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Abstract. Detrital tracer thermochronology utilizes the
relationship between bedrock thermochronometric age—
elevation profiles and a distribution of detrital grain ages
collected from riverine, glacial, or other sediment to study
spatial variations in the distribution of catchment erosion. If
bedrock ages increase linearly with elevation, spatially uni-
form erosion is expected to yield a detrital age distribution
that mimics the shape of a catchment’s hypsometric curve.
Alternatively, a mismatch between detrital and hypsometric
distributions may indicate spatial variability of sediment pro-
duction within the source area. For studies seeking to identify
the pattern of sediment production, detrital samples rarely
exceed 100 grains due to the time and costs related to individ-
ual measurements. With sample sizes of this order, detecting
the dissimilarity between two detrital age distributions pro-
duced by different catchment erosion scenarios can be diffi-
cult at a high statistical confidence level. However, there are
no established software tools to quantify the uncertainty in-
herent to detrital tracer thermochronology as a function of
sample size and spatial pattern of sediment production. As
a result, practitioners are often left wondering “how many
grains is enough to detect a certain signal?”. Here, we inves-
tigate how sample size affects the uncertainty of detrital age
distributions and how such uncertainty affects the ability to
infer a pattern of sediment production of the upstream area.
We do this using the Kolmogorov—Smirnov statistic as a met-
ric of dissimilarity among distributions. From this, we per-
form statistical hypothesis testing by means of Monte Carlo
sampling. These techniques are implemented in a new tool
(ESD_thermotrace) to (i) consistently report the confidence
level allowed by the sample size as a function of application-
specific variables and given a set of user-defined hypotheti-
cal erosion scenarios, (ii) analyze the statistical power to dis-

cern each scenario from the uniform erosion hypothesis, and
(iii) identify the erosion scenario that is least dissimilar to
the observed detrital sample (if available). ESD_thermotrace
is made available as a new open-source Python-based script
alongside the test data. Testing between different hypothe-
sized erosion scenarios with this tool provides thermochro-
nologists with the minimum sample size (i.e., number of
bedrock and detrital grain ages) required to answer their spe-
cific scientific question at their desired level of statistical con-
fidence.

1 Introduction

Tracer thermochronology uses the distribution of single-
grain thermochronometric ages from detritus to infer the
spatial pattern of erosion in the source area (e.g., Stock et
al., 2006; Vermeesch, 2007). This approach is typically ap-
plied where bedrock thermochronometric age data exhibit a
clear age—elevation relationship, allowing inference of the
relative contribution of source elevations from the detrital
grain age distribution. A detrital grain age distribution that
closely follows the catchment’s hypsometric curve (i.e., the
cumulative distribution function of elevation area) is gen-
erally interpreted as indicative for spatially uniform ero-
sion. Conversely, a detrital age distribution skewed towards
younger (or older) ages may be the consequence of focused
erosion at lower (or higher) elevations (Brewer et al., 2003).
Tracer thermochronology has been shown to be a power-
ful tool to investigate the sub-catchment-scale variability
of denudation. Geomorphologists have been able to infer
changes in climatic parameters (Nibourel et al., 2015; Riebe
et al., 2015), glacial erosional processes (Ehlers et al., 2015;
Enkelmann and Ehlers, 2015; Clinger et al., 2020), sediment
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dynamics (Lang et al., 2018), relief evolution (McPhillips
and Brandon, 2010; Whipp et al., 2009), occurrence of mass-
wasting (Vermeesch, 2007; Whipp and Ehlers, 2019), and
differences in rock uplift (McPhillips and Brandon, 2010;
Glotzbach et al., 2013, 2018; Brewer et al., 2003; Ruhl and
Hodges, 2005). Other work has noted that neglecting min-
eral fertility variations with catchment lithologies may chal-
lenge the conclusions of some of these studies (Malusa et
al., 2016). Unfortunately, the number of measured detrital
ages for tracer thermochronology is often dictated by inher-
ent limitations of the sampled material and/or by available
finances, rather than a science-based choice. Detrital sample
sizes often range between 40 and 120 grains (e.g., Stock et
al., 2006; Vermeesch, 2007; McPhillips and Brandon, 2010;
Ehlers et al., 2015; Riebe et al., 2015; Glotzbach et al., 2018;
Lang et al., 2018; Clinger et al., 2020) and are considered to
yield high-confidence results when surpassing ~ 100 grains
based on previous work on sediment provenance analysis
(Vermeesch, 2004). However, in unfortunate cases, two mea-
sured distributions generated from different erosional pat-
terns cannot be statistically discerned at a high confidence
level even with more than 100 grains. Although this issue
has been well-known to the community (e.g., Avdeev et
al., 2011) since the early days of such detrital studies (Brewer
etal., 2003), there is no established tool to quantify the uncer-
tainty inherent to detrital tracer thermochronology as a func-
tion of sample size and upstream pattern of sediment produc-
tion. Moreover, the number of measured grains may often be
based on convenience and/or habit.

Here, we complement previous work by investigating how
sample size affects the uncertainty of detrital cooling age dis-
tributions and the related confidence in addressing the pattern
of sediment production in the upstream area. We discuss the
approaches used in previous case studies, upon which we de-
velop a tool (Earth system dynamics — ESD_thermotrace) to
consistently report confidence levels as a function of sample
size and case-specific variables. We illustrate our approach
using a published dataset from the Sierra Nevada, Califor-
nia (Stock et al., 2006). The proposed tool is made available
as a new open-source Python-based script alongside the test
data. We demonstrate how ESD_thermotrace can assist fu-
ture tracer thermochronology studies in defining the neces-
sary sample size to answer their specific scientific question.
In cases where larger sample sizes are impossible to achieve,
the statistical power of a tracer thermochronology analysis
can be studied using our script.

2 Background information

Single-grain detrital age distributions are extensively ap-
plied in classical detrital geochronology studies (Hurford and
Carter, 1991), where U/Pb crystallization ages of zircon con-
stitute by far the most used tool (Spiegel et al., 2004; An-
dersen, 2005; Malusa et al., 2013). In this type of applica-
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Figure 1. Sketch of the difference between classical detrital
geochronology (a) and tracer thermochronology (b). (a) Discrete
age components are found in the detritus and refer to different up-
stream geological units. (b) A continuous detrital age distribution
informs the relative abundance of material sourced from different
elevations based on a known age—elevation relationship.

tion, the aim is to obtain the spectrum of all age compo-
nents (i.e., age peaks) that characterize a siliciclastic sedi-
ment. If a range of assumptions hold (Malusa et al., 2013;
Malusa and Fitzgerald, 2020), the provenance of a sediment
sample’s source area can be inferred by matching the detrital
age components to those of known upstream geological units
and/or events. For that purpose, the number of measured de-
trital grains determines the confidence of detecting minor or
small age components. An exhaustive probabilistic method
to report such confidence exists (Vermeesch, 2004) and is
not the focus of this study. The absolute age components of
the source area are in fact unimportant in detrital tracer ther-
mochronology (Avdeev et al., 2011), for which monolitho-
logic catchments are best suited, in order to minimize min-
eral fertility issues in the source rock (Fig. 1). The focus here
is the dissimilarity between the distribution of ages found in
the source area and in the fluvial/glacial/hillslope sediment
derived therefrom, regardless of their absolute age compo-
nents. For this purpose, the uncertainty caused by a small
sample size strongly limits the least significant dissimilarity
that can be resolved between two distributions. This mini-
mum resolution directly affects the power of our inferences.

In the following we summarize the conceptual model con-
cerning this matter and the approaches that have been used
to address it thus far. Let us consider a monolithologic catch-
ment and a set of detrital grain ages measured at its outlet.
The observed grain age distribution should match a predicted
distribution that is forward-modeled by stacking the follow-
ing layers of geologic information about the upstream area
(Fig. 2).
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I. the catchment hypsometry, or the distribution of the
catchment’s cumulative area as a function of eleva-
tion, which is derived from the digital elevation model
(DEM) of the study area and has a negligible uncer-
tainty;

II. the bedrock age—elevation data, which in the simplest
case is a linear function based on a dataset of ages with
associated uncertainty measured at known elevations;

III. the mineral fertility, which informs the original abun-
dance of the target mineral in the different elevation
ranges and is mostly a function of lithologic variability
and is a critical parameter that can lead to gross misin-
terpretations if ignored (Malusa et al., 2016);

IV. information about how the sediment size distribution
varies between the headwaters and the detritus, which
is used to make sure that grains in the detritus are repre-
sentative of erosion in the catchment (e.g., Vermeesch,
2007; Riebe et al., 2015; Lukens et al., 2020);

V. the pattern of erosion across the catchment, which is the
dependent variable of the system and can be any map
of erosion probability used as a scenario to be tested
against uniform erosion (or other reference scenarios).

Regardless of the scope of the application, tracer ther-
mochronology ultimately aims to quantify the mismatch be-
tween observed and predicted distributions, where the pre-
dicted distributions vary depending on assumed models for
catchment erosion, sediment dynamics, and tectonics.

3 Comparing predicted and observed distributions

Predicted distributions should be constructed accounting for
all of the above information and related uncertainties, such
that the confidence of the fit to the observed distribution
also accounts for them. Brewer et al. (2003), and later Ruhl
and Hodges (2005), were the first to compare the distribu-
tion of detrital thermochronometers to that of age—elevation
data. Although the scope of their work differed from more
recent tracer thermochronology, the evaluation of the dissim-
ilarity between predicted and observed distributions remains
the main object of their studies. These authors constructed
synoptic probability density functions (SPDFs) of the ob-
served data by “stacking” the Gaussian distributions of all
measured grain ages, each with their analytical error (this is
equivalent to the SPDF; in Table 1 of Vermeesch, 2007). In
addition to the observed distribution, a predicted SPDF was
also constructed with the same method, where the predicted
grain ages are a random subsample of the hypsometric curve
and are each given an arbitrary average uncertainty. Brewer
et al. (2003) define the mismatch Pyisf between observed and
predicted SPDF with Eq. (1):
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Figure 2. Qualitative sketch to illustrate the effect of mineral fer-
tility and erosion on the detrital distribution. (a) The catchment of
Fig. 1b with known bedrock age (shades of green) is subject to three
scenarios of spatially varying fertility and erosion. The box outlines
refer to the curves below. (b) Detrital distributions obtained from
the different scenarios in (a). The green curve refers to spatially
uniform erosion and fertility.

where (P; and P,) are the probabilities of the two distri-
butions calculated at each age step (). Paifr relates to the
area comprised between two SPDF in the age—frequency
space. Brewer et al. (2003) calculate the 95 % confidence
mismatch between observed and predicted SPDF through a
Monte Carlo simulation.

Vermeesch (2007) has shown that, for the purpose of com-
parison, observed and predicted distributions are best ex-
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pressed as a cumulative age distribution (CAD) rather than
SPDF. A CAD is a step-function with the sorted mean ages
on the x axis and the related quantiles on the y axis (Ver-
meesch, 2007). This method is preferred because it avoids
the possible sources of bias introduced by (i) the choice
of smoothing parameter in the kernel density estimations
(KDEs), (ii) binning in histograms, and (iii) uncertainty-
based weighting in the SPDF curves (Vermeesch, 2012). To
evaluate the goodness of fit between observed and predicted
CADs, Vermeesch (2007) uses the Kolmogorov—Smirnov
(KS) statistic, which informs the maximum distance dks
between two cumulative distribution functions as follows
(Massey, 1951, and references therein):

dgs = maximum | CADgpserved(?) — CADpredicted(’)| . 2

Given an observed CAD with k observations (i.e., ages), dks
is calculated for several n = k subsamples of the predicted
CAD. The 95th percentile of all sorted dks (dks_95) is used
as the least significant dissimilarity to reject the null hypoth-
esis that the observations are drawn from the predicted CAD.
In other words, an observed CAD that plots entirely within
the range CADpredicted &= dks_95 (Fig. 3) cannot be discerned
from the predicted age population at the 95 % confidence
level. As an alternative to this iterative method, the confi-
dence region for a predicted CAD can be calculated with
the analytical solution of the Dvoretzky—Kiefer—Wolfowitz
(DKW) inequality as follows:

ln%
dgs o5~ & = e 3)

where the DKW distance ¢ approximates the dgs o5 well as a
function of confidence level (1 —«) and sample size k (Fig. 3)
(Massart, 1990; Massey, 1951).

Riebe et al. (2015) further developed the bootstrapping ap-
proach described above to age distributions (in SPDF form).
Instead of basing their analysis on the KS statistic, the 95 %
confidence envelope of the prediction is iteratively estimated
at each age step 7;. For each #;, the distribution of 10000 pre-
dicted age frequencies SPDFedicted(?;) is used to draw 2.5th
and 97.5th percentiles at each age step. Because the age steps
t; relate to the elevation steps in the catchment through the
bedrock thermochronometric data, those elevation steps ex-
hibiting excess (> 97.5th) or deficit (< 2.5th) frequency are
interpreted to produce sediment in excess or deficit with re-
spect to the reference scenario of uniform erosion at the 95 %
confidence level.

The approaches summarized above are well-suited to test
observed detrital age distributions against the null hypothe-
sis of spatially uniform erosion. However, even if the uni-
form erosion hypothesis is rejected, such a test does not yield
further information about the spatial variability of sediment
production. One way to gain additional information would
be to test the observed distribution against predicted age dis-
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Figure 3. Example of metrics to compare two cumulative distri-
butions drawn from different sample sizes. Here, an observed cu-
mulative age distribution (CAD) for n = k (stepwise dashed orange
line) is compared to a predicted CAD drawn for n >> k (solid black
line). The Kolmogorov—Smirnov statistic dxg equals the maximum
absolute vertical distance between distributions in the observations—
frequency space. The Kuiper statistic diy; equals the sum of both
positive and negative maxima. For @ = 0.05 (i.e., 95 % confidence)
and n = k, a Dvoretzky—Kiefer—Wolfowitz confidence region can be
calculated (gray shading). In this example, observed and predicted
distributions are drawn from two statistically different populations
at the 95 % confidence level because the orange curve exceeds the
gray region.

tributions from erosion scenarios other than spatially uni-
form distributions, thereby quantifying the likelihood that the
measured grain ages could be produced by the tested sce-
narios. This approach would help practitioners in deciding
the sampling strategy, calculating the appropriate number of
measurements and the resources to be allocated for them. In
the next paragraphs we introduce the new ESD_thermotrace
software, an open-source tool built on the cited previous
work to consistently perform the following tasks: (i) determi-
nation of the confidence level allowed by the detrital sample
size in rejecting the uniform erosion hypothesis, (ii) analysis
of the statistical power of detecting the effect size caused by
alternative erosion hypotheses as a function of the number
of grains, and (iii) testing of observed detrital distributions
against all input erosion hypotheses (both uniform and alter-
native scenarios) and calculation of the likelihood that the
detrital sample may have been drawn from either of them.
The software is introduced in the paragraphs below.

4 ESD thermotrace: a tool to study the uncertainty
of tracer thermochronology datasets

The software ESD_thermotrace (Madella et al., 2022) per-
forms the steps briefly outlined below. For additional
details, the reader is referred to the illustrative case
study in Sect. 5 and the well-commented code itself
(https://doi.org/10.5880/fidgeo.2021.003):

1. Bedrock age map interpolation.

— Input. Bedrock age—elevation dataset and digital el-
evation model.

https://doi.org/10.5194/gchron-4-177-2022
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— Output. Bedrock age map.

— Method. Users can choose among 1D linear regres-
sion, 3D linear interpolation, 3D radial basis func-
tion. Alternatively, an externally produced age map
can be imported.

2. Bedrock age uncertainty map interpolation.

— Input. Bedrock age—elevation dataset with uncer-
tainties (point data) and bedrock age map (grid
data).

— Output. Bedrock age uncertainty map.

— Method. The uncertainty of the age map is esti-
mated through bootstrapping. An externally pro-
duced uncertainty map is required if the age map
was imported.

3. Catchment bedrock age, coordinates, mineral fertility,
and erosion data extraction.

— Input. Catchment outline, bedrock age and age un-
certainty maps, mineral fertility map, and one or
more erosion maps.

— Output. A table of all the listed catchment proper-
ties necessary to predict detrital age distributions

— Method. For each cell of the age map contained in
the catchment outline, the local coordinates, age,
fertility, and erosional weight(s) are extracted.

4. Detrital grain age distribution prediction for each ero-
sion scenario.

— Input. Table of catchment data.

— Output. A predicted detrital age population for each
erosion scenario and related cumulative age distri-
bution.

— Method. An amount of ages proportional to ero-
sional weight and fertility is drawn from each cell
for each scenario. The ages from all catchment cells
collectively represent a predicted population from
which cumulative age distributions are constructed.

5. Calculation of (i) the likelihood of rejecting the uniform
erosion hypothesis with the observed sample size and
(ii) the statistical power of discerning predicted erosion
scenarios (i.e., alternative hypotheses) as a function of
sample size.

— Input. One or more sets of observed grain ages and
uncertainties and predicted detrital populations and
distributions.

— Output. A graph displaying (i) the confidence of re-
jecting uniform erosion with the observed sample
size and (ii) the statistical power curve of discern-
ing the scenarios from uniform erosion by varying
sample size.

https://doi.org/10.5194/gchron-4-177-2022

— Method. First, the dys 95 for the available sample
size k is calculated with Eq. (3). Following this, the
likelihood that the observed n =k CAD is more
dissimilar than the dys 95 is calculated through
bootstrapping. The same operation is also repeated
for a range of sample sizes (20 < k < 130) in order
to estimate the rise in confidence level caused by
the increasing sample size (if the observed distri-
bution and associated uncertainty remained identi-
cal despite the changing sample size). To calculate
the statistical power of discerning the tested ero-
sion hypotheses, the same approach is applied. In
this case, however, the software draws a number of
distributions from each erosion scenario instead of
the observed grain ages.

6. Calculation of the plausibility of each erosion scenario
(i.e., the likelihood that alternative hypotheses cannot be
rejected with high confidence) given a set of observed
detrital grain ages and uncertainties.

— Input. One or more sets of observed grain ages and
uncertainties and predicted detrital populations and
distributions.

— Output. Two plots to visualize how plausibly the
observed grain ages have been drawn from the pre-
dictions.

— Method. In the first plot, dissimilarities calculated
between predictions and observations are sorted
and their distribution is plotted in the form of
a violin plot. Second, a two-dimensional multi-
dimensional scaling (MDS) model is fitted to
the dissimilarities among the predicted and ob-
served distributions and plotted following Ver-
meesch (2013).

All of the above operations are embedded in an open-
source Jupyter Notebook (https://jupyter.org/, last access:
22 March 2022), a software that allows for integrating text,
Python code, and visualizations within the same document
to make it as editable and transparent as possible. All plots
are produced with Matplotlib (Hunter, 2007) and Seaborn
(Waskom et al., 2020) Python libraries and are colored using
the colorblind-friendly and perceptually uniform Scientific-
ColourMaps6 (Crameri et al., 2020). In the following para-
graph we show, for illustrative purposes only, how the pro-
gram helps in analyzing an already published detrital apatite
age dataset (Stock et al., 2006).

5 Application of ESD_thermotrace to the Inyo Creek
case study

We apply ESD_thermotrace to the bedrock and detrital ap-
atite (U-Th(-Sm)/He, hereafter AHe) age datasets of Stock
et al. (2006). In that study, nine bedrock AHe ages from the
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Inyo Creek and adjacent Lone Pine Creek catchments (east-
ern Sierra Nevada, California, USA) are used to constrain
the age—elevation relationship of the source area. The au-
thors compared these bedrock data to the AHe age distribu-
tion of river sand samples from both catchment outlets. For
the sake of simplicity, here we only consider the fine sand
sample (k =52) from the Inyo Creek catchment. Based on
their analysis, Stock et al. (2006) inferred no significant vari-
ability of sediment production (erosion) across all elevations
within the catchment.

5.1 Data import and bedrock age interpolation

The first few steps of ESD_thermotrace allow for importing
(1) the digital elevation model of the study area; (ii) the poly-
gon of the catchment of interest; (iii) a table of bedrock age,
age uncertainties, and elevation data; (iv) the (optional) ero-
sion scenarios to be tested; and (v) an optional fertility map.
Next, the surface bedrock ages are calculated with the pre-
ferred method (see above and the README file in Madella
et al., 2022). The bedrock AHe ages of Stock et al. (2006),
recalculated after Riebe et al. (2015), exhibit a ~ 60 Myr
age increase from ca. 2 to 4.5 km elevation range that is de-
scribed well by an inverse variance-weighted linear regres-
sion (r> =0.93). The input data are plotted in Fig. 4a. In
Fig. 4b, every cell is assigned an AHe age as a linear function
of elevation (Fig. 5b) to map the bedrock cooling age on the
topographic surface. The interpolation error is also mapped
in Fig. 5a, and it displays the 1o uncertainty of the prediction
from the linear regression (Fig. 5b).

5.2 Extraction of catchment data

Next, ESD_thermotrace extracts the x, y, and z coordinates;
the bedrock cooling age; and the related error for all the cells
bound by the catchment outline. These data are written in a
table, to which a column detailing erosional weights is added
for each desired erosion scenario and for mineral fertility. In
addition to the user-defined erosion maps, by default the soft-
ware considers the uniform erosion scenario Euni (spatially
constant erosional weight). Two further example scenarios
can be toggled to test for an exponential increase of erosion
with elevation or an exponential decrease of erosion with el-
evation (not considered here). We note that any other spatial
variation in erosion can be defined by a user such that “ero-
sion maps” for the catchment following stream power, slope
dependency, glacial slide velocity, or other approaches from
geomorphic transport laws can be input.

For this case study, bulk geochemistry and point-counting
analyses of Hirt (2007) indicate that apatite fertility does not
significantly vary within the three lithologies found in the
Inyo Creek catchment (Lone Pine granodiorite, Paradise gra-
nodiorite, Whitney granodiorites). For illustrative purpose,
we test uniform erosion against two opposite step functions
of elevation: a scenario with F' times higher erosion effi-
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Figure 4. Input bedrock data from Stock et al. (2006). (a) Raster
images of the study area’s digital elevation model, resampled to the
user-specific cell size, and (b) bedrock surface AHe age interpolated
based on the linear regression of age—elevation data. In both plots,
point data inform bedrock sample locations and related AHe ages.
Polygons show the location of the Inyo Creek catchment.

ciency above the median catchment elevation and one with F
times higher erosion below the median elevation. The factor
F is equal to double the ratio between the most frequent and
the least frequent elevation. For this calculation, the hypso-
metric histogram is constructed with a number of bins equal
to the maximum difference in bedrock cooling ages, divided
by the mean age uncertainty (rounded up to the next integer).
Here, the Inyo Creek catchment is binned in seven elevation
ranges, of which the most frequent is 5 times the least fre-
quent one, resulting in F = 10. In other words, we test for
an increase in erosion twice as prominent as the hypsomet-
ric peak (10-fold), once below (“E < Zneq”’) and once above
(“E > Zmed”) the median catchment elevation.

5.3 Prediction of age populations and detrital age
distributions

The erosional weights are used to forward model sediment
production at each position in the catchment. To do so, an
amount of grain ages proportional to the erosional weight
and to the local mineral fertility are randomly chosen for each
cell. These grain ages are randomly drawn from a normal dis-
tribution constructed using the local interpolated bedrock age
and the related uncertainties. The randomly picked grain ages
of all cells are stored in one suite of grain ages, which rep-
resents the predicted detrital grain age population of a well-
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Figure 5. The raster image (a) displays the bedrock age interpolation error mapped to the topographic surface of the study area. The inset (b)
shows the inverse variance-weighed linear regression employed as an age—elevation function, as well as the associated prediction interval

with 1o confidence level.

mixed fluvial sediment at the catchment outlet. Such a detri-
tal population is predicted for each erosion scenario, and re-
lated predicted CADs are constructed by sorting the age pop-
ulations and plotted as a step function (Fig. 6b). For the sake
of quick visual comparison, ESD_thermotrace plots a kernel
density estimation with arbitrary smoothing (Fig. 6a). How-
ever, the dissimilarity among distributions will be evaluated
exclusively based on the cumulative form in order to mini-
mize bias (Vermeesch, 2007). In Fig. 6b, all predicted and
observed cumulative age distributions are plotted. For a first-
order impression of the uncertainty due to sample size, the
95 % confidence envelope of the reference scenario is also
calculated with Eq. (3) and plotted in the background. Here,
the user can specify for which reference scenario (“Eyy;i” as
default) the confidence envelope should be plotted.

5.4 Confidence level and statistical power as a function
of sample size

After predicting the distributions, to answer the question of
how many grain ages are necessary to discern a hypotheti-
cal erosion pattern from uniform erosion, the software ana-
lyzes the statistical confidence and the statistical power as a
function of sample size. The confidence informs the likeli-
hood of rejecting a null hypothesis Hp (the uniform erosion
scenario) based on the observations (the dated grains). The
statistical power informs the likelihood that if an alternative
hypothesis H; was true (one of the tested erosion scenarios),
Hp would be rejected based on a sample drawn from Hj.
Here, the software calculates (i) the maximum confidence in
rejecting the uniform erosion hypothesis allowed by the ob-
served sample size and (ii) the statistical power of discerning
the scenarios from uniform erosion as a function of sample
size. Let us consider the observed CAD constructed with the
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tal distributions and of the observed detrital sample (a). Cumulative
form (b) of the same distributions, plus the 95 % confidence enve-
lope (DKW-bounds) of “E\;” for n = k = 52. E\;;; indicates uni-
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elevation.

sorted mean grain ages. The mean standard deviation of the
observed grain ages is used to generate 10000 Monte Carlo
samples of this observed CAD, which account for age disper-
sion due to analytical error and/or reproducibility. Thus, the
confidence in rejecting uniform erosion equals the fraction
of sampled CADs that is more dissimilar to “Eyy;” than the
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Figure 7. Confidence level at which the observed CAD (n = 52)
can be discerned from the uniform erosion prediction (cyan circle).
The dashed cyan line shows how the allowed confidence level would
vary if the same observed CAD relied on 20-130 grain ages. Statis-
tical power of discerning the tested erosion scenarios from “Ep;”
as function of sample size (solid lines). In this case study, the ob-
served CAD of the Inyo Creek detrital sample allows rejecting the
uniform erosion hypothesis with 55 % confidence at best. An anal-
ysis to detect the scenarios “E < Zyeq” and “E > Zyeq” would
have a statistical power greater than 95 % in rejecting “E\,;” with
more than 37 grain ages. E\; indicates uniform erosion, £ < Zeq
indicates 10-fold erosion below median elevation, and E > Zyeq
indicates 10-fold erosion above median elevation.

least significant dissimilarity (dks 9s) allowed by the sam-
ple size k (see Eq. 3). The statistical confidence calculated in
this manner can be read in the scatterplot of Fig. 7 (light blue
circle), and it equals 55 % for the Stock et al. (2006) data.
Figure 7 also shows that the 95 % level of significance could
be achieved with more than 128 grain ages. Here, we clarify
that the latter estimate assumes that the observed distribution
would not change in shape while varying the sample size,
and as such it can only be treated as an indicative number.

If the confidence allowed by the actual sample size is
lower than the previously chosen level of significance, the
analysis of statistical power can help in identifying how
likely the available number of grain ages would be to de-
tect a known effect size (i.e., the dissimilarity caused by a
known erosion scenario). This analysis of statistical power
is based on the iterative comparison between the reference
scenario and all other erosion scenario predictions. This is
achieved through random subsampling of the predicted dis-
tributions for a range of possible sample sizes (20 <n < 130
in this case). For each n;, the least significant dissimilar-
ity dks_o5(n;)* of the reference scenario is calculated for
o =0.05 and n =n; using Eq. (3). In the observations—
cumulative frequency space (Fig. 6b), dxs_o5(n;)* represents
the vertical distance that any n = n; distribution needs to ex-
ceed to be discerned from a n =n; subsample of the ref-
erence scenario with 95 % confidence (purple shading in
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Fig. 6b). Next, 1000 dks_gs(n;) are calculated between n =
n; subsamples of each erosion scenario and the reference sce-
nario. The probability of dks o5(n;) exceeding dxs_95(n;)*
for each n; can be read from the curves in Fig. 7. For the Inyo
Creek case study (Stock et al., 2006), both tested erosion sce-
narios (“E < Zmed”, “E > Zmeq”) yield predicted CADs that
are very dissimilar from uniform erosion. Consequently, the
statistical power to discern these alternative erosion hypothe-
ses would exceed 95 % even with only 40 grains.

Figure 7 shows the use of ESD_thermotrace as a tool to
explore the feasibility of a tracer thermochronology study.
Based on their research question, users can apply a few pos-
sible erosion maps and test the likelihood with which the re-
spective detrital distributions could be discerned from uni-
form erosion through detrital tracer thermochronology as a
function of sample size. Such analysis of feasibility is not
only beneficial in terms of better quantifying uncertainties,
but it can also assist investigators in defining the budget for
measurements at an early stage of proposal writing. Alterna-
tively, in cases where the number of datable grains is limited
by material properties, budget, or other logistical reasons,
Fig. 7 informs the maximum confidence level of the results.

5.5 Evaluating the plausibility of test scenarios

The final steps of ESD_thermotrace assist users in finding the
erosion scenario that is most likely to generate a predicted
CAD that resembles the observed CAD. For each erosion
scenario, dxs and dky; (Fig. 3) are calculated between 10 000
n =k subsamples of the respective predicted CAD and the
observed CAD. The distribution of these dks and dky; values
is shown in the form of a split violin plot in Fig. 8a, and it
is to be compared to the range of values shown by the vio-
lin in Fig. 8b. The latter shows the distribution of dkxs and
dkui calculated between random subsamples of the observed
CAD that account for the mean analytical error and the ob-
served CAD itself (constructed only with the mean ages). In
other words, Fig. 8b displays how the dispersion of a pre-
dicted CAD (accounting for analytical error and sample size)
is distributed. The “plausibility” of each scenario is plotted
beneath each violin and it equals the probability that the val-
ues plotted in Fig. 8a fall within the one-sided lower 95th per-
centile of those shown in Fig. 8b. For the sake of clarity, we
note that the term “plausibility” used here is equivalent to the
false negative rate () in statistical jargon. Accordingly, there
is 51.6 % probability that the observed CAD could be drawn
from the uniform erosion scenario, and 13.7 % and 0.0 %
probability that scenarios “E < Zpeq” and “E > Zeq” gen-
erate predicted CADs that fall within the spread of the ob-
served CAD, respectively.

Lastly, as suggested by Vermeesch (2013), the
ESD_thermotrace program applies a two-component
multi-dimensional scaling model (MDS) to all predicted and
observed distributions. This algorithm fits a two-dimensional
coordinate system to the measured dissimilarities dxs among
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n =k =52 distributions, drawn from the same detrital age popu-
lation but including uncertainty (b). Every violin is split in two
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tion function of 10000 KS (or Kuiper) statistics. The widest point
of each semi-violin informs the most frequent KS (or Kuiper) statis-
tic. The closer this value is to zero, the more similar the scenario
is to the observed detrital age distribution. The most unlikely sce-
nario is “E > Zpeq”. Both other scenarios are plausible because
their dissimilarity to the observed CAD largely overlaps the range
of dissimilarity due to analytical error of the detrital ages.

all considered distributions (both predicted and observed).
In a well-fited MDS model, distances among points in
the modeled 2D space are a good approximation of the
actual dissimilarities among the input elements (Fig. 9a).
To reach a satisfactory fit, modeled dissimilarities are
plotted against input dissimilarities (Fig. 9b) and the sum
of all distances to the 1:1 line is minimized (a procedure
commonly referred to as stress minimization). The MDS
plot renders an immediate visualization of the dissimilarity
among distributions, where more similar distributions plot
closer to each other. Moreover, with the addition of the 68 %
and 95 % confidence ellipses, the degree of overlap among
distributions is also easily visually assessed (Fig. 9a).

The application of the ESD_thermotrace software to the
Inyo Creek data of Stock et al. (2006) shows the following
characteristics.

— A sample size of 52 grain ages allows a maximum con-
fidence level of ~ 55 % in rejecting the uniform erosion
hypothesis “E\p;” (cyan circle in Fig. 7). If the observed
CAD had been drawn from ~ 130 grain ages, this con-
fidence level would exceed 95 % (dashed cyan curve in
Fig. 7).

— A total of 52 grain ages would suffice to detect the effect
size caused by “E < Zpeq” and “E > Zpeq” (green and
brown curves in Fig. 7). However, the observed detrital
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sample is extremely unlikely to have been drawn from
either of these scenarios.

— Among the tested scenarios, the uniform erosion hy-
pothesis “Eyy;” is the least dissimilar (51.6 % likeli-
hood) (Figs. 8 and 9).

Here, while we have shown the functioning of
ESD_thermotrace using the Inyo Creek data from Stock et
al. (2006), we refrain from proposing a revised interpretation
of the catchment’s erosion dynamics. We do note that,
in addition to the data from Stock et al. (2006), Riebe et
al. (2015) have accounted for '"Be-derived denudation
rates and 73 additional AHe ages from coarse sand-sized
sediment. These authors have shown that erosion in the
Inyo Creek catchment is best explained by an exponential
increase of sediment production with elevation. Thereby,
they demonstrate that understanding the pattern of erosion
in this catchment requires taking multiple sediment sizes
into account (Riebe et al., 2015; Lukens et al., 2020; Sklar et
al., 2020; see also discussion below).

6 How many grains do we need for tracer
thermochronology?

The analysis with ESD_thermotrace shows that the appropri-
ate sample size for a tracer thermochronology study cannot
be determined a priori without knowing (i) the case-specific
scientific question (i.e., the spatial pattern of erosion to be
tested), (ii) the source area hypsometry, (iii) the desired min-
imum confidence level, and (iv) the surface bedrock ages
and uncertainties. On this note, if possible, it is advisable to
explore the feasibility of a study with the already available
bedrock ages before sampling. In absence of available pub-
lished ages, bedrock samples are best processed first to avoid
wasting resources on potentially inconclusive analyses of de-
trital grains. To better illustrate the importance of the initial
knowledge of the catchment’s geology, we conducted a set
of simulations with the same inputs as the Inyo Creek case
study (Stock et al., 2006). In these simulations we vary the
location (in terms of elevation range) of maximal erosion and
observe the impact on the statistical power in detecting the
imposed pattern. Both a broad and a narrow Gaussian curve
of erosion (1o = 500 and 100 m, respectively) are applied to
the catchment’s range of elevations, shifting the position of
the peak in 100 m steps at each simulation. We test two sets of
Gaussian functions of elevation computed in such a way that
the prominence of peak erosion equals 2 times and 5 times
the prominence of the catchment’s hypsometric peak, respec-
tively. Therefore, because the most frequent elevation range
is ca. 5 times the least frequent bin (Fig. 10c, f), the “2x” and
“5x” curves define an erosion efficiency where peak sedi-
ment production is 10 times and 25 times higher than the
minimum in the catchment, respectively. Results from this
parameter study, example erosional functions, and the hyp-
sometric histogram are illustrated in Fig. 10.
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Figure 10 shows how the statistical power in detecting
these Gaussian peak scenarios is affected by (i) the eleva-
tion of the erosional peak, (ii) its amplitude, (iii) its width,
and (iv) the detrital sample size. An increase in sample size
and/or an increase in amplitude of the erosional peak always
correspond to higher statistical power. The elevation of the
erosional peak affects the statistical power depending on the
position of the erosional peak relative to the peak of hyp-
sometry (Fig. 10). In the case of a broad Gaussian function
of erosion (16 = 500 m), minima (blue areas) are observed
where the erosional peak is located at elevations straddling
2800m (Fig. 10a, b). These minima in statistical power at
~ 2800 m coincide with the broad frequency peak of catch-
ment elevations (Fig. 10c). In this elevation range, the dif-
fused increase in erosion efficiency does accentuate the peak
of the hypsometric curve, but it results in a limited effect size
(i.e., a small dkg dissimilarity to “Eyy,;”). With this configu-
ration, all erosion scenarios peaking within ca. 2700-2900 m
produce detrital distributions whose effect size is detected in
only < 60 % of the simulations, regardless of sample size and
peak amplitude. This implies that certain combinations of
erosional pattern and distribution of bedrock age are poorly
suited to be investigated by means of tracer thermochronol-
ogy.

In the case of a narrow Gaussian function of erosion (1o =
100m) (Fig. 10d, e, f), minima of statistical power are ad-
ditionally found at peak elevations higher than 3600 m and
lower than 2200 m (Fig. 10d, e). These occur because peak
erosion is applied to a narrow elevation range that is not fre-
quent enough to produce a statistically relevant number of
grains. However, in the case of narrow erosional peaks, an
increase in sample size substantially increases the statisti-
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cal power to detect erosion scenarios, even if it is centered
at the critical elevation of ca. 2700-2900 m described above
(Fig. 10d, e). This parameter study demonstrates the impor-
tance of analyzing the catchment hypsometry and testing ero-
sion scenarios even before collecting data in order to make an
informed choice on the appropriate sample sizes and to iden-
tify possible scenarios that are unlikely to be detected with
high confidence through detrital tracer thermochronology.

7 Other sources of uncertainty

The approach presented here for predicting and interpreting
grain age distributions enables quantifying the confidence
level in rejecting the uniform erosion hypothesis and the
statistical power in discerning a prescribed erosion scenario
from uniform erosion through detrital tracer thermochronol-
ogy. Confidence level and statistical power are computed
as a function of the sample size, the catchment properties,
and input erosion scenario. Nevertheless, even if the plausi-
bility of a scenario is inferred to be high, our software by
design does not suggest a unique solution and interpreta-
tions are also subject to additional sources of uncertainty.
These include (1) complex bedrock age—elevation relation-
ships (Malusa and Fitzgerald, 2020) and (2) spatial variabil-
ity of sediment size resulting from transport distances (e.g.,
Lukens et al., 2020; Malusa and Garzanti, 2019), geomorphic
processes (e.g., Riebe et al., 2015; van Dongen et al., 2019),
lithological differences (von Eynatten et al., 2012), or vege-
tation effects on weathering and erosion (Starke et al., 2020).
Both factors should be considered, as discussed below.

In some cases, elevation alone cannot explain the entire
variance of bedrock thermochronometric ages. For example,
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spatial variability of bedrock ages may reflect the proxim-
ity to tectonic structures or sub-catchment thermal events
(e.g., magmatism, spatial changes in thermal gradients in
proximity of major faults). In such cases, an improved sam-
pling of the spatial distribution of bedrock ages is needed
and may require more complex interpolation functions (e.g.,
Glotzbach et al., 2013). To accommodate these complexities,
ESD_thermotrace allows for 1D and 3D linear interpolation
and radial basis function interpolation. In all of these cases,
the interpolated age uncertainty is calculated through boot-
strapping. In addition, users can opt to import an indepen-
dently interpolated surface bedrock map from a thermokine-
matic model for example (e.g., Whipp and Ehlers, 2019). For
additional information on bedrock thermochronometric age
mapping the reader is referred to the README file included
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with the software (Madella et al., 2022). Regardless of which
method is used, users should be aware that different inter-
polation methods may yield different predicted distributions,
depending on the quality of the bedrock data. Accordingly,
resulting interpolated surfaces should be carefully evaluated,
and a preference should be motivated by field observations
and/or independent constraints. Here, the map of interpolated
age uncertainty can also inform the locations where addi-
tional bedrock sampling would help reduce the uncertainty.
Lastly, we note that an increase in age uncertainty always de-
termines the decrease in the statistical power of the analysis.

Other possible sources of bias concern the grain size of
the analyzed samples. Several issues may modify the orig-
inal fingerprint of river sand (Malusa and Garzanti, 2019),
such as downstream grain abrasion and fracturing, hydraulic
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sorting, and weathering on the hillslope associated with a
grain (Attal and Lavé, 2009). For example, grains sourced
the farthest from the sampling spot may be underrepresented
in the analyzed grain size fraction (Lukens et al., 2020), as
has also been shown for the Inyo Creek catchment (Sklar
et al., 2020). Furthermore, in addition to the mineral fertil-
ity inherent to the exposed bedrock, the grain size distribu-
tion of the material found on the hillslopes (i.e., the material
ready for transport) should be taken into account. Depend-
ing on the lithology (von Eynatten et al., 2012; Roda-Boluda
et al., 2018) and on the locally dominant denudation process
(van Dongen et al., 2019), different hillslopes of the same
catchment may produce substantially different sediment size
distributions (e.g., Riebe et al., 2015; Attal et al., 2015). Con-
sequently, the mixed detrital sample may exhibit a bias in the
relative abundance of the different age components. Both of
these issues can be mitigated through analysis of multiple
grain size fractions (Lukens et al., 2020), multiple measures
of hillslope sediment size distributions, composite analyses
of trunk stream and tributary stream sediment samples, and
analyses of thermochronometers from different minerals.

8 Conclusion

This study reviewed previous approaches used to compare
predicted and observed detrital grain age distributions in the
framework of tracer thermochronology. We have built upon
these to develop a new tool (ESD_thermotrace) to investi-
gate the upstream pattern of catchment erosion and the con-
fidence level in uniquely inferring this as a function of sam-
ple size and study-site-specific variables. To demonstrate the
utility of this approach, we presented an analysis of previ-
ously published data from the Inyo Creek catchment in Cal-
ifornia. The example highlighted the utility of measuring a
large number of grains, and how multiple erosion scenarios
are plausible for this catchment with the considered number
of grains. The degree of statistical confidence permitted by
this case study has also been quantified. We showed how the
use of ESD_thermotrace can increase the statistical rigor of
tracer thermochronology studies and how it can also assist
investigators in budgeting analytical costs of a future project.
In cases where the number of datable grains is limited, the
confidence level of the results can be quantified, and the sta-
tistical power of the analysis can also be estimated.
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