



## Supplement of

## Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits

Lasse Sander et al.

Correspondence to: Lasse Sander (lasse.sander@awi.de)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1: Overview of changes in the range of uncertainty in the <sup>14</sup>C age of driftwood as

5 reported in selected studies in Arctic coastal contexts. The data are displayed as uncalibrated samples and the figure illustrates that technological advancements in the <sup>14</sup>C method continually improved the quality of the age determination. Current uncertainties are on the order of ±15 years (e.g. Wacker et al. 2010) and thus in most cases shorter than uncertainties stemming from an unknown sample position within the tree-ring chronology or an unaccounted weathering loss 10 (cf. Fig. S4).

```
Plot("Bys Tasa")
     {P_Sequence("Bys_Tasa",0.5)
15
      {Boundary("innermost_ridge"){z=0;};
      R_Date("BY-1",5425,30){z=0;};
      R_Date("BY-2",5441,30){z=0;};
      R_Date("BY-6",5063,29){z=130;};
      R_Date("BY-5",5118,29){z=140;};
20
      R_Date("BY-7",4697,29){z=240;};
      R_Date("BY-3",4387,29){z=400;};
      R_Date("BY-4",4380,29){z=400;};
      R_Date("K3",4038,49){z=510;};
      R_Date("K4",3889,49){z=590;};
25
      R Date("BY-8",3544,28){z=700;};
      R Date("K2",3500,48){z=700;};
      R_Date("K1",3206,48){z=880;};
```

Boundary("disconformity){z=1100;};

## Figure S2: OxCal code for the age model of the Bys Tasa (BY) beach-ridge system

```
Plot("Makhchar")
     {P_Sequence("Makhchar",0.5)
      {Boundary("innermost_ridge"){z=0;};
      R Date("MA-40",5127,29){z=0;};
35
      R_Date("MA-41",5294,29){z=0;};
      R Date("MA-42",5153,29){z=0;};
      R Date("MA-32",4394,28){z=280;};
      R_Date("MA-33",4322,29){z=280;};
      R_Date("MA-30",4382,29){z=315;};
40
      R_Date("MA-31",4344,29){z=315;};
      R_Date("MA-27",4149,28){z=410;};
      R_Date("MA-28",4169,28){z=410;};
      R Date("MA-29",4175,28){z=410;};
      Boundary("marked_ridge1"){z=810;};
45
      R_Date("MA-39",2121,28){z=860;};
      Boundary("marked ridge2"){z=890;};
      R_Date("MA-4",1133,27){z=915;};
      R_Date("MA-3",944,27){z=940;};
      R Date("MA-1",770,27){z=965;};
50
      R Date("MA-26",568,27){z=970;};
      Boundary("stormberm"){z=980;};};
```

Figure S3: OxCal code for the age model of the Makhchar (MA) beach-ridge system



55 Figure S4: The decay of tree rings can produce significant errors in the age determination. This figure is to illustrate, how an unknown position of a <sup>14</sup>C sample in relation to the outermost tree-ring might affect the quality of the established chronology (and hence the paleoenvironmental interpretation). Complete radius: 9.3 cm



Figure S5: Composition of the sample population based on the genus of the driftwood samples.

| ID       | Set | Unmodelled age*<br>(Probability, in %**)         | Modelled age<br>(Probability, in %**)    | Age span, modelled<br>(unmodelled) | Agreement |
|----------|-----|--------------------------------------------------|------------------------------------------|------------------------------------|-----------|
| Boundary |     | N/A                                              | 4340 – 4250 BCE (95.4)                   | 90 (N/A)                           | N/A       |
| BY-1     | 1   | 4350 – 4230 BCE (95.4)                           | 4340 – 4260 BCE (95.4)                   | 80 (120)                           | 112.1     |
| BY-2     | 1   | 4340 – 4240 BCE (95.4)                           | 4340 – 4250 BCE (95.4)                   | 80 (100)                           | 109.1     |
| BY-6     | 2   | 3960 – 3790 BCE (95.4)                           | 3920 – 3820 BCE (95.4)                   | 100 (170)                          | 104.8     |
| BY-5     | 2   | 3980 – 3910 BCE (46.3)<br>3880 – 3800 BCE (49.1) | 3880 – 3800 BCE (95.4)                   | 80 (180)                           | 85.0      |
| BY-7     | -   | 3630 – 3580 BCE (14.0)<br>3540 – 3370 BCE (81.5) | 3540 – 3390 BCE (95.4)                   | 150 (260)                          | 96.2      |
| BY-3     | 3   | 3100 – 2920 BCE (95.4)                           | 3020 – 2920 BCE (95.4)                   | 100 (180)                          | 114.1     |
| BY-4     | 3   | 3090 - 2910 BCE (95.4)                           | 3020 – 2920 BCE (95.4)                   | 100 (180)                          | 114.6     |
| K3       | -   | 2700 – 2460 BCE (86.3)                           | 2660 – 2500 BCE (95.4)                   | 160 (240)                          | 111.6     |
| K4       | -   | 2480 – 2200 BCE (95.4)                           | 2390 – 2220 BCE (95.4)                   | 170 (2280)                         | 91.5      |
| BY-8     | 4   | 1960 – 1770 BCE (95.4)                           | 1980 – 1860 BCE (94.3)                   | 120 (190)                          | 110.9     |
| K2       | 4   | 1950 – 1690 BCE (95.4)                           | 1980 – 1860 BCE (94.4)                   | 80 (160)                           | 57.5      |
| K1       | -   | 1620 - 1400 (95.4)                               | 1510 – 1370 (70.4)<br>1360 – 1290 (25.0) | 220 (220)                          | 68.2      |
| Boundary |     | N/A                                              | 880 – 460 BCE (95.4)                     | 420 (N/A)                          | N/A       |

Table S1: Results of the Bayesian age model for Bys Tasa

\* rounded to tenth
70 \*\* probabilities <10% are not displayed and not considered in the calculation of the age span</li>

| ID       | Set | Unmodelled age                                   | Modelled age                                     | Age span, modelled | Agreement |
|----------|-----|--------------------------------------------------|--------------------------------------------------|--------------------|-----------|
|          |     | (Probability, in %)                              | (Probability, in %)                              | (unmodelled)       |           |
| Boundary |     | N/A                                              | 4040 - 3960 (95.4)                               | 80 (N/A)           | N/A       |
| MA-40    | 5   | 3990 – 3910 BCE (55.1)<br>3880 – 3800 BCE (40.3) | 4040 – 3960 BCE (95.4)                           | 80 (190)           | 28.4      |
| MA-41    | 5   | 4240 – 4040 BCE (95.0)                           | 4040 – 3960 BCE (95.4)                           | 80 (200)           | 3.7       |
| MA-42    | 5   | 4050 - 3930 BCE (86.1)                           | 4040 – 3960 BCE (95.4)                           | 80 (120)           | 79.0      |
| MA-32    | 6   | 3100 – 2920 BCE (95.4)                           | 3100 – 3050 BCE (61.7)<br>3030 – 2990 BCE (33.7) | 110 (210)          | 110.5     |
| MA-33    | 6   | 3020 – 2890 BCE (95.4)                           | 3090 – 3050 BCE (61.9)<br>3030 – 2990 BCE (33.5) | 100 (130)          | 17.1      |
| MA-30    | 7   | 3090 - 2910 BCE (95.4)                           | 3010 – 2910 BCE (95.4)                           | 100 (180)          | 96.1      |
| MA-31    | 7   | 3030 - 2890 BCE (94.7)                           | 3010 – 2910 BCE (95.4)                           | 100 (140)          | 96.0      |
| MA-27    | 8   | 2880 – 2630 BCE (95.4)                           | 2780 – 2660 BCE (93.2)                           | 120 (250)          | 112.8     |
| MA-28    | 8   | 2890 – 2830 BCE (19.8)<br>2820 – 2660 BCE (73.3) | 2780 – 2660 BCE (93.1)                           | 120 (230)          | 100.9     |
| MA-29    | 8   | 2890 – 2830 BCE (20.7)<br>2820 – 2660 BCE (74.7) | 2780 – 2660 BCE (93.1)                           | 120 (230)          | 91.9      |
| Boundary |     | N/A                                              | 1720 – 1180 BCE (95.4)                           | 540 (N/A)          | N/A       |
| MA-39    | -   | 210 – 50 BCE (92.1)                              | 210 – 50 BCE (95.4)                              | 160 (160)          | 101.7     |
| Boundary |     | N/A                                              | 510 - 880 CE (95.4)                              | 370 (N/A)          | N/A       |
| MA-4     | 9   | 860 – 990 CE (87.4)                              | 810 – 990 CE (93.7)                              | 180 (130)          | 101.1     |
| MA-3     | 9   | 1020 – 1160 CE (95.4)                            | 1030 – 1150 CE (95.4)                            | 120 (140)          | 102.5     |
| MA-1     | 9   | 1210 – 1280 CE (95.4)                            | 1230 – 1290 CE (95.4)                            | 60 (70)            | 108.7     |
| MA-26    | 9   | 1300 – 1370 CE (56.2)<br>1380 – 1430 CE (39.2)   | 1290 – 1360 CE (95.4)                            | 70 (130)           | 88.6      |
| Boundary |     | N/A                                              | 1320 – 1500 CE (95.4)                            | 180 (N/A)          | N/A       |

Table S2: Results of the Bayesian age model for Makhchar

\* rounded to tenth \*\* probabilities <10% are not displayed and not considered in the calculation of the age span

75