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Abstract. The standard classical statistics approach to
isochron calculation assumes that the distribution of uncer-
tainties on the data arising from isotopic analysis is strictly
Gaussian. This effectively excludes datasets that have more
scatter from consideration, even though many appear to have
age significance. A new approach to isochron calculations
is developed in order to circumvent this problem, requir-
ing only that the central part of the uncertainty distribution
of the data defines a “spine” in the trend of the data. This
central spine can be Gaussian but this is not a requirement.
This approach significantly increases the range of datasets
from which age information can be extracted but also pro-
vides seamless integration with well-behaved datasets and
thus all legacy age determinations. The approach is built
on the robust statistics of Huber (1981) but using the data
uncertainties for the scale of data scatter around the spine
rather than a scale derived from the scatter itself, ignoring
the data uncertainties. This robust data fitting reliably deter-
mines the position of the spine when applied to data with
outliers but converges on the classical statistics approach for
datasets without outliers. The spine width is determined by a
robust measure, the normalised median absolute deviation of
the distances of the data points to the centre of the spine, di-
vided by the uncertainties on the distances. A test is provided
to ascertain that there is a spine in the data, requiring that
the spine width is consistent with the uncertainties expected
for Gaussian-distributed data. An iteratively reweighted least
squares algorithm is presented to calculate the position of the
robust line and its uncertainty, accompanied by an implemen-
tation in Python.

1 Introduction

The ability to fit a straight line through a body of isotope ra-
tio data in order to form an isochron is the cornerstone of
many geochronological methods. In detail, however, this is
a non-trivial task, since uncertainties are usually associated
with all variables, and these are often correlated, precluding
simple “least squares” line-fitting techniques. Most of the re-
search in this area was conducted in the late 1960s and early
1970s, being dominated by a classical statistics approach in
which data uncertainties, derived from the analytical meth-
ods, are taken to be strictly Gaussian distributed (e.g. York,
1969; York et al., 2004, and references therein). This ap-
proach, referred to here as YORK, became entrenched in the
geochemical community, particularly in the last two decades
as the essential component of the very widely used software,
ISOPLOT, e.g. Ludwig (2012).

In this contribution, we examine some of the problems
inherent in these techniques and suggest an alternative ap-
proach. Our primary focus here will be on general-purpose
isochron calculations that determine the age of an “event”
that established the isotopic compositions of samples in a
dataset. This involves what are called model 1 and 2 calcu-
lations in ISOPLOT – as described below. Approaches that
try to extract detail within events, including ISOPLOT model
3 calculations, are not considered (but see, e.g. Vermeesch,
2018).

1.1 On ISOPLOT

In order to show that there are significant problems in using
ISOPLOT for general-purpose isochron calculations and then
to see how they can be addressed, it is first necessary to out-
line the ISOPLOT protocol, some details of which may not
be apparent to the end user. Central to the ISOPLOT work-
flow, the main tool for considering data scatter is mswd, the
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Figure 1. Age uncertainty (age±) plotted against
√
mswd under

the ISOPLOT protocol for a progressively modified dataset (see text
and Appendix A). Under the condition of a model 1 fit, the age
uncertainty is constant with increasing data scatter (reflected in in-
creasing mswd), until there is a step change in the data treatment
at A when the age uncertainty is multiplied by

√
mswd. Then, at

B, there is another step change in age uncertainty calculation with
increasing data scatter forming ISOPLOT model 2 (see text).

mean standard weighted deviates (also called the reduced
chi-squared statistic); see Eq. (1). For strictly Gaussian-
distributed uncertainties, (n− 2)mswd is distributed as chi
squared (χ2

n−2), meaning that if uncertainties are correctly
assigned, a strong statistical statement can be made about
whether the scatter of a particular dataset is solely consis-
tent with the associated data uncertainties (i.e. with no ge-
ological scatter), for example, in the form of a 95 % con-
fidence interval on mswd (Wendt and Carl, 1991). Such a
confidence interval is not fixed but depends on the num-
ber of data points under consideration, so, for example, for
n= 10, mswd< 1.94 (meaning that mswd extends from less
than 1 through to 1.94), while for n= 50, mswd< 1.36. A
dataset with mswd in the chosen range for the number of
data points has data scatter that is consistent with the data un-
certainties. This situation is commonly referred to as mswd
“passes”; otherwise, mswd “fails” in relation to χ2

n−2. The
situation where mswd passes provides a “pure” interpreta-
tion of YORK, and, in ISOPLOT is referred to as a model 1
isochron fit. This is depicted as the horizontal line in Fig. 1,
indicating that in this range of mswd, corresponding to a con-
fidence interval, the calculated uncertainty on an isochron
age does not vary with mswd. Such a figure is drawn by tak-
ing an actual dataset and progressively modifying it to show
what happens as mswd varies, as described in Appendix A.

What if mswd is greater than the upper limit of the chosen
confidence interval? Then the data are considered to have ex-
cess scatter, in addition to that accounted for by the data un-
certainties (assuming that they are strictly Gaussian)1. At this

1Excess scatter occurs when the data distribution has higher
variability in the tails than is indicated by the variability of the cen-

point, ISOPLOT, asks the user whether an alternative – model
2 – calculation should be undertaken. This decision point is
indicated at A in Fig. 1. If the user declines, ISOPLOT gives
results that are referred to here as model 1×, as shown in
Fig. 1. The model 1 age uncertainty is multiplied by

√
mswd

to reflect the data scatter being more than expected from the
data uncertainties alone. With further scatter, the switch is
made to model 2, at B in Fig. 1. Alternatively, if the user
accepts the switch to model 2, then model 1× is not used,
indicated by the vertical line at A extending up to the model
2 line in Fig. 1. The model 2 calculation in ISOPLOT is unre-
lated to YORK. The data uncertainties are discarded and the
slope of the line through the linear trend is calculated as the
geometric mean of the lines calculated by unweighted least
squares of y on x and of x on y (see Appendix A).

In summary, then, in ISOPLOT, the calculation of ages and
their uncertainties involves a number of decision points based
around the concept of mswd that impart significant (and in
our view unwelcome) step changes in the way that the data
are handled and algorithms applied. To assist in further dis-
cussion of these matters, we depart from the language of
ISOPLOT at this point, reintroducing the term “errorchron”,
counterposed to isochron, following Brooks et al. (1972).
The idea is that isochrons have a higher chance of having
age significance, while errorchrons have a lower chance. In
particular, it seems to be unhelpful for the results of model 2
calculations to be called isochrons as is the case in ISOPLOT,
given that there is excess scatter in the data.

1.2 Replacing ISOPLOT

Given that ISOPLOT’s implementation of model 1 and 2 line
fits is the gold standard of isochron calculations presently, we
ask where the problems are and then what can be done to ad-
dress them. A shortcoming in YORK stems from the assump-
tion that data uncertainties are strictly Gaussian distributed.
In real-world applications, this appears to be too restrictive,
with datasets that are likely to have age significance being la-
belled as errorchrons because mswd is too large. While using
YORK guided by mswd is optimal statistically if data uncer-
tainties are strictly Gaussian, this logic fails once uncertain-
ties are even slightly non-Gaussian (originally Tukey, 1960).
In such circumstances, both mswd and least squares methods
themselves, like YORK, become unreliable (e.g. Hampel et
al., 1986; Huber, 1981).

Rather than being truly Gaussian, data uncertainties may
well be Gaussian distributed in their centres but slightly fat-
tailed, distant from the centres. An isotopic dataset looks in-
tuitively acceptable if the data have a central linear “spine”
in which scatter is commensurate with stated analytical un-
certainty, but this spine is flanked by data of somewhat larger
scatter (i.e. excess scatter from the “fat tail”). This excess

tral part of the distribution, for example, if the distribution is Gaus-
sian in the centre but having “fat” tails.
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scatter may originate in the isotopic analysis or as a result of
geological disturbance. Age significance in such data mani-
fests primarily via the position of the spine. In the following,
we focus on this spine in the data.

Adopting this spine approach, a successful calculation
method for a dataset that may not have strictly Gaussian-
distributed uncertainties must, firstly, ascertain whether or
not such a spine exists in the data – and hence whether cal-
culations yield an isochron or an errorchron. Secondly, in the
case of an isochron calculation, the successful method must
reliably locate the spine without being perturbed by vagaries
in the more scattered data. Classical statistical methods can
do neither of these things, tending to be excessively influ-
enced by the data at the extremes of the scatter. However, the
field of robust statistics offers calculation methods that can.
When a dataset has no excess scatter, reflected in mswd ly-
ing within an appropriate χ2-constrained confidence interval,
such methods can be devised to retrieve identical (or nearly
identical) results to classical statistic methods but, in addi-
tion, provide reliable age and age-uncertainty estimates in
the presence of excess scatter around a spine. This continu-
ity of operation with increasing mswd contrasts with previ-
ous approaches and means that the steps in the ISOPLOT line
in Fig. 1, which are certainly undesirable, are circumvented.
Moreover, the involvement of potentially unreliable least-
squares-based methods, like ISOPLOT model 2, is avoided
when the data show excess scatter.

2 An algorithm for isochron calculations

An algorithm is sought that finds a robust straight line
through a two-dimensional linear data trend, while con-
verging with the classical statistical approach of YORK for
datasets with consistent scatter (i.e. mswd passes). This sec-
tion describes the nature of the problem and the theoretical
basis for the robust statistical approach that will be adopted.
The algorithm adopted

1. determines a preliminary fit of the data, not dependent
on vagaries of the data scatter;

2. determines the spine width in relation to this prelimi-
nary fit

– if the spine width is in an acceptable range:
isochron, or

– if the spine width is not in an acceptable range: er-
rorchron;

3. determines a robust fit of the data, starting from the
preliminary fit, with this fit converging with YORK for
“good” data.

This algorithm is fleshed out below and then evaluated via
simulated datasets and applied to a natural dataset. The cen-
tral calculation in the algorithm is detailed in Appendix B,
and a python implementation is provided in Appendix C.

2.1 Uncertainty distributions and data fitting

Geochronological datasets are collected on the presump-
tion that the isotopic compositions were established via an
“event” the age of which is to be estimated. Given the focus
here on data with linear trends, even if the effect of the event
is recorded perfectly by the samples analysed – the isotopic
compositions lying on a line – the actual data are measured
with finite precision and so the data inevitably scatter about
the trend. An uncertainty probability distribution can be used
to describe the form of the data scatter.

Classical statistical methods assume that the underlying
uncertainty distribution of a dataset is known, typically taken
to be Gaussian. Under the Gaussian assumption, if the ana-
lytical uncertainty on the measurements has been appropri-
ately inferred, mswd, the classical statistics parameter used
in YORK to validate an isochron, tests that the scatter of data
points is consistent with the inferred uncertainties. But, in
general, there is no reason to suppose that a given analyti-
cal technique generates a truly Gaussian uncertainty distribu-
tion. Even small amounts of geological disturbance destroy
the optimality of YORK. If the uncertainty distribution is not
strictly Gaussian, then classical methods of data fitting be-
come sub-optimal or worse.

While there are many possible non-Gaussian uncertainty
distributions, this paper is concerned with a situation com-
monly occurring in datasets, in which the data points form a
linear spine with Gaussian-like scatter, but additional scatter
is seen in the tails of the distribution. Such a dataset still en-
codes meaningful age information in its spine, yet it will typ-
ically fail an mswd test due to its departure from a Gaussian
distribution. In this work, datasets of this nature are mod-
elled using a contaminated Gaussian uncertainty distribution
(Gaussian mixture) (e.g. Tukey, 1960). Such distributions are
written c%dN, meaning that with a probability (100− c)%
the distribution involves a standard deviation, σ , but with a
probability c% the distribution has a standard deviation, d σ ,
both with a mean of zero (see Powell et al., 2002; Maronna et
al., 2019, Sect. 2.1). An example is 25 %3N, with c = 25 and
d = 3, so that with 25 % probability the uncertainty is drawn
from N(0,3σ ), and 75 % probability drawn from N(0,σ ),
with the N(0, s) notation indicating a Gaussian distribution
with a mean of zero and a standard deviation of s. Such
distributions provide excess scatter suitable for developing
and evaluating a robust line-fitting calculation. It does not
matter if excess scatter in real data is drawn from a differ-
ent distribution. Note that with the sample sizes provided by
most modern geochronological techniques, it is not necessar-
ily possible to test for Gaussian behaviour, or such departures
from Gaussian behaviour, although they may be evident on
quantile–quantile plots (see below).
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2.2 Isochrons and errorchrons

In YORK, assuming that the data uncertainties are strictly
Gaussian distributed, the probability distribution of mswd
provides bounds that can be used to distinguish isochrons
from errorchrons (e.g. Wendt and Carl, 1991). These bounds
come from a 95 % confidence interval on mswd, as discussed
in Appendix A. Datasets whose scatter give mswd outside
the bounds are deemed to be errorchrons, not isochrons. The
focus in this paper is on mswd that is too large, indicating
excess scatter. Here, mswd is defined with the residuals, rk ,
the distance in y of the data point, k, to the line, ek , weighted
by the uncertainty on this distance, σek :

mswd=
1

n− 2

n∑
k=1

r2
k , (1)

with

rk =
ek

σek
=

a+ bxk − yk

b2 σ 2
xk
+ σ 2

yk
− 2bσxkσykρxkyk

.

The line being fitted is y = a+ bx; data point, k, is {xk,yk};
the analytical uncertainty on xk , σxk ; the analytical uncer-
tainty on yk , σyk ; and the correlation between xk and yk , ρxkyk
(see derivation of Eq. B4 in Appendix B). Note that the slope,
b, appears in the denominator of rk , as well as the numerator.

If, instead, data uncertainties are c%dN, with unknown
c and d, or some other contaminated Gaussian distribution,
then there is no equivalent of the mswd argument to say
which datasets should give isochrons rather than errorchrons.
The approach advocated here is to use a measure that reflects
whether the dataset has a linear spine of “good” data within
it. The measure suggested, s, coined the spine width, is ro-
bust, and is defined as

s = nmad(r)= 1.4826median (|rk −median(r)|) , (2)

with a normalisation constant2, 1.4826. Given that s is based
on a median, its magnitude depends on that half of the data
that have the smallest absolute values of centred r; in other
words, those that would define a spine. If the data were in
fact Gaussian distributed, it is expected that s should be in a
range about 1 in the same way that mswd is, given that r al-
ready involves the analytical uncertainties. The larger the s,
greater than 1, the less pronounced the linear spine in the data
(or the uncertainties have been underestimated). Whereas the
95 % confidence interval (95%ci) on mswd for Gaussian-
distributed uncertainties comes from a well-established prob-
ability distribution, with (n−2)mswd∼ χ2

n−2 (e.g Wendt and
Carl, 1991), the confidence interval on s needs to be found
by simulation (see Appendix D), with the simulated datasets
just involving Gaussian-distributed uncertainties. The inter-
vals are given in Table 1.

2The normalisation constant makes nmad(r) an unbiased esti-
mator of the standard deviation when the data are Gaussian dis-
tributed as the sample size becomes large (e.g. Maronna et al., 2019,
Sect. 2.4).

Table 1. The 95 % confidence intervals for mswd and s, as a func-
tion of the number of data points, n (see text).

n
95 % CI

√
mswd 95 % CI s

Low High ∗ Low High ∗

5 0.268 1.765 1.614 0.09 1.64 1.48
6 0.348 1.669 1.540 0.17 1.62 1.47
8 0.454 1.552 1.449 0.26 1.58 1.45
10 0.522 1.480 1.392 0.31 1.55 1.43
15 0.621 1.379 1.312 0.40 1.50 1.40
30 0.739 1.260 1.215 0.58 1.39 1.33
60 0.818 1.181 1.151 0.71 1.28 1.23

Whereas one-sided confidence intervals are advocated in
Appendix A (columns marked with an asterisk in the table),
two-sided confidence intervals are also given in the table. Us-
ing the column with the asterisk, for example, for a dataset
with 10 data points (n= 10), the dataset is deemed to yield
an isochron if the observed. s is less than 1.43. If s is larger,
the dataset gives an errorchron. For isochrons, the age uncer-
tainty is calculated as in Appendix B. For errorchrons, the
age uncertainty is not calculated because the data scatter is
not consistent with the analytical uncertainties at 95 % confi-
dence, s being larger than the bound.

2.3 A robust statistics approach to isochron calculation

We seek a statistical approach to isochron calculation that is
robust (e.g. Huber, 1981; Hampel et al., 1986), meaning that
it is not excessively affected by outliers in the data, while
having desirable statistical properties, for example, good ef-
ficiency (see below). In addition, we require the approach
to converge to YORK for a “good” dataset, one with a near-
Gaussian uncertainty distribution, allowing seamless com-
patibility with classical data interpretation. The overall ap-
proach adopted will be referred to as SPINE, involving the use
of spine width for isochron–errorchron distinction, combined
with robust line fitting. The line fitting is based on the ap-
proach of Huber (1981), as outlined in Maronna et al. (2019,
Sect. 2.2.2). Whereas most robust line-fitting methods use the
scatter of the data as a scale, data uncertainties having been
discarded (e.g. Powell et al., 2002); here, the data uncertain-
ties are used. This is necessary in order to preserve continuity
of the results with YORK, in which the data uncertainties are
an integral part of the calculation.

In both the Huber approach in SPINE and in YORK, a
straight line is fitted to a dataset by minimising a function of
the residuals, rk . In the case of YORK, this is just the mswd
(Eq. 1). Since isochron data are generally bivariate with cor-
related analytical uncertainties in x and y, the analytical un-
certainty in data point k can be represented as an ellipse as
in Fig. 2. The absolute value of the residual for data point,
k, rk , is in fact the scaling factor for the size of the ellipse
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Figure 2. For an example data point, {xk,yk}, the inner ellipse
is calculated with the analytical uncertainties, Vk , at the 1σ level
(in black). Given a line, y = a+ bx (in blue), the ellipse must
be drawn at the |rk |σ level (in red) to touch the line, in this
case |rk | = 5.73. The data point is xk = 529.14, yk = 0.5614, and
σxk = 1.870, σyk = 0.00127, and ρxkyk =−0.967. The line is y =
0.8108− 0.0004764x.

Figure 3. Plots of ρ(r) against r for YORK in red (r2) and for Huber
in SPINE (Eq. 3) in blue. The two curves are coincident for |r|< h,
with h= 1.4 the vertical green lines. See text.

required to expand it or reduce it until it touches the best-fit
line (Fig. 2).

The function that is minimised to find the best-fit line can
be written

∑
ρ(rk) for both YORK and SPINE. Whereas in

YORK, ρ(rk)= r2
k for all rk , in SPINE ρ(rk)= r2

k near the
centre of the uncertainty distribution (as in YORK) but down-
weights data points for which the absolute value of the resid-
ual is greater than a cut-off value, h. Thus, in SPINE, and in
Fig. 3, the Huber ρ is

ρ(rk)=


2hrk −h2 rk <−h

r2
k if −h < rk < h

2hrk −h2 rk > h.

(3)

In SPINE, for residuals that have an absolute value less than
an adjustable constant, h, the contribution to the sum being

minimised is the same as for YORK, but it is linear in the
residual for larger absolute values. Note that as h becomes
larger and larger, SPINE converges to YORK. The value to
use for h is discussed in Maronna et al. (2019)3.

The iteration developed in Appendix B minimises∑
kρ(rk) with respect to the unknown, θ , a two-element col-

umn vector, {a,b}T in the line equation, y = a+ bx. The it-
eration is applicable to SPINE and also YORK. As a starting
point of the iteration, data are fit for θ with SIEGEL (Siegel,
1982), which is highly robust toward excess scatter. How-
ever, SIEGEL is much less efficient than SPINE (see below),
so SPINE is a better ultimate estimator. A full iteration is en-
visaged in Appendix B. Once θ is calculated, the measure
of scatter used to distinguish an isochron from an errorchron
can be calculated using Table 1. If an isochron is deemed to
have been calculated, the uncertainty on θ , Vθ , can be found,
as outlined in Appendix B.

The SPINE algorithm can be summarised as follows:

1. determine a preliminary fit of the data using SIEGEL;

2. determine the spine width using nmad

– if the spine width is in an acceptable range, from
col. 6 in Table 1: isochron, or

– if the spine width is not in the acceptable range:
errorchron;

3. determine a robust fit of the data, minimising
∑
ρ(rk),

with the Huber ρ(rk) (Eq. 3) starting from the SIEGEL
estimate of θ .

2.4 Application of SPINE to simulated datasets

Assessing algorithms for data fitting is best done using sim-
ulated datasets, so that the true “age” represented by the data
is known. In this case, datasets were generated by drawing
data points from a range of uncertainty distributions, all cen-
tred on a linear trend reflecting an age of 4 Ma. Full details
are provided in Appendix D. Two features of the datasets are
varied: the number of data points in the dataset and the un-
certainty structure adopted, the latter via varying c and d in
c%dN. The algorithm is assessed in terms of its ability to
retrieve the specified age of the linear trend on which the
simulated datasets are built and on the uncertainty in the age.

Given that the datasets investigated have fat-tailed contam-
inated Gaussian uncertainty distributions, the focus is on the
effect of excess scatter in the data or, in other words, data
scatter over and above what is expected for Gaussian data
uncertainties. Nevertheless, a small proportion of datasets do
have small scatter, giving s which is below the lower bound
for that number of data points.

3The value used here, h= 1.4, involves a particular tradeoff be-
tween robustness and efficiency (Maronna et al., 2019, Sects. 2.2.2
and 3.4).
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The analysis below compares the results of YORK, applied
only to those simulated datasets that lie within the mswd
bounds, with the results of SPINE applied to those datasets
that lie within the spine width (s) bounds. The greatest ma-
jority of the former are included in the latter, e.g. > 97 %
for n= 10). Importantly, however, SPINE typically identifies
reliable age information in many more datasets than YORK.
In Table 2, m%excl and s%excl are the percentage of sim-
ulated datasets excluded on the basis of the mswd and s
bounds, respectively.

Note that, for example, for n= 10, datasets drawn from
5 %3N, in fact have 100(100.95)= 59.9 % of the datasets hav-
ing all uncertainties Gaussian, while 40.1 % have at least
one uncertainty drawn from 3 times the Gaussian (3N). For
25 %3N, 5.6 % are Gaussian only, and for 10 %10N, it is
34.9 %. The leftmost columns are 2.5 % by definition.

A 95 % confidence interval on age can be found by or-
dering the list of ages calculated for the datasets, selecting
the lower limit at the 2.5 % point in the list, and the upper
limit at the 97.5 % point. For datasets that lie within the s
bound in SPINE or mswd bound in YORK, the 95 % confi-
dence intervals on ages are essentially the same, even though
a much larger proportion of datasets lie within bounds us-
ing SPINE than using YORK. A comparison of ages can also
be made between YORK and SPINE for simulated datasets
that lie outside the mswd bounds. For n= 10 and Gaussian-
distributed data, the 95 % confidence interval is ±0.021 Ma
for both YORK and SPINE, but for 5 %3N, 25 %3N, and
10 %10N, the 95 % confidence interval on the YORK ages
are± 0.035,±0.040, and±0.092 Ma, respectively, while the
SPINE ages are ±0.027, ±0.034, and ±0.034 Ma. The dif-
ferences between the ages given by the two methods, nor-
malised by the uncertainties on the SPINE ages, are ±1.62,
±1.63, and ±5.54. Comparison of the intervals shows that
the mswd bounds are relevant to the application of YORK,
in that generally it does not work well outside the bounds,
while indicating that SPINE is (much) more reliable for age
determination for such datasets.

Considering age uncertainty, it might be expected that the
uncertainties suffer from the excess scatter in the data in
datasets that yield an errorchron with YORK but an isochron
with SPINE.This appears not to be the case, but there is a
small degradation in the age uncertainties retrieved caused
by an unavoidable efficiency loss using SPINE. Efficiency
at the Gaussian distribution is the ratio of the variance ob-
tained by the optimal estimator (YORK) divided by the vari-
ance using the chosen robust estimator (in this case, SPINE).
SPINE involves an efficiency loss at the Gaussian distribu-
tion, which is illustrated in Fig. 4 via kernel density estimate
(kde) plots of the age uncertainties calculated for simulated
datasets with n= 10 and Gaussian-distributed uncertainties.
The kde plots are probability distributions akin to smoothed
histograms (Wand and Jones, 1995). The red curve is the kde
for datasets that have all |rk|< h, as would be given by YORK
on datasets with Gaussian-distributed uncertainties. The blue

Figure 4. Kernel density estimates (kde) for age uncertainty cal-
culated with SPINE on 10 000 simulated datasets with n= 10 and
Gaussian-distributed uncertainties. (a) Those datasets for which all
|rk |< h (in red); (b) those datasets for which at least one |rk |> h
(in blue), and (c) overall result combining panels (a) and (b) in ob-
served proportion (in black).

Figure 5. Kernel density estimates for age uncertainty calculated
with SPINE on 10 000 simulated datasets with a range of n values
and Gaussian-distributed uncertainties. In each case, the kde for
those datasets for which all |rk |< h is in red and the overall kde is
in black.

curve is the kde for all datasets with at least one |rk|> h.
The overall kde, in black, is the kde of all of the datasets
in the red and blue kde, in observed proportion, about 30 %
to 70 %. The efficiency loss of SPINE is reflected in the dis-
placement of the black curve to slightly higher age uncer-
tainty than the red curve. The relationships shown in Fig. 4
for n= 10 can be seen for other n in Fig. 5. The pairs of red
and black lines correspond to and have the same meaning as
the red and black lines in Fig. 4. As expected, the distribu-
tion of age uncertainties moves towards larger values as the
sample size n decreases.

Whereas SPINE involves an efficiency loss at the Gaussian
distribution, it performs better – i.e. it is much more robust
– than YORK for data from contaminated Gaussian distribu-
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Table 2. Percentage of simulated datasets excluded by the mswd and s bounds given in Table 1 (see text).

n
N 5 %3N 25 %3N 10 %10N

m%excl s%excl m%excl s%excl m%excl s%excl m%excl s%excl

5 2.5 2.5 8.7 4.0 30.2 9.8 32.5 9.5
6 2.5 2.5 9.6 3.9 34.6 13.8 37.3 10.9
8 2.5 2.5 12.7 4.2 44.7 14.5 46.0 10.4
10 2.5 2.5 14.2 4.0 51.8 15.2 53.5 9.7
15 2.5 2.5 17.4 4.2 65.2 17.1 68.2 9.1

Figure 6. Kernel density estimates for age uncertainty calculated
with SPINE on 10 000 simulated datasets with n= 10 and several
uncertainty structures. The kde for those datasets for which all
|rk |< h is in red, the kde for datasets with Gaussian-distributed un-
certainties is in black, and the kde for all of the datasets for 5 %3N,
25 %3N, and 10 %10N, respectively, are in blue.

tions (e.g. Maronna et al., 2019, Table 2.2). The ability of
SPINE to retrieve age uncertainty information for such data
varies with the probability and scale of the contamination,
as shown in Fig. 6. Not unexpectedly, the more seriously
contaminated distributions (25 %3N and 10 %10N) involve
a greater displacement of the kde to higher age uncertainty
than the more weakly contaminated 5 %3N distribution. Al-
though the displacement of the blue curves from the black
curve is real, the ability of SPINE to retrieve age uncertain-
ties from datasets with contaminated distributions is good.

2.5 Application of SPINE to a natural dataset

In order to show the real-world utility of SPINE, we consider
data for a carbonate flowstone from the Riversleigh World
Heritage fossil site in Queensland, Australia (Sample 0708).
Isotope dilution U–Pb data for the bulk sample were pre-
viously published by Woodhead et al. (2016) providing a
model 2 isochron with an age of 13.72± 0.12 Ma and mswd
of 3.7. The new data presented here were obtained by laser
ablation ICPMS on the same sample using methods outlined
and published in Woodhead and Petrus (2019). Such datasets

Figure 7. Laser ablation example 0708. See text.

are typically larger with little error correlation (rounder er-
ror ellipses) but with larger uncertainties than isotope di-
lution data. These new data define an errorchron under the
YORK assumptions, with mswd= 1.68, and a model 2 age of
13.68± 0.31 Ma. These data might therefore be rejected un-
der the mswd criterion despite exhibiting a well-developed
linear trend. With SPINE, s = 1.24, within the s range for
an isochron, the age is 13.69± 0.26 Ma (± is 1.96σ ). The
data for 0708 are plotted in Fig. 7, with 95 % confidence el-
lipses on the data points. Further calculations with this sam-
ple, comparing the results of our new algorithm with existing
approaches are presented in Appendix A.

With 0708, the SPINE and ISOPLOT ages are very similar,
but mswd suggests an errorchron, so there is excess scatter
on this basis. Quantile–quantile plots can be used to show
the nature of the distribution of the residuals that contribute
to such excess scatter. Here, Fig. 8, the ordered residuals
normalised to nmad(r) are plotted against the quantiles of
the standard Gaussian distribution, N(0,1) (see Fox, 2016,
Sect. 3.1.3). The normalisation means that if the residuals
are Gaussian distributed, they should plot close to a line of
unit slope through the origin. The figure also includes 95 %
pointwise confidence intervals (dashed blue lines). The fig-
ure suggests that the residuals are in fact effectively Gaussian
distributed, lying between the dashed blue lines (and mswd
has been too sensitive in flagging that the residuals are not
Gaussian distributed).
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Figure 8. Quantile–quantile plot for sample 0708, using the SIEGEL

fit of the data to calculate the residuals to plot. The dashed red line
has unit slope through the origin; the dashed blue lines are the 95 %
pointwise confidence intervals. See text.

Generally, geochronological datasets do not have obvious
outliers – they might be “cleaned” of isolated data points
before an age calculation, or the dataset might even be dis-
carded. But many of the simulated datasets from contami-
nated Gaussian distributions, as used above, do contain out-
liers. In Appendix E, an example of a simulated dataset with
outliers (from 25 %3N) is used to show how YORK and SPINE
behave and what a quantile–quantile plot looks like in those
circumstances.

3 Discussion and conclusions

This work was motivated by the belief that many isotopic
datasets contain meaningful age information that cannot be
identified using classical statistical methods and may there-
fore be discarded or discounted. In such cases, the age infor-
mation is contained in a linear spine in the data, but the data
also contain scatter that is inconsistent with a Gaussian un-
certainty distribution, having fatter tails than Gaussian. A sta-
tistical test based on the spine width is devised, akin to using
mswd in classical methods, allowing an isochron–errorchron
distinction to be made. Many datasets that give isochrons
based on the spine width, give errorchrons under the assump-
tion of a strict Gaussian uncertainty distribution. A statisti-
cally robust isochron calculation method is able to retrieve
this age information and to provide appropriate uncertainty
estimates. Calculated ages and age uncertainties are more re-
liable than ISOPLOT ones for data with excess scatter.

Contaminated Gaussian distributions provide a model for
a type of dataset with excess scatter relative to a strictly
Gaussian-distributed one. The robust isochron method pre-
sented in this work can however be applied in general to data
which are Gaussian distributed only in the central spine of the
uncertainty distribution, with non-Gaussian scatter occurring
in the tails, arising from analytical or geological uncertainty.
Indeed, it can be applied to any dataset with a well-developed
spine in the data.

In most robust statistics data-fitting approaches, the for-
mal uncertainties output during data measurement are ig-
nored. Instead, the scale used in the data fitting is derived
from the scatter in the data, an approach adopted by Powell et
al. (2002). The new approach followed here does include the
data measurement uncertainties, and this allows the results to
converge on those of YORK when the data lack excess scat-
ter. This provides compatibility with older “good” datasets
processed using the classical statistical approach but, going
forward, allows age information to be extracted from a much
wider range of datasets which might otherwise be rejected
for having mswd greater than the isochron cutoff.

A problem with SPINE, shared with YORK, is that the ef-
fect of high-leverage data is not taken into account. Such
data are easily recognised in x–y plots, when a small pro-
portion of the data – even one data point – is separated
from the main body of the data along the trend through the
data. Data fitting tends to be overly constrained to fit high-
leverage data, giving them small residuals, even if the best
fit of the main body of the data alone would give the high-
leverage data larger residuals. In 0708, the point at highest
x is of relatively high leverage (hat= 0.171). Robust ap-
proaches have been developed to handle high-leverage data,
e.g. Maronna et al. (2019, chap. 5), but are not yet developed
for the situation where the data uncertainties are taken into
account, nor for the relatively small datasets that are typi-
cal of geochronological studies (cf. Fig. 7). Huber and Ro-
chetti (2009, chap. 7), have a counter view advocating data
assessment, rather than aiming for a black-box method to try
and automatically safeguard against the potentially delete-
rious effect of high-leverage data, an approach we suggest
here. In the case of the relatively high-leverage data point in
0708, omitting this data point gives 13.75± 0.27 Ma (com-
pare row 11 with row 1 in the table in Appendix A), within
uncertainty of the age including this data point.
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Figure A1. Age uncertainty (age±) plotted against
√
mswd under

the ISOPLOT protocol for the progressively modified dataset, 0708
(see text). In model 1, the age uncertainty is constant with increas-
ing data scatter (reflected in increasing mswd), until there is a step
change in age uncertainty at A when the± is multiplied by

√
mswd.

Then, at B, there is another step change with further increase of data
scatter to model 2 (see text). The location of the step at A is based on
a 95 % confidence interval for mswd (discussed below), whereas the
√
mswd position of the step at B is arbitrary. The y axis is drawn

at the
√
mswd of the actual data, 1.27 (i.e. no modification of the

data). See text.

Appendix A: Algorithms and applications to sample
0708

Here, some results of calculations for sample 0708 are col-
lected, used in Fig. 7, along with some related algorithmic
details.

A1 Thought experiment in Fig. 1

The thought experiment sketched in Fig. 1 aimed to show
the consequence for ISOPLOT behaviour of the modification
of the observed data in a dataset to reduce or increase the
scatter about the linear trend. The calculated equivalent of
Fig. 1 for sample 0708 is shown in Fig. A1, including also
the corresponding SPINE results. In calculating the figure, the
modification of the dataset is achieved by first taking the data
points with their attendant error ellipses (i.e. covariance ma-
trices) and moving them all in to lie on the linear trend, con-
sidered as fixed by a YORK calculation. Then the points and
ellipses are considered to be displaced away from the trend.
This is “move” in the table below, going from −1, when the
points lie on the trend, through 0, with the points as in the
original data, to positive when displaced further away from
the trend. “Move” varies more or less linearly with

√
mswd

from −0.133 at the left edge of the figure to 0.064 on the
right edge; the spine width changes from 1.08 to 1.32 across
the figure. For these calculations, the last line in the dataset
is omitted as it is of relatively high leverage (hat = 0.171),
not wishing this data point to affect the results.

In the figure, extending from the left, through mswd =
1, to A, the ISOPLOT age uncertainty (model 1, i.e. YORK)
is constant because the data scatter is consistent with the
data uncertainties. Through this range, the SPINE age uncer-
tainty is above the model 1 line because of the efficiency loss
embodied in SPINE, as shown in Figs. 4–5. However, after
the age uncertainty steps with increasing mswd, to the right
of the diagram, the SPINE age uncertainty is smaller than
the model 1× and model 2 age uncertainty. This is because
SPINE gives an isochron on the basis of spine width up to C
at
√
mswd≈ 1.3, whereas model 2 is an errorchron on the

basis of the assumption of strictly Gaussian data uncertain-
ties. The small steps in the SPINE age uncertainty line are an
artefact of the approximation used in the calculation of the
age uncertainty; see Appendix B.

In the top part of Table A1, the results for SPINE and for
ISOPLOT are summarised. The1 column gives the change to
the age from the SPINE age, normalised by the uncertainty on
the SPINE age. Below the double line in the table are some
results from the above thought experiment, Fig. A1.

Additional algorithmic details for ISOPLOT follow next, in
part related to the above thought experiment.

A2 ISOPLOT model 1

In the ISOPLOT model 1 calculation, i.e. in YORK, a deci-
sion has to be made about the confidence interval on mswd
that is used to denote the range of data scatter (i.e. mswd)
that is considered to be accounted for by the data uncertain-
ties, without need to either multiply the age uncertainty by
√
mswd (i.e. model 1×) or switch directly to an alternative

calculation (which is model 2 in ISOPLOT). On the under-
standing that data uncertainties are correctly assigned, a one-
sided confidence interval on mswd can be adopted, acknowl-
edging that mswd is not being used to identify the case where
assigned data uncertainties are too large or too small. The
upper end of the confidence interval on mswd is where ex-
cess scatter is considered to start, a conventional choice be-
ing derived from a 95 % confidence interval. Note that there
is no argument that this should be at mswd= 1 (cf. Dickin,
2005, p37), unless the number of data points is huge. Even
for a dataset of 50 data points, the 95 % confidence interval
on mswd extends to 1.36. In terms of the probability of fit
measure used in ISOPLOT, this is 100− 95= 5 %. It might
be noted that the naming of probability of fit seems unhelp-
ful – it is clearer to focus on mswd.

A3 ISOPLOT model 2

The so-called error-in-variables (eiv) or measurement-error
problem is avoided in YORK because the uncertainty in the
x variable is taken into account explicitly. If it was not, then
eiv results in the calculated slope being biased downwards
and the approach being inconsistent (e.g. Fuller, 1987).
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Table A1. Summary of results used in constructing Fig. A1 (see text).

Move
√
mswd Age Age± 1 Notes

1 SPINE 13.685 0.257 – s = 1.24

2 YORK 1.296 13.733 0.216 0.37 outside 95 % CI
3 ISOPLOT model 1× 13.733 0.280
4 ISOPLOT model 2 13.679 0.306 −0.05
5 siegel 13.803 −0.95

6 SPINE −0.133 1.1 13.769 0.252 s = 1.08
7 YORK 13.800 0.223 −0.39 inside 95 % CI

8 SPINE −0.055 1.2 13.756 0.262 s = 1.18
9 ISOPLOT model 1× 13.800 0.268 −0.39
10 ISOPLOT model 2 13.832 0.300 -0.62

11 SPINE 0 1.27 13.747 0.267 – s = 1.25 1= 0.366
12 ISOPLOT model 2 13.836 0.317 −0.65

13 SPINE 0.024 1.3 13.743 0.267 s = 1.26
14 ISOPLOT model 2 13.837 0.325 −0.66

In the ISOPLOT model 2 calculation, eiv is avoided, even
though the data uncertainties are discarded, by making the
slope of the line through the data be the geometric mean of
the slopes of ordinary least squares of y on x, byx , and x on
y, 1/bxy . These are

byx =

∑
(xk − x)(yk − y)∑

(xk − x)2

and
1
bxy
=

∑
(xk − x)(yk − y)∑

(yk − y)2 ,

with x = 1
n

∑
xk and y = 1

n

∑
yk . Then

b =±
√
byxbxy =±

√∑
(yk − y)2∑
(xk − x)2

and

a = y− bx,

with, in this case, the sign of the square root being nega-
tive. The calculation in ISOPLOT does not use this explicit
formula, instead adopting an algebraic equivalent that allows
the YORK iteration to be used.

A4 ISOPLOT robust

In ISOPLOT, there is an option to use a robust isochron calcu-
lation method. The two available have high breakdown point
but low efficiency (e.g. Huber, 1981, Sect. 1.2.3). The second
method (Siegel, 1982) can be considered to supersede the
first. In fact, here, SIEGEL is used in the implementation of
SPINE as a starting point for the iteration (see Appendix C).
The fit of the data for sample 0708 with SIEGEL is given in
line 5 of the table.

Appendix B: Iteration in SPINE

The SPINE algorithm involves minimising
∑
kρ(rk) with

respect to the unknown, θ , a two-element column vector,
{a,b}T in the line equation, y = a+ bx, in order to fit the
data. The residual, rk on data point k is defined below, and the
function ρ is defined in Eq. (3) in the main text. The SPINE
algorithm subsumes YORK.

Writing the kth data point as {xk,yk}, generally the iso-
topic data used in isochron calculations involve uncertainties
in both xk and yk , and commonly the xk and yk are also cor-
related. These can be represented by a covariance matrix, Vk ,

Vk =

[
σ 2
xk

σxkσykρxkyk
σxkσykρxkyk σ 2

yk
,

]
(B1)

in which σxk is the standard deviation on xk , σyk the stan-
dard deviation on yk , σxkσykρxkyk the covariance between xk
and yk , and ρxkyk the correlation coefficient between xk and
yk . The covariance matrix can be represented by an ellipse
around the data point in an x–y diagram, as illustrated in
Fig. 2. The residual, rk , a measure of the distance of the point
{xk,yk} to the line, is calculated from the coordinates of the
data points, {xk,yk}, and their uncertainties in Vk , by

rk =
ek

σek
, (B2)

in which ek is the distance of the data point from the line,
ek = a+ bxk − yk , and σek is the standard deviation on ek .
The standard deviation, σek , is calculated by error propaga-
tion using Vk:

σ 2
ek
=

{
∂ek

∂xk
,
∂ek

∂yk

}
Vk

{
∂ek

∂xk
,
∂ek

∂yk

}T

= b2σ 2
xk
+ σ 2

yk
− 2bσxkσykρxkyk , (B3)
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with the term in curly brackets evaluating to {b,−1}. The
residual is then

rk =
ek

σek
=

a+ bxk − yk√
b2σ 2

xk
+ σ 2

yk
− 2bσxkσykρxkyk

. (B4)

In matrix form, the residuals can be written as a column vec-
tor, r

r =Wee=We(Xθ − y), (B5)

with We a diagonal matrix with kkth element, 1/σek .
The minimisation of

∑
kρ(rk) is iterative, starting from a

robust but low efficiency estimate of the line, for example,
using Siegel (1982). The minimisation is undertaken using
the fact that, at the minimum, the derivative of

∑
ρ(rk) with

respect to θ is zero. Defining

2ψ(rk)=
∂ρ(rk)
∂rk

, (B6)

this function, for the Huber (1981) approach, from Eq. (3), is

ψ(rk)=

 −h rk <−h

rk if −h < rk < h
h rk > h.

(B7)

For YORK, ψ(rk)= rk , equivalent to SPINE with large h.
At the minimum of

∑
ρ(rk),

∑
k

∂ρ(rk)
∂θ
= 0=

∑
k

(
∂ρ(rk)
∂rk

)(
∂rk

∂θ

)
=

∑
k

ψ(rk)
(
∂rk

∂θ

)
=

∑
k

ψ(rk)
1
σek

{(
∂ek

∂θ

)
− rk

(
∂σek

∂θ

)}
.

(B8)

In the curly brackets, writing the first derivative, {1, xk}, as
the kth row of a matrix X, and writing the first and second
derivatives together as the kth row of a matrix X′, then the
kth row of X′ is

X′k =
{
1, x′k

}
=

{
1, xk −

rk

σek

(
bσ 2

xk
− σxkσykρxkyk

)}
,

with b the slope of the line. The second column of X is simply
the data x values, while the second column of X′ is the x
values on the line where the uncertainty ellipses around each
data point would touch it, x′. In matrix form, Eq. (B8) can be
written as

X′TWeψ(r)= 0, (B9)

in whichψ(r) is a column vector whose kth element isψ(rk).
Equation (B9) constitutes two non-linear equations requiring
iteration to solve. Two iteration schemes are proposed. The
first iteration, in fact used for all the simulations, proceeds

directly from Eq. (B9), while the second iteration is in iter-
atively reweighted least squares form (e.g. Maronna et al.,
2019, Sect. 4.5.2).

In the first scheme, at iteration i, progressing towards
the minimum with θi = θi−1+1θ , for |rk|< h, ψi(rk)=
ψi−1(rk)+Xk1θ/σek andψi(rk)= ψi−1(rk) otherwise. This
can be written ψi(rk)= ψi−1(rk)+ ψ̇i−1(rk)Xk1θ/σek , in
which ψ̇(rk)= ∂ψ(rk)/∂rk , which is 1 for |rk|< h, and 0
otherwise, from Eq. (B7). Substituting into Eq. (B9) gives

X′TWe(WeI′B1θ +ψ(r))= 0, (B10)

dropping iteration subscripts, with I′ = diag(ψ̇(r)) a mod-
ified identity matrix with its kkth element equal to ψ̇(rk).
Equation (B10) can then be rearranged to give1θ at the cur-
rent iteration:

1θ =−(X′TW2
e I′X)−1X′TWeψ(r). (B11)

The iteration proceeds until 1θ approaches 0.
The second iteration scheme is the iteration implemented

in the Python code. Such iterations are known to be stable,
e.g. Maronna et al. (2019). However, the logic of the first
scheme is needed to obtain the covariance matrix of θ , below.
In the second scheme, a weight function,w(rk), is introduced
so that the resulting equations have a simple least squares
form. For Eq. (B9), this can be done by defining w(rk)=
ψ(rk)/rk , so that ψ(rk)= rkw(rk), introducing r explicitly
into Eq. (B9). Then

X′TW(Xθ − y)= 0, (B12)

in which the kkth element of the diagonal matrix, W,
is w(rk)/σ 2

ek
, combining the weighting from w with the

weighting from the data uncertainties, We. By rearranging
Eq. (B12), the repeated substitution solution to Eq. (B9) is
given by

θ = (X′TWX)−1X′TWy. (B13)

Iteration is needed as X′ and W depend slightly on θ ,
given a sensible starting point for the iteration as provided
by SIEGEL.

Accepting that an isochron has been calculated, the co-
variance matrix of θ , Vθ , can be calculated by error prop-
agation of the data to θ using the logic of the first iteration
scheme. First it is convenient to transform the problem solved
by Eq. (B11) to an identical one in which the data are repre-
sented by e rather than {x,y}. First note that Eq. (B9) in-
volves r , a scalar for each data point, the uncertainty on e in
We, and the x position on the best-fit line where the ellipse
around each data point touches the line, at x′, the second col-
umn of X′. Given the best-fit θ , the y corresponding to x′, is
y′ = X′θ . Defining y′′ = y′−e, data involving {x′,y′′}, rather
than {x,y}, is an identical problem via Eq. (B9). In this iden-
tical problem, x′ and y′ are fixed (have no uncertainty). With
this, the change in θ corresponding to Eq. (B9) becomes

1θ =−(X′TW2
e I′X′)−1X′TWeψ(r), (B14)
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in terms only of X′ and not involving X. This is akin to the
transform in York et al. (2004) to convert the Vθ of York
(1969) to that of the Vθ of Titterington and Halliday (1979).

Assuming that θ is approximately linear in each ek around
the minimum in

∑
ρ(rk), then

Vθ =
(
∂θ

∂e

)
Ve

(
∂θ

∂e

)T

. (B15)

At the solution of Eq. (B9), 1θ = 0, so, by the chain rule
using Eq. (B14),

(
∂θ

∂e

)
=

(
∂1θ

∂θ

)−1(
∂1θ

∂e

)
= (X′TW2

e I′X′)−1X′TW2
e I′.

(B16)

Substituting into Eq. (B15), cancelling, and using
W2

e I′W−2
e I′W2

e =W2
e I′,

Vθ = (X′TW2
e I′X′)−1. (B17)

The small steps in the age uncertainty (age±) curve in
Fig. A1 arise when diagonal elements in I′ change from 1
to 0 as mswd increases.

In YORK (or if all |rk|< h in SPINE), then I′ = I and
ψ(r)= r . So

1θ =−(X′TW2
e X)−1X′TWe r, (B18)

and the covariance matrix becomes

Vθ = (X′TW2
e X′)−1. (B19)

If, in addition, all σxk = 0, then X′ = X, and iteration is not
involved, e is replaced by −y, and

θ = (XTW2
e X)−1XTW2

e y, (B20)

with a covariance matrix of

Vθ = (XTW2
e X)−1. (B21)

These are the results for fitting data by simple weighted least
squares.
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Appendix C: SPINE Python code

The second iteration in Appendix B is coded in the Python function, huber2. The starting point for the iteration is provided
by the function, siegel (Siegel, 1982). The calling function, recipe, is a placeholder for a more general function to be
written by the user.
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Datafile for sample 0708, data0708.txt, see Fig. 6
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Example output, running on the command line

Geochronology, 2, 325–342, 2020 https://doi.org/10.5194/gchron-2-325-2020



R. Powell et al.: Robust isochron calculation 341

Appendix D: Simulation setup

This work was originally motivated by the dating of
speleothems using the lower intercept with a U–Pb concordia
in Tera–Wasserburg-style plots (Woodhead et al., 2012). This
paper therefore discusses {x,y} data with the expectation that
x=238U/206Pb and y=207Pb/206Pb, but the logic and the al-
gorithm are in no way restricted to this system.

Overall, 10 000 simulated datasets, each containing 5, 6,
8, 10, and 15 data points, respectively, were used to assess
SPINE. Each dataset corresponds to an age of 4 Ma, with an
underlying trend chosen to be y = 0.811− 0.000474737x.
For each dataset, the x values were drawn from a uniform
probability distribution with bounds {400,1100} (so the x
values are not equally spaced). Data points are assigned un-
certainty with σxk = 0 and a fixed σyk = 0.00125, the lat-
ter representing the analytical uncertainty, propagated from
both the x and y measurements into y. In a real {238U/206Pb,
207Pb/206Pb} dataset, σxk and σyk would be finite and corre-
lated. However, this makes no difference to the calculations
once data are processed into rk form as in Fig. 2. For a given
dataset, scatter is introduced into the data by drawing the y
values from an uncertainty distribution, centred on the un-
derlying trend, that may be either Gaussian (N) or one of
three contaminated Gaussian distributions – 5%3N, 25%5N,
or 10%10N – as in Powell et al. (2002). For n= 10 and
Gaussian-distributed uncertainties, the age uncertainty ob-
tained is approximately σt = 0.01 Ma.

Results are presented in terms of kernel density estimates
using an Epanechnikov kernel (Wand and Jones, 1995). Ker-
nel density estimates (kde) are a way of presenting data
that could otherwise be plotted as a histogram, normally nor-
malised so that – like a probability distribution – the area
under the kde curve is 1. The smoothness of the kde is con-
trolled by a smoothing constant whose value was chosen to
be just large enough for the kde to appear smooth, given that
10 000 datasets are used in each kde.

Appendix E: SPINE handling outliers

To see the consequence of outliers stemming from resid-
uals from a contaminated Gaussian distribution, a dataset
from simulations is shown in Fig. E1 and its correspond-
ing quantile–quantile plot in Fig. E2. This simulation, with
n= 50 and 25 %3N and a true age of 4.00 Ma, follows the
approach in Appendix D, but the uncertainty on the y values
is taken to be an order of magnitude larger (to be comparable
with sample 0708). The shape of Fig. E2 is typical of con-
taminated Gaussian distributions in samples of this size, with
outliers lying outside the band between the dashed blue lines.
The SPINE age is 3.95 Ma, whilst the YORK age is higher,
4.11 Ma, 1=+3.0σ of the SPINE age, due to the effect of
the outliers. Here, mswd= 4.35, so ISOPLOT would give a
model 2 age, 4.19 Ma, with 1= 4.27, being more affected
by the outliers than YORK.

Figure E1. A 25 %3N simulation with n= 50, with the SPINE fit
in red and the YORK fit in blue. The 2σ uncertainty applied to the
y value of each data point is indicated in the top right of the figure.
See text.

Figure E2. Quantile–quantile plot, for example, in Fig. E1. See
text.

In general, with larger contaminated Gaussian datasets,
the differences between the SPINE and YORK ages are not
dramatic, even if there are obvious outliers in the quantile–
quantile plots. In 10 000 simulated datasets with n= 50 and
25 %3N, a 95 % confidence interval on 1 is ±1.5.
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