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Abstract. In nature, each mineral grain (quartz or feldspar)
receives a dose rate (Dr) specific to its environment. The
dose-rate distribution therefore reflects the micro-dosimetric
context of grains of similar size. If all the grains were well
bleached at deposition, this distribution is assumed to corre-
spond, within uncertainties, with the distribution of equiva-
lent doses (De). The combination of the De and Dr distri-
butions in the De_Dr model proposed here would then al-
low calculation of the true depositional age. If grains whose
De values are not representative of this age (hereafter called
“outliers”) are present in the De distribution, this model al-
lows them to be identified before the age is calculated, en-
abling their exclusion. As theDe_Dr approach relies only on
the Dr distribution to describe the De distribution, the model
avoids any assumption about the shape of the De distribu-
tion, which can be difficult to justify. Herein, we outline the
mathematical concepts of the De_Dr approach (more details
are given in Galharret et al., 2021) and the exploitation of
this Bayesian modelling based on an R code available in the
R package “Luminescence”. We also present a series of tests
using simulated Dr and De distributions with and without
outliers and show that the De_Dr approach can be an alter-
native to available models for interpreting De distributions.

1 Introduction

For luminescence dating of sediments, the development of
equipment to perform optically stimulated luminescence
(OSL) analyses at the single-grain (SG) level (Duller et al.,
1999a, b) has been a significant technological breakthrough,
offering the possibility to produce a distribution of individ-
ual equivalent doses (De) for a given sample. This advance
has also fostered the development of statistical approaches
to analyse these De distributions (e.g. Galbraith et al., 1999;
Roberts et al., 2000; Fuchs and Lang, 2001; Lepper and Mc-
Keever, 2002; Thomsen et al., 2007; Woda and Fuchs, 2008;
Cunningham and Wallinga, 2012; Cunningham et al., 2015;
Guibert et al., 2017; Guérin et al., 2017). Most of these sta-
tistical models target the component comprising the grains
whose deposition is relevant for the event to be dated (i.e. the
target population) and calculate a (believed) representative
De value from this identified sub-population. The latest pro-
posed model (Li et al., 2021) follows the same strategy but
allows identifying outliers not representative of the deposi-
tional event for several different reasons. Therefore, all these
approaches focus only on the De distribution and require as-
sumptions on how the individual De values are distributed.
It is also worth recalling here that the mean environmen-
tal dose rate (Dr) representative for the grains constituting
the selected sub-population has to be determined with confi-
dence.

In parallel to these developments, a series of investiga-
tions approached the dose rate as a cause of dispersion of
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the individual De values. These investigations were experi-
mental (Kalchgruber et al., 2003; Cunningham et al., 2012)
and/or numerical (Nathan et al., 2003; Mayya et al., 2006;
Guérin et al., 2015). They all demonstrated that the spa-
tial distribution of radionuclide-bearing minerals such as K-
feldspars, but also micas or zircons, might become driving
agents dominating theDe distribution. In the literature, these
micro-dosimetric effects are usually grouped and consid-
ered a significant source of unexplained variance (overdisper-
sion, ext_OD). Another important source of external overdis-
persion is the presence of outlier grains (due, for instance,
to sediment mixing or incomplete bleaching); this second
source is in addition to the overdispersion caused by the Dr
distribution inherent to the sample. To a lesser extent, the
measurement process of the De values causes an additional
dispersion. This component includes a purely experimental
and a more theoretical part: the first refers mainly to the
reproducibility of the measurement equipment, whereas the
second relates to the fact that the protocol applied to deter-
mine individual De values is not best tailored to individual
grains but represents a compromise of settings deemed op-
timal. The dispersion induced by these phenomena consti-
tutes the internal overdispersion (int_OD,) which combines
quadratically with the ext_OD.

Different experimental approaches (Rufer and Preusser,
2010; Romanyukha et al., 2017) have been proposed for
quantifying the micro-dosimetric effects, whereas Martin et
al. (2015a, b, 2018) and Fang et al. (2018) developed numer-
ical sediment models to calculate the Dr distribution for a
given granulometric fraction. Even though such experiments
and applications remain rare to date, in this contribution,
we want to put forward two questions: does the informa-
tion characterizing theDr distribution provide valuable data
to calculate a luminescence age? Furthermore, if so, what
would be the way to do it? Moreover, assuming that our con-
tribution convincingly outlines an approach: how does such
an approach help identify intrusive or poorly bleached grains
potentially present in a De distribution?

2 Convolution of De and Dr distributions

2.1 Basics

Let us start with a thought experiment assuming the follow-
ing setting: (1) one considers a series of grains of similar
shape and size behaving similarly in terms of luminescence
and dose response. (2) These grains are perfectly bleached
and have no residual dose. (3) They are then mixed in a
matrix rich in diverse radionuclide-bearing mineral phases,
generating a heterogeneous flux of alpha and beta particles.
One also assumes (4) that the equipment used for their future
analysis is perfectly reproducible. With these conditions, we
expose each grain to a specific dose rate, Dr, which is the
sum of a common gamma and cosmic dose contribution and
heterogeneous alpha and beta dose-rate components. If we

wait for 50 kyr and measure a massive number of De values
from these grains, we would expect to obtain a De distribu-
tion with the same shape as the Dr distribution but offset by
a factor of 50 000.

If the depositional setting was further complicated by sup-
plementing the matrix of well-bleached grains of interest
with a series of grains having non-zero residual doses, then
superimposition of the De and Dr distributions could poten-
tially identify these outliers. Consequently, our thought ex-
periments show that thanks to the combination of the De
and Dr distributions and without any assumption about the
shape of these distributions, the depositional age can be de-
termined even if outliers are present. The mathematical de-
tails are somewhat more cumbersome than thought experi-
ments, and hence we will outline them in the following sec-
tion.

2.2 Mathematical model

The main idea behind the De_Dr model is to combine the
information from the De and Dr distributions in a Bayesian
framework to detect outliers (i.e. grains not representative of
the target population) automatically (if they are present) be-
fore discarding them and computing the depositional age.

2.2.1 General considerations

In real life, the number of De values measured for a sam-
ple is not extremely large. Even in cases in which thousands
of grains are analysed, the low percentage of grains emit-
ting light combined with applying a series of rejection crite-
ria may lead to a final De distribution comprising at best a
few hundred values. In contrast, when the Dr values are ob-
tained by a numerical simulation of the sediment sample, for
instance, their number is only limited by the lab resources in
terms of computation power.

Another key difference between the De and Dr distri-
butions concerns individual uncertainties: current numerical
models do not report uncertainties for individual beta dose-
rate values. This contrasts with the De values since each one
has an error term related to the uncertainties associated with
the luminescence signal and the process of its determination
(fitting and interpolation). Nevertheless, the Dr distribution
is not free of uncertainties: at least three terms (gamma, cos-
mic, and beta dose rates) must be considered, and at least two
of them (gamma and cosmic dose rates) are characterized by
a mean value and an associated error.

As the De_Dr model relies on the shape of the Dr distri-
bution to describe the expected shape of the De distribution
and identify outliers, the int_OD of the De distribution (such
as measured with a dose recovery test – DRT) needs to be
incorporated into the Dr distribution. To do this, individual
Dr values (written D̃r in Eq. 1 below) are transformed into
internally overdispersed Dr values (Dr) using the following
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equation:

Dr = D̃r(1+ int_ODε), (1)

where Dr is a value comparable to any De value, int_OD the
standard deviation characterizing the DRT distribution, and
ε a Gaussian variable with uninformative mean and standard
deviation (also denoted N (0,1)).

2.2.2 Mathematics underpinning the model

In this section, we reiterate the method used for detecting
outliers in the frame of the hierarchical model introduced by
Galharret et al. (2021). This Bayesian method can estimate
an OSL age for a sample with both single-grain equivalent
dose values and simulated (or measured) dose-rate distribu-
tions.

We assume that the classical relation between the equiva-
lent dose De, the corrected dose rate Dr (according to Eq. 1)
and the OSL age A,

De = A×Dr, (2)

is satisfied but applies to the probability distributions. More
precisely, we assume that the probability distribution of De
is equal to the probability distribution of A×Dr.

To determine A, the first step of the process is to estimate
the sample’s Dr distribution when the internal overdisper-
sion of the De distribution is incorporated, as described in
Eq. (1). Because of the wide variety of possible distributions,
we chose a Gaussian finite mixture with an unknown number
of components. This is a very flexible class of distributions
allowing us to catch symmetric, asymmetric, and multimodal
distributions. Note that a Gaussian finite mixture model is a

weighted sum ofK Gaussian distributions
K∑
k=1

ṗkN
(
µ̇k, σ̇

2
k

)
.

All the model parameters (Kṗ1ṗK µ̇1µ̇K σ̇1σ̇K ) can be eas-
ily estimated using an expectation–maximization (EM) algo-
rithm (Dempster et al., 1977) and the optimal value of the
number of componentsK selected according to the Bayesian
information criterion (BIC). This method is implemented in
the R package “mclust” (see Scrucca et al., 2016, for details
on statistical and numerical aspects). After fitting the mixture
parameters on the Dr distribution, we fix their values for the
rest of the modelling. According to Eq. (2), the distribution
of the De values is also approximated by a Gaussian finite
mixture model with the following parameters.

K∑
k=1

ṗkN
(
Aµ̇k, A

2σ̇ 2
k

)
The second step is to estimate A considering any outliers
present and the measurement errors on the De values, which
are assumed to be Gaussian with zero mean and known vari-
ance. Here, the main idea of the modelling is to associate
each measured De with an individual age. We denote as

a1, . . .,an these individual ages which are related to age A
as follows:

ai = A+ εi, (3)

where εi, . . .,εn represent independent Gaussian distribu-
tions with a zero mean. In the absence of outliers, we can
assume that these errors have a common variance. The den-
sity of the prior variance is then

p(x)=
s2

0(
s2

0 + x
)2 (4)

(see Galharret et al., 2021). This probability distribution is
named a shrinkage distribution with parameter s2

0 . This is a
usual choice of prior for the variance parameter for meta-
analysis models (see Spiegelhalter et al., 2004). The parame-
ter s2

0 allows controlling the dispersion of the individual ages
a1, . . .,an around A. Note that a preliminary estimate of in-
dividual ages is necessary to get an order of magnitude of
the age errors. To do that, we consider the shrinkage param-
eter to be the harmonic mean of the variance of the individ-
ual ages. This choice ensures that errors on individual ages
are not favoured over the dispersion of the individual ages
a1, . . .,an and vice versa. In other words, neither is assumed
to be negligible relative to the other, both having the same
weight under the prior information.

At this step, we may refer to this model as a Bayesian
central age model (BCAM) because it can be viewed as a
Bayesian version of the seminal central age model (Galbraith
et al., 1999) even though differences exist, the most impor-
tant being the absence of any pre-defined function represent-
ing the De distribution. However, this model is not robust to
the presence of outliers. Hence, before estimating A, we add
an additional step to detect and remove the outliers if they
are present in the De distribution.

In this additional step, we adapt the BCAM in includ-
ing individual random effects. This is the same principle
as applied in the event model introduced by Lanos and
Philippe (2017, 2018). It amounts to the assumption that the
errors εi, . . .,εn have individual variances σ 2

1 , . . .,σ
2
n inde-

pendently and identically distributed from the same shrink-
age distribution as previously chosen for the BCAM. While
the event model can be used to estimate A, it suffers from
a lack of precision due to the summation of individual vari-
ances. Thus, in our approach, we use the posterior distribu-
tion of individual variances σ 2

1 , . . .,σ
2
n for constructing a de-

cision rule to detect outliers. Indeed, these parameters mea-
sure the dispersion of individual ages around the central age.
Therefore, if an equivalent dose is detected as an outlier, its
corresponding individual age will take large values with re-
spect to the prior information on σ 2

1 , . . .,σ
2
n . Thus, aDe value

is identified as an outlier if the posterior distribution of its
individual variance is stochastically greater than its prior dis-
tribution. To do that, we use quantiles and compare the prior

https://doi.org/10.5194/gchron-4-297-2022 Geochronology, 4, 297–310, 2022



300 N. Mercier et al.: The De_Dr model

Figure 1. Comparison of prior and posterior cumulative distribution functions of individual variance and their 95 % credible interval (bottom
horizontal lines): the corresponding equivalent dose is detected as an outlier (a) or not (b).

and posterior distributions. More precisely, we fix a probabil-
ity 1−α close to 1 (for instance, 1−α = 0.95): if the posterior
(1−α) quantile is greater than the prior (1−α) quantile, the
associated De is tagged as an outlier and removed from the
De distribution (Fig. 1).

When this selection is completed, the age A is estimated
with BCAM from the De distribution with the outliers re-
moved, while the posterior distributions are approximated
from Markov chain Monte Carlo (MCMC) samples. In prac-
tice, we use the Gibbs sampler JAGS (Plummer, 2003)
through the associated R (R Core Team, 2021) package
“rjags” (Plummer, 2019).

2.2.3 Original data and structure of the model

Input data for the model are values from the D̃r andDe distri-
butions. The De distribution is a series of central values with
associated errors, whereas the D̃r distribution represents the
probability of each dose-rate value. Additionally, the internal
overdispersion (int_OD) obtained from the DRT experiment
is required. This parameter is used to modify theDr distribu-
tion to be the same shape as the expected De distribution.

In summary (Fig. 2), the mathematical model to combine
the De and Dr distributions consists of four steps.

1. Each D̃r value is transformed according to Eq. (1), con-
sidering the int_OD value.

2. The Dr distribution is fitted with a weighted sum of
normal (Gaussian) densities. The number of functions
and their height and width are automatically adjusted to
maximize the likelihood function (Fig. 3).

3. After a rough estimation of the individual ages (corre-
sponding to the De values divided by the mean dose
rate), the “distance” of eachDe value and its uncertainty
with the model are computed using an MCMC process
and compared to a fixed threshold set to 5 %. De values
scoring lower than 95 % are considered outliers (Fig. 4).

4. Finally, De values corresponding to the identified out-
liers are removed from the De distribution, and the
age is computed by the Bayesian central age model
from this new De distribution. The cumulative proba-
bility distribution of the resulting model is then com-
pared with this newDe distribution and the original data
(Fig. 5).

2.3 The implementation of BCAM in R

The mathematical model was implemented in R and is avail-
able in the package “Luminescence” (Kreutzer et al., 2012)
version ≥ 0.9.16 (Kreutzer et al., 2022) under the function
name combine_De_Dr(). The De and Dr distributions
can be imported directly from an Excel™ spreadsheet or
CSV file or simply passed as a data.frame (a data object
in R, comparable to a spreadsheet) imported through other
formats. The other values are directly passed to the function
as parameters.

The function combine_De_Dr() returns four plots
(Figs. S2–S3 in the Supplement): the first two figures are re-
lated to detecting outliers and illustrate the variation of the in-
dividual standard deviation of the posterior age distributions.
The last two figures show a kernel density plot of the poste-
rior ages and the empirical cumulative distribution function
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Figure 2. Diagram representing the different steps of the estimation method.

Figure 3. Approximation of the Dr distribution with a mixture of normal (Gaussian) functions.

plot. This last figure compares the cumulative De distribu-
tions (with or without the identified outliers) with the mod-
elledDe distribution (A×Dr). We provide a simple example
with R code in the Supplement.

3 Model tests

Our tests rely on simulated numerical data (Supplement S2).
Complex Dr distributions were built with a series of val-
ues (at least 1000 per series) randomly sampled from nor-
mal and/or log-normal distributions. From each obtained Dr
distribution, 100 values were randomly drawn and multiplied
by 50 to represent individual De values (the Dr values vary
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Figure 4. Characterization of the De values: the values in red are identified as outliers.

Figure 5. Comparison of the cumulative distribution functions:A×
Dr (red line), De (dotted blue line), and reduced – after removal of
the detected outlier values – De (dashed green line).

around 1 Gy ka−1, and the De values are then around 50 and
expressed in Gy). EachDe value was then associated with an
uncertainty randomly sampled from a normal distribution of
relative uncertainties N (0.1,0.05).

In cases in which outliers were added to the initial De dis-
tribution, their values were randomly determined from a nor-
mal or log-normal distribution, and uncertainties were de-
fined as mentioned in the previous paragraph.

3.1 Tests without outliers

Table 1 lists the results of tests performed using four differ-
ent Dr distributions: (1) a single normal distribution, (2) a
sum of two normal distributions, (3) a single log-normal dis-
tribution, and (4) a sum of two log-normal distributions. For
each Dr distribution, five runs were computed, and De_Dr
ages were calculated using the combine_De_Dr() func-
tion. Figure 6 shows an example abanico plot (Dietze et al.,
2016) of a De distribution for each type of simulated Dr dis-
tribution.

For the four distribution types considered in these tests, the
De_Dr age is very close to the given age, i.e. 50 ka, demon-
strating the efficiency of the De_Dr model. It is also worth
mentioning that although we did not add outliers to the initial
De distribution, a few values were identified by the model as
outliers and were then discarded before the final age was cal-
culated. However, this is not surprising and can be explained
by the stochastic nature of the sampling process of the De
values, which each had an associated random uncertainty.

3.2 Tests with outliers

Table 2 reports results for De distributions, including 20
outliers in addition to the original 100 values. As indicated
in this table, if the initial De values were sampled from
a normal distribution, the outlier values were also sampled
from a normal distribution (for instance, Xi,k ∼N (1.3,0.05)
for j := {1, . . .,50}, k := {1, . . .,20}). Furthermore, when the
100 De values were sampled from a log-normal distribu-
tion, the 20 outlier values were also sampled from a log-
normal distribution (for instance, Xi,k ∼ logN (1.3,0.05) for
j := {1, . . .,50}, k := {1, . . .,20}).

The De_Dr age is slightly higher than 50 ka in all cases
because a few outlier values overlap randomly with the ini-
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Table 1. Results of tests without added outliers. Tests were performed with four different shapes of Dr distributions: Norm(n, m, SD) and
log-Norm(n, m, SD) indicate normal and log-normal distributions, respectively, where (n) is the number of random values, (m) the mean of
the distribution, and (SD) the standard deviation. The number of Gaussian components identified by the model when fitting theDr distribution
is given, as is the number of points identified as outliers. Numbers in bold represent average values.

Dr distribution No. Identified De_Dr age ±

components outliers (ka)

Norm(1000, 1, 0.1) 1 0 48.28 1.15
1 0 49.71 1.18
1 0 48.31 1.11
1 0 50.05 1.14
1 0 49.82 1.16

49.23 1.15

Norm(1000, 1, 0.1)+ 2 1 50.26 1.40
Norm(200, 1.4, 0.05) 2 0 50.50 1.34

2 1 50.45 1.29
2 0 49.46 1.39
2 1 51.21 1.39

50.38 1.36

log-Norm(1000, 1, 0.1) 1 1 48.72 0.78
2 3 50.85 0.80
1 1 49.87 0.79
2 1 50.84 0.82
2 4 49.68 0.81

49.99 0.80

log-Norm(1000, 1, 0.1)+ 2 2 49.91 1.03
log-Norm(200, 1.4, 0.05) 2 8 49.57 1.01

2 5 50.66 1.04
2 9 50.12 1.00
2 9 49.63 1.03

49.98 1.02

tial De distribution and were therefore not identified as out-
liers by the De_Dr approach. However, this overestimation
remains low (< 5 % of the true age), whereas outliers repre-
sent almost 17 % (20/120) of the De values. Examples are
illustrated in Fig. 7 as abanico plots (Dietze et al., 2016).

To test the model’s performance to identify outliers when
their values are close to the initial De values, we simu-
lated normal and log-normal distributions with outliers that
followed our setting from above: Xi,k ∼N (1.3,0.05) for
i := {1, . . .,n, k := {1, . . .,20} and Xi,k ∼ logN (1.3,0.05)
for i := {1, . . .,n, k := {1, . . .,20}, where this time n varied
from 0 to 50 (then representing between 0 % and 33 % of
the initial De distribution). The results are given in Table 3
and displayed in Fig. 8. The De_Dr ages increase with the
percentage of outliers, but the overestimation remains below
10 % of the true age in all cases. This result is particularly in-
teresting because these simulations represent cases in which
a series of poorly bleached grains (i.e. the outliers) whoseDe
values are not significantly different from the mean De have
been measured in addition to well-bleached grains (initialDe
values).

4 Discussion

Results show that the De_Dr model works well for De dis-
tributions without outliers. It also gives satisfactory results
when the De values of the outliers are significantly different
from the individual De values composing the target popula-
tion. On the other hand, the existence of values defined as
outliers but very close to the target population may be as-
similated by the model to the target population and thus not
be identified as outliers. This is related to the fact that the
De_Dr model is a “majority rule” model.

This notion of majority is vital because it sets the limits
of the model’s applicability. If the number of outliers is sig-
nificantly larger than the number of De values representing
the target population, the De_Dr model will combine the De
andDr distributions as best as possible so that a maximum of
De values corresponds to (A×Dr) values. A visual examina-
tion of the distributions calculated by the model (e.g. Fig. 5)
is therefore indispensable, as is a visual examination of the
outliers identified within the distribution of individual ages
(e.g. Fig. 4).
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Table 2. Results of tests with 20 outliers added to the originalDe distribution. Their values were determined following the function indicated
in the second column. Notice that the (m) parameter of these functions varied from 1.3 to 1.6, leading to outlier values which, on average,
increased, as is observable on the abanico plots (Fig. 7). Numbers in bold represent average values.

Dr distribution Outlier distribution of De No. Identified De_Dr age ±

components outliers (ka)

Norm(1000, 1, 0.1) 50×Norm(20, 1.3, 0.05) 1 0 51.37 1.04
1 1 51.35 1.13
1 0 52.01 1.09
1 1 50.93 1.08
1 0 51.04 1.11

51.34 1.09

Norm(1000, 1, 0.1) 50×Norm(20, 1.4, 0.05) 1 0 52.44 1.12
1 1 51.77 1.07
1 2 52.71 1.07
1 1 51.63 1.09
1 4 51.38 1.14

51.99 1.10

Norm(1000, 1, 0.1) 50×Norm(20, 1.5, 0.05) 1 3 52.87 1.12
1 3 53.70 1.15
1 2 51.37 1.13
1 3 53.64 1.18
1 3 52.37 1.12

52.79 1.14

Norm(1000, 1, 0.1) 50×Norm(20, 1.6, 0.05) 1 2 52.53 1.11
1 6 51.73 1.14
1 7 51.69 1.14
1 7 51.95 1.11
1 10 52.80 1.15

52.14 1.13

log-Norm(1000, 1, 0.1) 50× log-Norm(20, 1.3, 0.05) 1 8 52.33 0.77
1 10 51.73 0.78
1 1 52.31 0.77
1 6 51.25 0.77
1 6 51.98 0.77

51.92 0.77

log-Norm(1000, 1, 0.1) 50× log-Norm(20, 1.4, 0.05) 2 10 53.26 0.78
1 11 51.46 0.76
2 14 51.01 0.78
1 11 51.66 0.77
1 13 50.86 0.73

51.65 0.76

log-Norm(1000, 1, 0.1) 50× log-Norm(20, 1.5, 0.05) 1 15 51.56 0.77
1 18 50.55 0.79
2 17 50.60 0.80
1 16 52.09 0.79
2 18 50.87 0.78

51.13 0.79

log-Norm(1000, 1, 0.1) 50× log-Norm(20, 1.6, 0.05) 2 23 50.21 0.81
1 20 48.93 0.78
1 19 49.98 0.79
1 20 49.74 0.78
1 21 49.48 0.79

49.67 0.79
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Figure 6. Abanico plots of the De distributions (100 values) without outliers. (a) Single normal distribution, (b) sum of two normal distri-
butions, (c) single log-normal distribution, and (d) sum of two log-normal distributions.

On the plus side, it is also important to recall that the
De_Dr model does not require a pre-defined function to rep-
resent theDe distribution. For the tests carried out previously,
the type of distribution (normal, log-normal, or a mixture of
those distributions) was fixed to randomly draw the simulated
values only. However, the type of chosen distribution and the
parameters characterizing it (mean and variance) were not

supplied to the model. In other words, the De_Dr model did
not know about those parameters.

Nevertheless, the De_Dr model does require a precise de-
termination of the Dr distribution. To date, this distribution
can be obtained either from numerical sediment models con-
sidering bulk density, grain size composition, mineralogy
and the spatial distribution of radio-elements (for a possible
2D approach, see Dietze et al., 2021), or it can be obtained
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Figure 7. Abanico plots of the De distributions (100 initial values sampled from the Dr distribution) to which 20 outlier values have been
added: red dots indicate the values identified as outliers (not the values added as outliers). (a–d) InitialDe distribution= normal distribution;
(e–h) initialDe distribution= log-normal distribution. Outlier values (20) added as follows: (a) 50×Norm(20, 1.3, 0.05); (b) 50×Norm(20,
1.4, 0.05); (c) 50×Norm(20, 1.5, 0.05); (d) 50×Norm(20, 1.6, 0.05) and (e) 50× log-Norm(20, 1.3, 0.05); (f) 50× log-Norm(20, 1.4, 0.05);
(g) 50× log-Norm(20, 1.5, 0.05); (h) 50× log-Norm(20, 1.6, 0.05).
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Table 3. For each type of Dr distribution (normal or log-normal), outlier values were added following either the function 50×Norm(n, 1.3,
0.05) or the function 50× log-Norm(n, 1.3, 0.05). The number of outliers (n) varied from 0 to 50 (then representing between 0 % and 33 %
of the initial De distribution). The age error is the 95 % credible interval.

Dr distribution Outlier distribution of De No. Identified De_Dr age ±

components outliers (ka)

Norm(1000, 1, 0.1) 50×Norm(0, 1.3, 0.05) 1 0 49.65 1.16
50×Norm(5, 1.3, 0.05) 1 0 50.80 1.15
50×Norm(10, 1.3, 0.05) 1 1 49.69 1.13
50×Norm(15, 1.3, 0.05) 1 0 52.09 1.10
50×Norm(20, 1.3, 0.05) 1 1 50.59 1.08
50×Norm(30, 1.3, 0.05) 1 0 53.08 1.10
50×Norm(40, 1.3, 0.05) 1 0 53.74 1.00
50×Norm(50, 1.3, 0.05) 1 0 54.36 1.00

log-Norm(1000, 1, 0.1) 50× log-Norm(0, 1.3, 0.05) 2 1 49.55 0.80
50× log-Norm(5, 1.3, 0.05) 1 2 49.56 0.76
50× log-Norm(10, 1.3, 0.05) 1 7 50.10 0.76
50× log-Norm(15, 1.3, 0.05) 2 8 50.15 0.78
50× log-Norm(20, 1.3, 0.05) 1 6 51.84 0.76
50× log-Norm(30, 1.3, 0.05) 1 8 54.13 0.74
50× log-Norm(40, 1.3, 0.05) 1 12 52.26 0.71
50× log-Norm(50, 1.3, 0.05) 1 8 54.53 0.69

Figure 8. De_Dr age as a function of the number of outliers added to the initial De distribution (the expected age is 50 ka, indicated by the
red line). Norm and log-Norm represent the functions from which the initial De distributions (comprising 100 values) were built. Error bars
represent 95 % credible intervals. Dotted lines are ±10 %.

experimentally using nuclear detectors (e.g. Romanyukha et
al., 2017; Fu et al., 2022). Unfortunately, at present, such
experiments are scarce and remain relatively difficult to im-
plement. Supposing they become more common, systematic
comparisons between the De_Dr model, which provides the
most probable age, and other models leading to the De value
most representative of the event to be dated will become pos-
sible in a future contribution. Moreover, perhaps cases will be
observed in which the Dr distributions do not follow a sim-

ple distribution (typically log-normal) as already suggested
by Martin et al. (2015b).

One output of the model is the posterior distribution of
the A defined through a simulated Markov chain. The high-
est posterior density interval (HPDI), a region of the density
curve encompassing a particular credible interval (e.g. 68 %
or 95 %), can be calculated from this distribution. The HPD,
the HPDI, the mean, A, and the standard deviation, SDA,
of the posterior distribution can be calculated with the func-
tion Luminescence::plot_OSLAgeSummary() (see
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Supplement S1). If the posterior distribution of the age is a
Gaussian distribution, the HPDI coincides with the interval[
A±SDA

]
at a 68 % credible level (

[
A± 2SDA

]
at 95 %).

The lower and upper end of the value of the HPDI can be
supplemented to facilitate systematic errors associated with
the average total dose rate and the source dose rate of the
equipment used for the De measurements. Two approaches
are feasible. (1) The typical approach consists of modify-
ing the precision, with the standard deviation SDA being re-

placed by
√

SD2
A+A

2
p2, where p denotes the relative error

(in %) associated with the systematic error. (2) To preserve
the HPD region that considers the possible asymmetry of the
posterior distribution, the systematic error can be modelled
by Ã= A(1+pε), where ε is a standard Gaussian variable
independent of the age. One can then easily sample from the
corrected age and update the HPD region. If the probabil-
ity distribution of Ã is a Gaussian distribution, the two ap-
proaches are equivalent.

To date, the De_Dr model is thus the first model that al-
lows considering the information from the equivalent doses
and dose rates simultaneously, thus offering a substantial
paradigm change compared to existing approaches.

5 Conclusion

The De_Dr model is an alternative to statistical models to
determine the target population from aDe distribution. Com-
bining the information associated with the equivalent doses
and dose rates experienced by the grains during burial, the
model offers the possibility to determine the age of the target
population without any pre-defined function representing the
De distribution.

Future work should focus on tests carried out on well-
dated samples (typically cross-checked with 14C dating) to
validate the De_Dr model experimentally. This would, how-
ever, first necessitate access to accurately and precisely de-
termined Dr distributions.

Code and data availability. The source code of the model is
part of the R package “Luminescence” (≥ v0.9.16) and avail-
able open-access under GPL-3 licence conditions (https://CRAN.
R-project.org/package=Luminescence, last access: 8 September
2021; https://doi.org/10.5281/zenodo.6345291, Kreutzer et al.,
2022).
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