept age has
dropped to 24.43± 0.84 Myr, which is significantly younger
than the 207Pb-corrected date. Importantly, the two age esti-
mates do not overlap within the stated uncertainties. The new
date is close to, but not quite as young as, the 22.6±1.5 Myr
value proposed by Parrish et al. (2018), which was obtained
by a heuristic version of the total−Pb/U−Th isochron algo-
rithm.

It is not possible to formally prove that the 208Pb-corrected
date is more accurate than the 207Pb-corrected date for
the carbonate dataset. However, an independent assessment
of accuracy is possible for our second case study. Janots
and Rubatto (2014)’s allanite dataset used SIMS instead
of LA-ICP-MS, making it possible to compare a 204Pb-
based common Pb correction with the new 208Pb method.
Figure 3a shows the U–Pb data of one particular allanite
sample (MF482) on a conventional Tera–Wasserburg con-
cordia diagram, yielding a semitotal-Pb/U isochron age of
22.77± 5.63 Myr. This is nearly identical to Janots and Ru-
batto (2014)’s 207Pb-corrected 208Pb/206Pbc–232Th/206Pbc
isochron age of 22.7± 1.0 Myr. As before, the Th/U ratios
are shown as shades of green to red. These values range from
23 to 235, which is 3 orders of magnitude higher than Par-
rish et al. (2018)’s carbonate data. Consequently, most of the
chronometric power of the allanite data is contained in the
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Th–Pb system and not in the U–Pb method. 90 %–97 % of
the 208Pb is radiogenic, as opposed to 0.3 %–1.0 % of the
206Pb, and only 0.06 %–0.016 % of the 207Pb.

Figure 3b shows the Th–Pb data in 204Pb/208Pb–
232Th/208Pb space, where they form an isochron with a Th–
Pb age of 21.50±4.37 Myr. This agrees within error with the
207Pb-corrected U–Pb age, despite the possible presence of
an unresolved isobaric interference on 204Pb (Janots and Ru-
batto, 2014). However, the Th–Pb isochron age has a slightly
smaller uncertainty and a much lower MSWD (0.74 instead
of 1.4). Combining the U–Pb and Th–Pb systems together,
Fig. 3c shows allanite sample MF482 in 208Pbc /

206Pb–
238U/206Pb space, where it defines an 23.21± 0.85 Myr
isochron. This falls within the uncertainties of the U–Pb and
Th–Pb age estimates but is more than 5 times more precise
than the previous age estimates. An alternative visualisation
of the total−Pb/U−Th isochron is shown in Fig. 3d. Here,
the 207Pbc /

208Pb ratio is plotted against 232Th/208Pb. Thus,
we use the 207Pb as a common Pb indicator instead of the
204Pb used in Fig. 3b. The > 15 times greater abundance of
207Pb compared to 204Pb nearly quadruples the precision of
the data, producing a tight fit around the isochron.

5 Dealing with skewed error distributions

All the free parameters in the regression algorithm (t , α, β
and ω) are strictly positive quantities. This positivity con-
straint manifests itself in skewed error distributions. For ex-
ample, when the four parameter algorithm of Sect. 3 is ap-
plied to datasets that exhibit little or no overdispersion (ω ≈
0), then the usual 2σ error bounds can cross over into physi-
cally impossible negative data space. This section of the pa-
per introduces two ways to deal with this problem.

A first solution is to obtain asymmetric uncertainty bounds
for ω using a profile likelihood approach (Galbraith, 2005;
Vermeesch, 2018). First, maximise Eq. (16) for the four
parameters t , α, β and ω. Denote the corresponding log-
likelihood value by Lm. Second, consider a range of values
for ω around the maximum likelihood estimate. For each of
these values, maximise L for t , α and β whilst keeping ω
fixed. Denote the corresponding log likelihood by Lω. Fi-
nally, a 95 % confidence region for ω is obtained by collect-
ing all the values of ω for which Lω > Lm− 3.85/2, where
3.85 corresponds to the 95th percentile of a χ2 distribution
with one degree of freedom (Fig. 4). The same procedure
can also be applied to t , α and β, in order to obtain asym-
metric confidence intervals for those parameters if needed.
This would be particularly useful for very young samples.

A second and more pragmatic approach to dealing with
the positivity constraint is to simply redefine the regression
parameters in terms of logarithmic quantities. This is done
by replacing Eqs. (11), (12) and (19) with

Figure 2. (a) Semitotal-Pb/U isochron (207Pb-based common
Pb correction) for Parrish et al. (2018)’s chalk data; (b)
total−Pb/U−Th isochron (208Pb-based common Pb correction)
shown in 208Pbc /

206Pb–238U/206Pb space. Colours indicate the
Th/U ratio. All uncertainties are shown at 1σ .

K =X−U exp[β∗]Wγ − exp[λ35e
t∗ ] + 1 (22)

L=Y − exp[α∗]Wγ − exp[λ38e
t∗ ] + 1 (23)

61 =
[

Jx Jλ
][ 6x 04n×4

04×4n 6λ

][
JT
x

JT
λ

]
(24)

+ Jω exp[ω∗]2JT
ω,

respectively, and maximising Eq. (16) with respect to t∗,
α∗, β∗ and ω∗. The standard errors for these log param-
eters (again obtained from the Fisher information matrix)
can then be converted to asymmetric confidence intervals
for t , α, β and ω. This approach yields results that are
similar to those obtained using the profile log-likelihood
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Figure 3. (a) Semitotal-Pb/U isochron (207Pb-based common Pb correction) for Janots and Rubatto (2014)’s allanite data; (b) conventional
Pb/Th isochron (204Pb-based common Pb correction); (c, d) total−Pb/U−Th isochron (208Pb-based common Pb correction) shown in
208Pbc /

206Pb–238U/206Pb space (c) and 206Pbc /
208Pb–232Th/208Pb space (d). Colours indicate the Th/U ratio. All uncertainties are

shown at 1σ .

method, as illustrated in Fig. 4 for monazite grain no. 10
in sample BHE-01 of Gibson et al. (2016). This sample
experienced a diachronous crystallisation history, resulting
in an overdispersed total−Pb/U−Th isochron fit (MSWD
of 8). Quantifying the excess dispersion with a model-3
fit yields an overdispersion parameter ω = 0.67 Myr with
asymmetric confidence bounds of +0.48/−0.23 Myr. Be-
sides generating realistic confidence regions, the logarithmic
re-parameterisation of the likelihood function has the added
benefit increasing the numerical stability of the maximum
likelihood method.

6 Detrital samples

So far, we have assumed that all the U–Th–Pb measurements
are cogenetic and share the same common Pb composition.
This assumption is generally not valid for detrital minerals,
which tend to contain a mixture of provenance components.
In this case the different crystals in a sample are not expected
to plot along a single isochron line. However, it is still pos-
sible to remove the common Pb component by making cer-
tain assumptions about its composition. One way to do this
is to assume that the mineral of interest was extracted from a
reservoir of known U–Th–Pb composition.

For example, using the two-stage Pb evolution model of
Stacey and Kramers (1975), it is possible to predict the
206Pb/208Pb and 207Pb/208Pb ratios of the reservoir for any

www.geochronology.net/2/119/2020/ Geochronology, 2, 119–131, 2020



126 P. Vermeesch: U–Th–Pb discordia regression

Figure 4. Profile log-likelihood intervals of the overdispersion parameter ω (black, left) and log(ω) (black, right) for the Gibson et al. (2016)
dataset. The set of ω values whose log likelihoods fall within a range of 1.92 from the maximum value defines an asymmetric 95 % confidence
interval. Alternatively, a standard symmetric confidence interval for log(ω) (grey, right) can be mapped to an asymmetric confidence interval
for ω (grey, left). The two approaches yield similar results.

given time t . More specifically, if t < 3.7 Ga, then

α(t)=

[
206Pb
204Pb

]
3.7
+

[
238U
204Pb

]
sk

(
eλ383.7

− eλ38t
)

[
208Pb
204Pb

]
3.7
+

[
232Th
204Pb

]
sk

(
eλ323.7− eλ32t

) (25)

β(t)=

[
207Pb
204Pb

]
3.7
+

1
U

[
238U
204Pb

]
sk

(
eλ353.7

− eλ35t
)

[
208Pb
204Pb

]
3.7
+

[
232Th
204Pb

]
sk

(
eλ323.7− eλ32t

) , (26)

where[ 206Pb
204Pb

]
3.7
= 11.152,

[ 208Pb
204Pb

]
3.7
= 31.23,[ 207Pb

204Pb

]
3.7
= 12.998,

[ 238U
204Pb

]
sk

= 9.74,

and[ 232Th
204Pb

]
sk

= 36.84.

Substituting α(t) and β(t) for α and β in Eqs. (11)–(13) re-
duces the number of free parameters from three (α, β and
t) to one (t). This provides a quick and numerically robust
mechanism for common Pb correction of detrital minerals.
It is the maximum likelihood equivalent of the heuristic ap-
proach used by Chew et al. (2011).

7 Implementation in IsoplotR

The algorithms presented in this paper have been imple-
mented in the IsoplotR software toolbox for geochronol-
ogy (Vermeesch, 2018). The easiest way to use the U–Th–
Pb isochron functions is via an online graphical user in-
terface at http://isoplotr.london-geochron.com (last access:
4 May 2020). Alternatively, the same functions can also be
accessed from the command line, using the R programming
language (R Core Team, 2020). This section of the paper
presents some code snippets to illustrate the key functions
involved. This brief tutorial assumes that the reader has R
and IsoplotR installed on her/his computer. Further de-
tails about this are provided by Vermeesch (2018) and on the
aforementioned website. First, we need to load IsoplotR
into R:

library(IsoplotR)

Two new data formats have been added to IsoplotR’s
existing six U–Pb formats, to accommodate datasets com-
prising 232Th and 208Pb. Sample Ga2 of Janots and Rubatto
(2014) has been included in the IsoplotR package as two
data files (UPb7.csv and UPb8.csv).
UPb7.csv specifies the U–Th–Pb composition using

the Wetherill ratios 207Pb/235U, 206Pb/238U, 208Pb/232Th
and 232Th/238U, whereas UPb8.csv uses the Tera–
Wasserburg ratios 238U/206Pb, 207Pb/206Pb, 208Pb/206Pb
and 232Th/238U. The key difference between the two
formats is the strength of the internal error correlations,
which is greater for format 7 than it is for format 8. The
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following commands load the contents of UPb8.csv into a
variable called UPb and plot the data on a 208Pb/232Th vs.
206Pb/238U-concordia diagram:

Performing a discordia regression and visualising the results
as a 208Pbc /

206Pb vs. 238U/206Pb isochron:

isochron(UPb,type=1)

which performs a three-parameter regression without
overdispersion. Accounting for overdispersion is done using
the optional model argument:

fit <- isochron(UPb,type=1,model=3)

where fit is a variable that stores the numerical re-
sults of the isochron regression. This is a list of items that
can be inspected by typing fit at the R command prompt.
For example, the maximum likelihood estimates for t , α, β
and ω are stored in fit$par and the covariance matrix in
fit$cov. Changing type to 2 plots the regression results
as a 208Pbc /

207Pb vs. 235U/207Pb isochron. The isochron re-
sults can also be visualised on the concordia diagram:

concordia(UPb,type=2,show.age=2)

where type=2 produces a Tera–Wasserburg diagram and
the show.age argument adds a three-parameter regression
line to it. Change this to show.age=4 for a four-parameter
fit.

8 Discussion and future developments

This paper introduced a total−Pb/U−Th algorithm for com-
mon Pb correction by joint regression of all Pb isotopes of U
and Th. For samples that are low in Th (such as carbonates),
208Pb offers the most precise way to correct for common Pb,
because 208Pb tends to be more abundant than both 204Pb
and 207Pb. For samples that are high in Th, the 208Pb/232Th
clock adds chronometrically valuable information to the joint
U–Pb decay systems.

The ingrowth of radiogenic Pb described by Eqs. (2)–(4)
assumes initial secular equilibrium between all the interme-
diate daughters in the U–Th–Pb decay chains. The new dis-
cordia regression algorithm can be modified to accommodate
departures from this assumption. In fact, such disequilibrium
corrections have already been implemented in IsoplotR,
using the matrix derivative approach of McLean et al. (2016).
A paper detailing these calculations is in preparation by the
latter author. The disequilibrium correction is particularly
useful for applications to young carbonates, whose initial
234U/238U and 230Th/238U activity ratios may be far out of
equilibrium.

The new discordia regression algorithm is based on the
method of maximum likelihood and accounts for correlated
uncertainties between variables. However, geochronological
datasets are often associated with equally significant error
correlations between samples (Vermeesch, 2015). The algo-
rithm presented in this paper easily handles such correla-
tions, which carry systematic uncertainty. These are repre-
sented by the off-diagonal terms of the covariance matrix 6x
in Eq. (15). However, to use this option in practical applica-
tions will require a new generation of low-level data process-
ing software.

This new-generation software will also need to deal with
a second issue that negatively affects the accuracy of the U(–
Th)–Pb method, which is apparent from Fig. 1. After remov-
ing the radiogenic 208Pb component from the Janots and Ru-
batto (2014) dataset, the 95 % confidence ellipse of one of
the aliquots crosses over into negative 208Pb/232Th ratios.
This nonsensical result is related to the issues discussed in
Sect. 5. Isotopic data are strictly positive quantities that ex-
hibit skewed error distributions. “Normal” statistical opera-
tions such as averaging and the calculation of 2σ confidence
intervals can produce counterintuitive results when applied
to such data.

In Sect. 5, the skewness of the fit parameters was removed
by reformulating the regression algorithm in terms of loga-
rithmic quantities. Similarly, Vermeesch (2015) showed that
the skewness of isotopic compositions can be removed us-
ing log ratios, in the context of 40Ar/39Ar geochronology.
McLean et al. (2016) introduced the same approach to in situ
U–Pb geochronology by LA-ICP-MS. Future software devel-
opment will allow analysts to export their U–Th–Pb isotopic
data directly as log ratios and covariance matrices. Such a
data structure can still be analysed with the new discordia re-
gression algorithm, after a logarithmic change a variables for
X, Y , Z and W in Eqs. (11), (12) and (13).

The U–Pb method is one of the most powerful and versa-
tile methods in the geochronological toolbox. With two iso-
topes of the same parent (235U and 238U) decaying to two
different isotopes of the same daughter (207Pb and 206Pb),
the U–Pb method offers an internal quality control that is
absent from most other geochronological techniques. U-
bearing minerals often contain significant amounts of Th,
which decays to 208Pb. However, until this day, geochronolo-
gists have not frequently used this additional parent–daughter
pair to its full potential. It is hoped that the algorithm and
software presented in this paper will change this situation.
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Appendix A

The covariance matrix of the isotopic ratio measurementsX,
Y , Z and W is given by

6x =


6X 6X,Y 6X,Z 6X,W
6Y,X 6Y 6Y,Z 6Y,W
6Z,X 6Z,Y 6Z 6Z,W
6W,X 6W,Y 6W,Z 6W

 , (A1)

where

6X =


s[X1]

2 s[X1,X2] . . . s[X1,Xn]

s[X2,X1] s[X2]
2 . . . s[X2,Xn]

...
...

. . .
...

s[Xn,X1] s[Xn,X2] . . . s[Xn]
2

 , (A2)

6X,Y =


s[X1,Y1]

2 s[X1,Y2] . . . s[X1,Yn]

s[X2,Y1] s[X2,Y2] . . . s[X2,Yn]
...

...
. . .

...

s[Xn,Y1] s[Xn,Y2] . . . s[Xn,Yn]

 , (A3)

and so forth, in which s[a]2 is the variance of a and s[a,b] is
the covariance of a and b, for any a and b. 6λ is the covari-
ance matrix of the decay constants and the 238U/235U ratio:

6λ =


s[λ35]

2 0 0 0
0 s[λ38]

2 0 0
0 0 s[λ32]

2 0
0 0 0 s[U ]2

 , (A4)

Here, the covariance terms have been set to zero, but nonzero
values could also be accommodated. Finally, the Jacobian
matrices Jx and Jλ are given by

Jx =

 In×n 0n×n 0n×n −UβIn×nγ
0n×n In×n 0n×n −αIn×nγ

0n×n 0n×n In×n 0n×n

 , (A5)

and

Jλ = −1n×1te
λ35t 0n×1 0n×1 −βWγ

0n×1 −1n×1te
λ38t 0n×1 0n×1

0n×1 0n×1 −1n×1te
λ32t 0n×1

 ,
(A6)

where 1n×1 is an n-element column vector of ones.

Appendix B

The numerical stability of the optimisation is greatly en-
hanced by dropping the dependency of the sum of squares
S on the uncertainty of the Th/U ratios W. Thus, we replace
Eq. (A1) by

6x =

 6X 6X,Y 6X,Z
6Y,X 6Y 6Y,Z
6Z,X 6Z,Y 6Z

 , (B1)

and Eq. (A5) by the 3n× 3n identity matrix (i.e., Jx =
I3n×3n). Let us define � to be the inverse covariance matrix
of 1, so that

6−1
1 ≡�=

 �1,1 �1,2 �1,3
�2,1 �2,2 �2,3
�3,1 �3,2 �3,3

 . (B2)

Then, we can directly estimate γ for any given value of t , α
and β, by replacing γ with Z−M− eλ32t +1 in Eq. (13), so
that

K = K̂ +UβWM

with

K̂ =X−UβW(Z− eλ32t + 1)− eλ35t + 1 (B3)

and

L= L̂+αWM

with

L̂= Y −αW(Z− eλ32t + 1)− eλ38t + 1. (B4)

Plugging Eqs. (B3) and (B4) into Eq. (14) and rearranging
yields

S =MTAM +BM +MTC+D, (B5)

where

A= U2β2Wd�1,1Wd +α
2Wd�2,2Wd +�3,3

+UαβWd (�1,2+�2,1)Wd

+Uβ(Wd�1,3+�3,1Wd )

+α(Wd�2,3+�3,2Wd ) (B6)

B= UβK̂T�1,1Wd +αL̂
T�2,2Wd +αK̂

T�1,2Wd

+UβL̂T�2,1Wd + K̂
T�1,3+ L̂

T�2,3 (B7)

C= UβWd�1,1K̂ +αWd�2,2L̂+UβWd�1,2L̂

+αWd�2,1K̂ +�3,1K̂ +�3,2L̂ (B8)

D = K̂T�1,1K̂ + K̂
T�1,2L̂+ L̂

T�2,1K̂ + L̂
T�2,2L̂. (B9)

Taking the matrix derivative of S with respect to M ,

∂S/∂M =MT(A+AT)+B+CT. (B10)
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Setting ∂S/∂M = 0 and solving for M ,

M =−(A+AT)−1(BT
+C). (B11)

Plugging M back into Eq. (13) yields our estimate of γ ,
which allows us to calculate S. The values of t , α and β that
minimise S are then found by numerical methods.

Appendix C

Explicit formulae for the Fisher information matrix (Eq. 17)
are possible for the simplified algorithm, in which the uncer-
tainty of W is ignored:

∂2L
∂γ 2 =−

 UβW
αW
In×n

T

6−1
1

 UβW
αW
In×n

 (C1)

∂2L
∂γ ∂t

=

(
∂2L
∂t∂γ

)T

=

−

 UβW
αW
In×n

T

6−1
1

 (λ35e
λ35t )n×1

(λ38e
λ38t )n×1

(λ32e
λ32t )n×1

 (C2)

∂2L
∂γ ∂α

=

(
∂2L
∂α∂γ

)T

= 0n×n
W

0n×n

T

6−1
1 1−

 UβW
αW
In×n

T

6−1
1

 0n×1
Wγ

0n×1

 (C3)

∂2L
∂γ ∂β

=

(
∂2L
∂β∂γ

)T

= UW
0n×n
0n×n

T

6−1
1 1−

 UβW
αW
In×n

T

6−1
1

 UWγ

0n×1
0n×1

 (C4)

∂2L
∂t2
=1T6−1

1

 (eλ35tλ2
35)n×1

(eλ38tλ2
38)n×1

(eλ32tλ2
32)n×1


−

 (λ35e
λ35t )n×1

(λ38e
λ38t )n×1

(λ32e
λ32t )n×1

T

6−1
1

 (λ35e
λ35t )n×1

(λ38e
λ38t )n×1

(λ32e
λ32t )n×1

 (C5)

∂2L
∂t∂α

=
∂2L
∂α∂t

=−

 01×n
Wγ

01×n

T

6−1
1

 (λ35e
λ35t )n×1

(λ38e
λ38t )n×1

(λ32e
λ32t )n×1

 (C6)

∂2L
∂t∂β

=
∂2L
∂β∂t

=−

 UWγ

0n×1
0n×1

T

6−1
1

 (λ35e
λ35t )n×1

(λ38e
λ38t )n×1

(λ32e
λ32t )n×1


(C7)

∂2L
∂α2 =−

 0n×1
Wγ

0n×1

T

6−1
1

 0n×1
Wγ

0n×1

 (C8)

∂2L
∂β2 =−

 UWγ

0n×1
0n×1

T

6−1
1

 UWγ

0n×1
0n×1

 (C9)

∂2L
∂α∂β

=
∂2L
∂β∂α

=−

 UWγ

0n×1
0n×1

T

6−1
1

 0n×1
Wγ

0n×1

 , (C10)

Appendix D

Additional derivatives are required to propagate the uncer-
tainty of the overdispersion parameters ω. This can only be
done manually if the overdispersion is attributed to the con-
cordia intercept age t , using the simplified model (ignoring
the uncertainty of W). In that case,

∂2L
∂γ ∂ω

=

(
∂2L
∂ω∂γ

)T

=−1T ∂6
−1
1

∂ω

 UβW
αW
In×n

 (D1)

∂2L
∂t∂ω

=

(
∂2L
∂ω∂t

)T

=−1T ∂6
−1
1

∂ω

 (λ35e
λ35t )n×1

(λ38e
λ38t )n×1

(λ32e
λ32t )n×1

 (D2)

∂2L
∂α∂ω

=

(
∂2L
∂ω∂α

)T

=−1T ∂6
−1
1

∂ω

 0n×1
Wγ

0n×1

 (D3)

∂2L
∂β∂ω

=

(
∂2L
∂ω∂β

)T

=−1T ∂6
−1
1

∂ω

 UWγ

0n×1
0n×1

 (D4)

∂2L
∂ω2 =−

1
2

(
∂2 ln |61|
∂ω2 +1T ∂

26−1
1

∂ω2 1

)
, (D5)

with

∂6−1
1

∂ω
=−6−1

1

∂61

∂ω
6−1
1 (D6)
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∂26−1
1

∂ω2 =

−

(
∂6−1

1

∂ω

∂61

∂ω
6−1
1 +6

−1
1

∂261

∂ω2 6−1
1 +6

−1
1

∂61

∂ω

∂6−1
1

∂ω

)
(D7)

∂2 ln |61|
∂ω2 = Tr

(
∂6−1

1

∂ω

∂61

∂ω
+6−1

1

∂261

∂ω2

)
, (D8)

in which Tr(∗) stands for the trace of ∗ and

∂61

∂ω
= 2JT

ωωJω (D9)

∂261

∂ω2 = 2JT
ωJω. (D10)

Explicit formulae for the second derivatives are not avail-
able for the common-Pb-based overdispersion model. In that
case, the Fisher information matrix must be computed nu-
merically.
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