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Abstract. Secondary ion mass spectrometry (SIMS) is a
widely used technique for in situ U–Pb geochronology of
accessory minerals. Existing algorithms for SIMS data re-
duction and error propagation make a number of simpli-
fying assumptions that degrade the precision and accuracy
of the resulting U–Pb dates. This paper uses an entirely
new approach to SIMS data processing that introduces the
following improvements over previous algorithms. First, it
treats SIMS measurements as compositional data using log-
ratio statistics. This means that, unlike existing algorithms,
(a) its isotopic ratio estimates are guaranteed to be strictly
positive numbers, (b) identical results are obtained regard-
less of whether data are processed as normal ratios (e.g.
206Pb / 238U) or reciprocal ratios (e.g. 238U / 206Pb), and
(c) its uncertainty estimates account for the positive skewness
of measured isotopic ratio distributions. Second, the new al-
gorithm accounts for the Poisson noise that characterises sec-
ondary electron multiplier (SEM) detectors. By fitting the
SEM signals using the method of maximum likelihood, it
naturally handles low-intensity ion beams, in which zero-
count signals are common. Third, the new algorithm casts
the data reduction process in a matrix format and thereby
captures all sources of systematic uncertainty. These in-
clude significant inter-spot error correlations that arise from
the Pb /U–UO(2) /U calibration curve. The new algorithm
has been implemented in a new software package called
simplex. The simplex package was written in R and can
be used either online, offline, or from the command line. The
programme can handle SIMS data from both Cameca and
SHRIMP instruments.

1 Introduction

Secondary ion mass spectrometry (SIMS) combines high
sensitivity with high mass resolution (Williams, 1998).
This allows the technique to obtain precise U–Pb dates on
nanogram-sized samples whilst resolving isobaric interfer-
ences on 204Pb to a degree that is currently unachievable
by other techniques such as laser ablation inductively cou-
pled plasma mass spectrometry (LAICPMS). There are some
other differences between LAICPMS and SIMS as well.
LAICPMS instrumentation is built by numerous manufac-
turers, whose data files are compatible with a rich ecosystem
of data reduction codes such as Iolite, Glitter, and
LADR. This facilitates the intercomparison of different lab-
oratories, different instrument designs, and so forth. In con-
trast, the SIMS U–Pb world is dominated by just two man-
ufacturers, whose SHRIMP (Sensitive High Resolution Ion
Micro-Probe) and Cameca instruments use completely sepa-
rate data reduction protocols. Most SHRIMP laboratories use
Squid (Ludwig, 2000; Bodorkos et al., 2020), which is in-
compatible with Cameca data. In contrast, Cameca data tend
to be processed by in-house software such as Martin John
Whitehouse’s NordSIM spreadsheet, which are incompatible
with SHRIMP data.

This paper introduces a unified algorithm for SIMS U–Pb
data reduction that aims to address five problems with exist-
ing data reduction methods. The first three of these problems
are the following.

1. Accuracy: existing algorithms give (slightly) different
results depending on whether the raw data are processed
as 206Pb / 238U ratios or as 238U / 206Pb ratios.
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2. Precision: current data reduction routines produce sym-
metric confidence intervals, which are unrealistic for
low-intensity ion beams.

3. Systematic uncertainties: current data reduction proto-
cols use a hierarchical error propagation approach, in
which random uncertainties and systematic uncertain-
ties are propagated separately. However, such a clean
separation is not always possible, and this can compli-
cate higher-order data processing steps such as isochron
regression and averaging.

Sections 2–4 will provide further details about these prob-
lems using synthetic examples. Section 5 will show that
problems 1, 2, and 3 can be solved by treating the U–Pb sys-
tem as a compositional data space using log-ratio statistics.
However, log-ratio statistics do not solve the remaining two
problems.

4. Backgrounds: background correction of low-intensity
signals such as 204Pb sometimes exceeds 100 %, pro-
ducing physically impossible negative isotope ratios.

5. Zeros: Pb isotopes are usually measured by secondary
electron multipliers (SEMs), which record ions as
counts. For 204Pb and other low-intensity ion species,
it is not uncommon to register zero counts during any
given analytical cycle. This causes problems if the zero
count appears in the denominator of an isotopic ratio.

These problems are discussed in more detail in Sect. 6.
Section 7 addresses them by incorporating multinomial
counting statistics into the compositional data framework.
Sections 8–11 recast the U–Pb processing chain in this mixed
multinomial–compositional form. Section 12 applies the new
data reduction paradigm to two datasets produced by Cameca
and SHRIMP instruments, and Sect. 13 introduces a com-
puter code called simplex that generated these results. Fi-
nally, further details about the implementation of the new al-
gorithm are reported in the Appendix to this paper.

2 Accuracy

The common Pb-corrected 206Pb / 238U age (t) depends on
the relative abundances of the three nuclides 204Pb, 206Pb,
and 238U:

t =
1
λ238

ln

1+

[
206Pb
204Pb

]
−

[
206Pb
204Pb

]
c[

238U
204Pb

]
 , (1)

where the subscript c marks the common lead composition,
and λ238 is the decay constant of 238U. Equation (1) does not
depend on the absolute amounts of 204Pb, 206Pb, and 238U,
but only on their ratios. Unfortunately, the statistical analysis
of the ratios of strictly positive numbers is full of potential

pitfalls, as will be illustrated with an example that was in-
spired by McLean et al. (2016). Consider a simple dataset of
10 synthetic U–Pb measurements (Table 1).

Let us calculate the 206Pb / 238U ratios for these data,
which are needed to solve Eq. (1). Comparing these ra-
tios with their reciprocals yields two new sets of 10 numbers.

The elementary rules of mathematics dictate that
1/(y/x)= x/y for any two real numbers x and y. In other
words, the reciprocal of the reciprocal ratio ought to equal
that ratio. Indeed, for our example it is easy to see that
1/0.085= 11.70 and so forth. However, when we take the
arithmetic means of the (reciprocal) ratios

(
206Pb/238U

)
a
=

10∑
i=1

(
206Pb/238U

)
i
/10= 0.166

and

(
238U/206Pb

)
a
=

10∑
i=1

(
238U/206Pb

)
i
/10= 9.14,

then we find that

1(
206Pb/238U

)
a

=
1

0.166
= 6.01 6= 9.14=

(
238U/206Pb

)
a
.

So the reciprocal of the mean reciprocal ratio does not
equal the mean of that ratio! This is a counter-intuitive
and clearly wrong result. Unfortunately, current algorithms
for SIMS data reduction average ratios using the arithmetic
mean or perform (linear) regression through ratio data, which
causes similar problems (Ogliore et al., 2011). Inaccurate
206Pb / 238U ratios inevitably result in inaccurate U–Pb dates,
with the degree of inaccuracy scaling with the relative stan-
dard deviation of the measured data. Therefore, the numeri-
cal example shown in this section is deeply troubling for iso-
tope geochemistry in general and SIMS U–Pb geochronol-
ogy in particular.

3 Precision

Traditionally, the precision of isotopic data used in U–Pb
geochronology has been calculated as symmetric confi-
dence intervals. Unfortunately, this is fraught with similar
problems as those discussed in Sect. 2. For example, take
the arithmetic mean (x) and standard deviation (sx) of the
206Pb / 204Pb ratios in Table 1 and construct a Studentised
95 % confidence interval for x.
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Table 1. A synthetic U–Pb dataset in arbitrary units (e.g. fmol, mV, pA, or kHz).

238U 215.9 208.9 212.4 186.3 217.8 196.7 216.4 171.8 216.0 200.1
206Pb 18.45 12.40 21.35 62.22 21.35 45.08 26.65 75.88 29.02 11.40
204Pb 0.1570 0.2870 0.1627 0.01425 0.1092 0.08175 0.06900 0.02250 0.04975 0.3850

Here, tαdf is the α percentile of a t distribution with df
degrees of freedom (e.g. t2.59 =−2.262). Then the lower
limit of the confidence interval is negative. This nonsensical
result is yet another indication that there are some funda-
mental problems with the application of “conventional”
statistical operations to isotopic data. Negative isotope ratios
can also arise from background corrections, but this will be
further discussed in Section 6.

4 Systematic errors

The statistical uncertainty of analytical data can be classified
into two components (Renne et al., 1998).

1. Random (or internal) errors are caused by electronic
noise in the ion detectors, counting statistics, and/or
temporal variability of the background as a result of
changes in the lab environment, for example. They are
independent for different aliquots of the same sample
and can be quantified by taking replicate measurements.
The standard error of these measurements (σ/

√
N ,

where σ is the standard deviation of N replicate mea-
surements) is a measure of their precision. The standard
error can be reduced to arbitrarily low levels by simply
averaging more measurements (i.e. by increasing N ).
For example, the precision of SIMS 206Pb / 204Pb ra-
tio measurements can be increased by simply extending
the duration of the primary ion bombardment.

2. Systematic (or external) errors include the effects of
decay constant uncertainty and the 206Pb / 238U ratio
of reference materials. Getting these constants wrong
causes bias in some or all of the measurements and thus
affects the accuracy of the age determinations. As their
name suggests, the systematic uncertainties are not in-
dependent but correlated between different aliquots and
samples. They cannot be reduced by simple averaging.

Great care must be taken in choosing which sources of
uncertainty should or should not be included in the error
propagation. In some cases, inter-sample comparisons of
SIMS U–Pb data may legitimately ignore systematic uncer-
tainties. However, when comparing data acquired by differ-
ent methods, both random and some systematic uncertain-
ties must be accounted for. For example, when comparing

U–Pb and 40Ar / 39Ar data, the decay constant uncertainty
must be propagated, and when comparing SIMS and TIMS
U–Pb data, SIMS primary standard age uncertainty and the
TIMS tracer uncertainty must be propagated. The conven-
tional way to tackle inter-sample comparisons is called “hi-
erarchical” error propagation (Renne et al., 1998; Min et al.,
2000; Horstwood et al., 2016). Under this paradigm, the ran-
dom uncertainties are processed first and the systematic un-
certainties afterwards.

Hierarchical error propagation is straightforward in princi-
ple but not always in practice. Some processing steps are of
a hybrid nature, including both systematic and random un-
certainties. 206Pb / 238U calibration for SIMS is a good ex-
ample of this. 206Pb / 238U ratios are sensitive to elemental
fractionation in SIMS analysis (see Sect. 10 for further de-
tails). These fractionation effects are captured by the follow-
ing power law (Williams, 1998; Jeon and Whitehouse, 2015):

ln
[ 206Pb+

238U+

]
m
= A+B ln

[
238U16O+(2)

238U+

]
m

, (2)

where the subscript m stands for the measured signal ratio,
which is generally different from the atomic ratio, and the
subscript (2) refers to the fact that the calibration normally
uses uranium oxide for SHRIMP and uranium dioxide for
Cameca instruments. The atomic 206Pb / 238U log ratio of a
sample is determined by (1) determining the intercept (A)
and slope (B) of a reference material (r) of known Pb /U ra-
tio1 and (2) using this calibration curve to estimate the equiv-
alent Pb /U log ratio of the reference material corresponding
to the UO(2) /U log ratio of the sample (s). Then,

ln
[ 206Pb

238U

]s

a
= ln

[ 206Pb
238U

]r

a
+ ln

[ 206Pb+

238U+

]s

m

−A−B ln

[
238U16O+(2)

238U+

]s

m

, (3)

where the subscript “a” stands for the estimated (for the sam-
ple) or known (for the reference material) atomic log ratios.
The analytical uncertainty of ln

[206Pb/238U
]s

a depends on the
analytical uncertainties of both the intercept (A) and slope
(B) of the reference material. But it does not necessarily do
so to the same degree for all aliquots. Analytical spots that

1If the reference material contains variable amounts of common
lead, then the left-hand side of Eq. (2) needs to be corrected for that
before applying the calibration.
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Figure 1. SIMS U–Pb calibration curve. White circles mark the
isotopic measurements of the reference material and black circles
those of two aliquots of the same sample. The uncertainty of the
linear fit is shown as a 95 % confidence interval (grey area). This
uncertainty can be propagated into the Pb /U composition of the
sample. It is a systematic uncertainty in the sense that it affects both
aliquots. But it does not do so to the same degree. The calibration
uncertainty of aliquot 2 is greater than that of aliquot 1 due to its
horizontal offset relative to the calibration data.

have similar UO(2) /U ratios as the reference material will be
less affected by the uncertainty of the reference material fit
than spots that have very different UO(2) /U ratios (Fig. 1).
Hence, it is not possible to make a clean separation between
random and systematic uncertainties.

5 U–Pb geochronology as a compositional data
problem

Section 2 pointed out that the U–Pb age equation (Eq. 1)
does not depend on the absolute amounts of 204Pb, 206Pb,
and 238U, but only on their relative abundances. Thus, we
could normalise the 204Pb, 206Pb, and 238U measurements
of Table 1 to unity and plot them on a ternary diagram. The
same is true for other geochronometers such as U–Th–He
and 40Ar / 39Ar (Vermeesch, 2010, 2015). In mathematics,
the ternary sample space is known as a two-dimensional sim-
plex. Data that live within this type of space are called com-
positional data.

Ternary systems are common in igneous petrology (e.g.
the A–F–M diagram) and sedimentary petrography (e.g.
the Q–F–L diagram). Geologists have long been aware of
the problems associated with averages, confidence regions,
and linear regression in these closed data spaces (Chayes,
1949, 1960). But a general solution to this conundrum was
not found until the 1980s, when the Scottish statistician John

Aitchison published a landmark paper and book on the sub-
ject (Aitchison, 1982, 1986).

In this work, Aitchison proved that all the problems asso-
ciated with the statistical analysis of compositional data can
be solved by mapping those data from the simplex to a Eu-
clidean space by means of an additive log-ratio (ALR) trans-
formation. For example, given the ternary system {x,y,z},
we can define two new variables {u,v} so that

u= ln(x/z)

and

v = ln(y/z). (4)

In this space, Aitchison showed, one can safely calculate av-
erages and confidence limits. Once the statistical analysis of
the transformed data has been completed, the results can then
be mapped back to the simplex by means of an inverse log-
ratio transformation:

x =
eu

1+ eu+ ev
, y =

ev

1+ eu+ ev

and

z=
1

1+ eu+ ev
. (5)

For example, the 204,6Pb–238U system of Table 1 can
be mapped from the ternary diagram to a bivariate
ln(204Pb/238U)–ln(206U/238U) space.

Alternatively, we could also use 206Pb as the denominator
isotope.

Calculating the average of the transformed data and mapping
the results back to the simplex using the inverse log-ratio
transformation yields the geometric mean of the ratios:(

238U/206Pb
)

g
= 7.58=

1
0.13
=

1(
206Pb/238U

)
g

,

which is an altogether more satisfying result than in
Sect. 2. Moving on to the 95 % confidence intervals of the
206Pb / 204Pb ratios, we first determine the conventional
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confidence limits for the log ratios.

After the inverse log-ratio transformation, these values
produce an asymmetric 95 % confidence interval for the
geometric mean 206Pb / 204Pb ratio of 305+695

−212. This in-
terval contains only strictly positive values, solving the
problem of Sect. 3. The ALR transformation of Eq. (4)
can easily be generalised to more than three components.
For example, if 207Pb is added to the mix, then the four-
component 204|6|7Pb–238U system can be mapped to the
three-component ln(204|6|7Pb/238U) space (Fig. 2).

The compositional nature of isotopic data embeds a co-
variant structure into the very DNA of geochronology: in a
K-component system, increasing the absolute amount of one
of the components automatically lowers the relative amount
of the remaining (K−1) components (Chayes, 1960). To deal
with this phenomenon, it is customary in compositional data
analysis to process data in matrix form using the full covari-
ance matrix. For example, four components yield three log
ratios, which require a 3× 3 covariance matrix to describe
the uncertainties and uncertainty correlations.

This approach is now widely used in sedimentary geology,
geochemistry, and ecology (e.g. Weltje, 2002; Vermeesch,
2006; Pawlowsky-Glahn and Buccianti, 2011), and it has
recently been adopted for geochronological applications as
well (Vermeesch, 2010, 2015; McLean et al., 2016). The log-
ratio covariance matrix approach is also uniquely suited to
capture the systematic uncertainties (i.e. the inter-spot error
correlations) that are produced by the SIMS U–Pb calibra-
tion procedure (Sect. 4). In that case, the covariance ma-
trix must be expanded to accommodate multiple spots (e.g.
Vermeesch, 2015). For example, the covariance structure of
three spots in a four-component system can be captured in a
9× 9 matrix.

In conclusion, the log-ratio transformation solves the sta-
tistical woes described in Sects. 2, 3, and 4 of this paper.
However, there are two additional problems that require fur-
ther remediation.

6 Background correction

Many mathematical operations are easier in logarithmic
space than in linear space: multiplication becomes addi-
tion, division becomes subtraction, and exponentiation be-
comes multiplication. These mathematical operations are
very common in mass spectrometer data processing chains
(Vermeesch, 2015). However, there are exceptions. For ex-
ample, background correction does not involve the multipli-
cation but subtraction of two signals. For low-intensity ion
beams such as 204Pb, it is possible, by chance, that the back-

ground exceeds the signal. This results in negative values of
which one cannot take the logarithm.

The subtraction problem can be solved by using a different
logarithmic change of variables:

β
y
x ≡ ln

(
y− b

x− b

)
, (6)

where x and y are the signals and b is the background. The
infinite space of βyx covers all possible values of x, y, and
b for which x > b and y > b. Thus, background correction
should be done in β space, given an appropriate error model
as described in Sect. 7.

One caveat to this background correction method is that it
does not account for isobaric interferences, which may result
in “overcounted” signals. The high mass resolution of SIMS
instruments removes most but not all isobaric interferences.
For example, spurious HfSi, REE dioxide, or long-chain hy-
drocarbon ions can interfere with 204Pb, which is generally
the rarest isotopic species detected. If unaccounted for, these
interferences lead to the proportion of non-radiogenic Pb be-
ing overestimated (and the proportion of radiogenic Pb un-
derestimated), resulting in excessive common Pb corrections
and underestimated dates. The accuracy of the background
measurements can be monitored via the use of isotopically
homogeneous reference materials (Black, 2005). A correc-
tion can then be applied by choosing the “session blank”
that brings the common Pb-corrected 207Pb / 206Pb ratios in
alignment with the reference values.

Another issue arises when SIMS signals are registered by
secondary electron multiplier (SEM) detectors. These record
ion beams as discrete counts, i.e. as integers, which are in-
compatible with the log-ratio transformation. For example, it
is not uncommon for SEM detectors to register zero counts
for low-intensity ion beams such as 204Pb. These zero counts
blow up the log-ratio transformation because ln(0)=−∞.

This and other issues are diagnostic of a fundamental
difference between compositional data and counting data
that has been previously recognised and solved in fission-
track dating (Galbraith, 2005) and in sedimentary petrogra-
phy (Vermeesch, 2018b). The same solutions can be applied
to mass spectrometric count data in general and to U–Pb
geochronology in particular (Sect. 7).

7 Dealing with count data

Standard data reduction procedures for geochronology as-
sume normally distributed residuals. In compositional data
analysis, these are replaced by logistic normal distributions.
However, neither the normal nor the logistic normal dis-
tribution is perfectly suited to dealing with discrete count
data. The multinomial distribution is a simple alternative that
seems more appropriate for the task at hand. Before we pro-
ceed, let us define the following variables.
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Figure 2. The U–Pb age equation (a) projected onto the four-component simplex and (b) mapped to a three-dimensional Euclidean log-
ratio space. 235U is omitted from the diagrams because it exists in a constant ratio to 238U (238U / 235U= 137.818, Hiess et al., 2012).
The boundaries between the coloured regions mark mixing lines between radiogenic and inherited end-member compositions, assuming
common Pb ratios of [207Pb / 204Pb]c= 10 and [206Pb / 204Pb]c= 9. The mixing lines define isochron surfaces that are linear in the simplex
and curved in log-ratio space. Rotating the log-ratio plot 90◦ clockwise produces a logarithmic version of the familiar Wetherill concordia
diagram. Concordant 206Pb / 238U and 207Pb / 235U compositions are marked by a thick black line from 0 to 4 Ga and by a dotted line
beyond 4 Ga. This paper makes the case that U–Pb data processing is best done in log-ratio space because this “liberates” the data from the
geometric constraints of the simplex, producing symmetric uncertainty distributions and more accurate results.

– φx and φb are the normalised true ion beam intensities
(in counts per second) of mass x (from a set of moni-
tored masses x) and the normalised background signal,
respectively, so that

φb+
∑
x∈x

φx = 1 (7)

– dx and db are the dwell times of mass x and the back-
ground b

– θx and θb are the normalised expected beam counts of
the ions and the background so that

θx =
φxdx

φbdb+
∑
y∈xφydy

(8)

and

θb+
∑
x∈x

θx = 1 (9)

Using the 204Pb / 206Pb ratio as an example, the probabil-
ity of observing n4 counts at mass 204, n6 counts at mass
206, and nb counts of background is given by

p(n4,n6,nb|θ4,θ6,θb)=
(n4+n6+nb)!
n4!n6!nb!

θ
n4
4 θ

n6
6 θ

nb
b . (10)

Whereas the observations n4, n6, and nb are integers, the
parameters θ4, θ6, and θb are decimal numbers that are con-
strained to a constant sum. In other words, they belong to the
simplex. Thus, we can map the three multinomial parame-
ters to two log-ratio parameters, thereby establishing a nat-
ural link between counting data and compositional data. For
example,

β4
6 ≡ ln

(
φ4−φb

φ6−φb

)
= ln

(
θ4/d4− θb/db

θ6/d6− θb/db

)
(11)

and

βb6 ≡ ln
(

φb

φ6−φb

)
= ln

(
θb/db

θ6/d6− θb/db

)
. (12)

β4
6 and βb6 can be estimated from n4, n6, and nb by max-

imising the likelihood defined by Eq. (10).
The normal and logistic normal distributions are con-

trolled by two sets of parameters: location parameters and
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shape parameters. In the case of the normal distribution, the
location parameter is the mean and the shape parameter is
the standard deviation (or covariance matrix). In contrast,
the multinomial distribution has only one set of (θ ) param-
eters. The precision of multinomial counts is governed by
the number of observed counts (σ [n] =

√
n). More sophis-

ticated models are possible when the observed dispersion
of the data exceeds that which is expected from the multi-
nomial counting statistics (e.g. Galbraith and Laslett, 1993;
Vermeesch, 2018b). However, in this paper we will assume
that such overdispersion is absent from the reference materi-
als and from the single-spot analyses.

8 Dead-time correction

It takes a few tens of nanoseconds for a secondary electron
multiplier to record the arrival of an ion. During this “dead
time”, the detector is unable to register the arrival of addi-
tional ions. This phenomenon can significantly bias isotope
ratio estimates that include ion beams of contrasting inten-
sity. Fortunately, the dead-time effect can be easily corrected.
It suffices that the dwell times are adjusted by the cumulative
amount of time that the detectors were incapacitated. Let d ′x
be the “effective dwell time” of ion beam x:

d ′x = dx − nxδx, (13)

where δx is the (non-extended) dead time of the detector that
measures x. Then the expected normalised beam counts can
be re-defined as

θ ′x =
φxd
′
x

φbd
′

b+
∑
y∈xφyd

′
y

(14)

and the normalised beam intensities as

φ′x =
θx/d

′
x

θb/d
′

b+
∑
y∈xθ

′
y/dy

. (15)

The difference between this approach and existing SIMS
data reduction approaches is that conventional data reduction
algorithms apply the dead-time correction to the raw data be-
fore calculating isotopic data, whereas the new method ap-
plies the dead-time correction to θ ′x and φ′x , which are un-
known parameters that must be estimated from the data.

9 Within-spot drift correction

Thus far we have assumed that all ions are measured syn-
chronously, which is the case in multicollector configura-
tions. However, in single-collector experiments, the measure-
ments are made asynchronously. This can cause biased re-
sults if the signals drift over time. In SHRIMP data process-
ing, it is customary to correct this drift by normalising to a

secondary beam monitor (SBM) signal2, followed by double
interpolation of numerator and denominator isotopes (Bodor-
kos et al., 2020; Dodson, 1978). A unified data reduction
algorithm for SHRIMP and Cameca instruments requires a
different approach, in which the time dependency of the sig-
nals is parameterised using a log-linear model. For Faraday
detectors,

nix = bkg+N
(

exp[αx + γXτ ix],σ
2
)
, (16)

where nix is the ion beam intensity of the ith integration for
mass x of element X evaluated at time τ ix , σ is the standard
deviation of the normally distributed data scatter around the
best fit line, and “bkg” is the background signal. This is usu-
ally a nominal value for Cameca instruments and an actual
set of measurements (nib) for SHRIMP data. Note that the in-
tercept parameters (αx) are ionic-mass-specific, whereas the
slopes (γX) are element-specific. See the Appendix for an ex-
ample. For SEM detectors, the scatter of the data around the
log-linear fit is controlled by Poisson shot noise:

nix ∼ bkg+Pois
(

exp[αx + γXτ ix]d
′
x

)
. (17)

The background-corrected signal ratio (evaluated at τ ix) for
two ion beams x and y of different elements X and Y can
then be drift-corrected as follows:

iβ
y
x ≡ ln

(
φiy −φ

i
b

φix −φ
i
b

)
+ γY

(
τ ix − τ

i
y

)
, (18)

where φix and φiy are the dead-time-corrected normalised
beam intensities for the ith integration of masses x and y,
respectively, and φib is the corresponding background value.
See the Appendix for further details.

10 Fractionation

Mass spectrometer signals are recorded in volts (for Fara-
day detectors) or hertz (or secondary electron multipliers).
The age equation, however, requires atomic ratios. In gen-
eral, signal ratios do not equal atomic ratios because they are
affected by two types of fractionation.

1. Mass-dependent fractionation. The Pb isotopes span a
range of four mass units, with 208Pb being 2 % heav-
ier than 204Pb. Both the production and detection effi-
ciency of secondary ions vary with atomic mass, and
significant errors can potentially occur if the resulting
mass fractionation is uncorrected for. Mass fractiona-
tion can be quantified by comparing the measured signal

2SBM normalisation is not a magic bullet. An example of this
is shown in Fig. 3b, where the 206Pb signal of SHRIMP spot
M127.1.2 rises with time whereas its corresponding SBM signal
drops.
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ratios of a reference material with its known isotopic ra-
tio. This is easy to do in a log-ratio context (Vermeesch,
2015).

2. Elemental fractionation. The fractionation between the
Pb isotopes is caused by (slight) differences in their
physical properties, i.e. their mass. As briefly men-
tioned in Sect. 4, much stronger fractionation effects
tend to occur between the isotopes and Pb and U be-
cause they are not only physically but also chemically
different. These chemical differences affect the complex
processes that occur when the primary ion beam inter-
acts with the target material (Williams, 1998).

In the context of SIMS U–Pb geochronology, mass-
dependent fractionation is commonly ignored (but not al-
ways, e.g. Stern et al., 2009) because the most impor-
tant isochemical ratio is that between 206Pb and 207Pb,
which lie within 0.5 % mass units of each other. This
is unresolvable given typical analytical uncertainties. The
mass fractionation is greater for 204Pb, but so is its an-
alytical uncertainty. Therefore, the atomic 204Pb / 206Pb,
207Pb / 206Pb, and 208Pb / 206Pb ratios can be directly esti-
mated from the (drift-corrected) 204Pb / 206Pb, 207Pb / 206Pb,
and 208Pb / 206Pb signal ratios. This is not the case for the
206Pb / 238U and 208Pb / 232Th ratios, which are affected by
strong elemental fractionation effects. This fractionation ex-
presses itself in two ways.

1. Within-spot fractionation

Over the course of a SIMS spot analysis, the Pb /U and
Pb /Th ratio changes as a function of time. This ele-
mental fractionation can be modelled using a log-linear
model that is similar to that used for the within-spot drift
correction:

iβ
y
x=

0β
y
x + γ

Y
X τ

i
x, (19)

where 0β
y
x is the inferred log ratio of the background-

corrected signals at “time zero”, which can be found
using the method of maximum likelihood (see the Ap-
pendix). Note that γ YX = 0 if X = Y , and, if the sensi-
tivity drift of the data is smooth and closely follows the
trends defined by Eqs. (16) and (17), then 0β

y
x ≈ αy−αx

and γ YX ≈ γY − γX.

Using Eq. (19), the isotopic log ratios can be interpo-
lated (or extrapolated) to any point in time (τ ):

τβ
y
x=

0β
y
x + γ

Y
X τ. (20)

The most precise values of τβyx are obtained when τ is
chosen in the middle of the analytical sequence. These
values can be used for subsequent calculations. Alterna-
tively, we can also use the time-zero intercepts 0β

y
x .

2. Between-spot fractionation

The Pb /U and Pb /Th signal ratios may vary between
adjacent spots on the same isotopically homogenous
reference material. This fractionation obeys the power-
law relationship given by Eq. (2). Expressing this for-
mula in terms of corrected signal ratios gives

ln
[

(φ′6−φ
′

b)− (φ′4−φ
′

b)(6/4)c

φ′u−φ
′

b

]
=

A+B ln
[
φ′o−φ

′

b

φ′u−φ
′

b

]
, (21)

where (6/4)c stands for the 206Pb / 204Pb ratio of the
common Pb (see the footnote of Sect. 4). Recasting
Eq. (21) in terms of the interpolated log-ratio estimates
gives

ln
[
exp(τβ6

u )− exp(τβ4
u )(6/4)c

]
= A+Bτβo

u , (22)

where “o” stands for the uranium oxide (238U16O+2 or
238U16O+) and “u” stands for 238U+.

11 U–Pb age calculation

Having applied Eq. (22) to a reference material with a
known atomic 206Pb / 238U ratio

[206Pb/238U
]r

a, the atomic
206Pb / 238U ratio of the sample is given by

ln
[ 206Pb

238U

]s

a
= ln

[ 206Pb
238U

]r

a
+
τβ6

u (s)−A−Bτβo
u (s), (23)

where τβ6
u (s) and τβo

u (s) are the interpolated log-ratio esti-
mates of the sample. The 206Pb / 238U age is then obtained
by plugging

[206Pb/238U
]s

a into the age equation. Uncertain-
ties are obtained by standard error propagation (see the Ap-
pendix).

12 Examples

The following paragraphs will illustrate the SIMS U–Pb data
reduction process using two datasets.

1. Dataset 1 was acquired by Yang Li at IGG-CAS Beijing
using a Cameca 1280HR instrument with five SEMs
and two Faraday detectors run in single-collector mode
using an SEM for all mass stations. The dataset uses
Temora2 zircon (416.8± 1.1 Ma, Black et al., 2004) as a
reference material and 91500 zircon (1062.4± 0.2 Ma,
Wiedenbeck et al., 1995) as a sample. Measurements
consist of seven cycles through a set of 11 mass stations
per single-spot measurement for 90Zr2O (0.48 s dwell
time per cycle), 92Zr2O (0.08 s), mass 200.5 (back-
ground, 4.00 s), 94Zr2O (0.32 s), 204Pb (4.96 s), 206Pb
(2.96 s), 207Pb (6.00 s), 208Pb (2.00 s), 238U (2.96 s),
ThO2 (2.96 s), and UO2 (2.96 s).
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2. Dataset 2 was acquired by Simon Bodorkos at Geo-
science Australia using a single-collector SHRIMP-II
instrument, employing an SEM for all mass stations.
This dataset also uses Temora2 as a reference mate-
rial, as well as 91500 zircon, OG.1 (3440.7± 3.2 Ma,
Stern et al., 2009), and M127 (524.36± 0.16 Ma, Nas-
dala et al., 2016) as samples. Measurements consist of
six cycles through a set of 10 mass stations per single-
spot measurement for 90Zr2O (2.0 s dwell time per cy-
cle), 204Pb (20 s), mass 204.04091 (background, 20 s),
206Pb (15 s), 207Pb (40 s), 208Pb (5 s), 238U (5 s), ThO
(2 s), UO (2 s), and UO2 (2 s).

Figure 3 shows the time-resolved SEM counts of one rep-
resentative spot measurement for each dataset. Side-by-side
comparison of these two datasets reveals some interesting
similarities and differences. All of the high-intensity signals
exhibit clear transient behaviour, which is caused by changes
in oxygen availability that occur during primary ion bom-
bardment (Magee et al., 2017). The transience of the indi-
vidual SEM signals biases the isotopic ratios. For example,
there are 109 s between the 204Pb and 208Pb measurements
in each SHRIMP cycle. During these 109 s, the 208Pb signal
drops on average by 2 %, resulting in an equivalent bias of
the 204Pb / 208Pb ratio (Sect. 9). A similar drop per cycle is
observed for the Cameca data.

However, there is a key difference between the Cameca
and SHRIMP datasets. For the Cameca data, the U and Pb
signals both drift in the same direction, resulting in positive
slopes for the example of Fig. 3. But for the SHRIMP data,
the U and Pb drift in opposite directions: the U signal exhibits
an increase in sensitivity with time, whereas the Pb signals
decrease in intensity with time. This marked difference in
behaviour between the two instruments reflects a difference
in their design, causing a difference in the energy window of
the secondary ions analysed (Ireland and Williams, 2003).

For Faraday detectors, the within-spot drift correction uses
a generalised linear model with a lognormal link function
(Eq. 16). For SEM data, it uses a Poisson link function
(Eq. 17). In either case, the model enforces strictly positive
isotopic abundances. Isotopes of the same element (such as
204|6|7|8Pb) have the same slope parameter but different inter-
cepts. Isotopes of different elements are free to have different
slopes (Fig. 4).

Figure 5 applies another log-linear function (Eq. 19) to
model the within-spot fractionation of SHRIMP Temora2
spot 11. This function models the drift-corrected log ratios
as a linear function of analysis time. The slopes of the log-
linear functions are a function of the within-spot fractiona-
tion between the numerator and denominator elements. Be-
cause there is no fractionation between two isotopes of the
same element, the slope of the Pb /Pb ratios is zero.

The ability of log-ratio statistics to avoid negative ratios is
apparent from the first panel of Fig. 5. Even though some of
the the background-corrected ratio signals are zero or nega-

tive (because the background exceeded the signal), the gen-
eralised linear fit is strictly positive. The natural ability of
compositional data analysis to rule out negative ratios avoids
many problems further down the data processing chain.

The right-hand side of Fig. 5 maps the four (log) ratios
back to five equivalent raw signals (one for each isotope).
The last two panels of the figure show how the log-ratio ap-
proach manages to effectively capture subtle fluctuations of
the U and UO signal intensities.

The log-ratio intercepts obtained by Eq. (19) form a linear
array of calibration data (Eq. 22). Figure 6a fits a straight line
through these points using the linear regression algorithm of
York et al. (2004). Alternatively, instead of fitting a calibra-
tion line through the log-ratio intercepts (τ = 0, Fig. 6a), it is
also possible to interpolate or extrapolate the log-ratio com-
position to any other point in time. For example, the green
ellipses in Fig. 6b show the inferred log-ratio compositions
at 544 s (i.e. τ = 544), which represents the midpoint of the
analyses. The slope of this calibration line is notably different
than that obtained by fitting a line through the compositions
at 0 s. This change in slope reflects the different mechanisms
that are responsible for elemental fractionation within and
between SIMS spots.

Figure 7 applies the Pb /U calibration (Eq. 23) to 91500
zircon using the Temora2 data for calibration. It shows only
the purely random errors, i.e. ignoring the uncertainty of the
calibration. Including the calibration errors not only inflates
the uncertainties, but also causes inter-spot error correlations
(Fig. 1). To demonstrate this phenomenon, let us revisit the
Cameca data and swap the sample and reference materials
around. Thus, we use 91500 for the calibration curve and
Temora2 as a sample (Fig. 8). Table 2 shows the uncertainty
budget of four selected aliquots from this sample.

Propagating the calibration curve uncertainty increases the
error estimates (Table 2) by different amounts for different
spots. For aliquot c, which is located immediately below
the mean of the 91500 data, the calibration uncertainty only
mildly increases the standard error from 0.30 % to 0.36 %.
However, for aliquot a, which is horizontally offset from the
mean of the calibration data, the systematic calibration un-
certainty more than doubles the standard error from 0.32 %
to 0.70 %. The calibration error also causes the standard er-
rors of the various aliquots to be correlated with each other.
For example, the total uncertainties of aliquots a and b are
positively correlated (r[a,b] = 0.62) because their UO2 /U
ratios are both offset from the mean of the calibration in the
same direction. In contrast, the uncertainties of aliquots a and
d are negatively correlated (r[a,d] = −0.34) because they
are offset in opposite directions from the mean of the cali-
bration data.

The inter-spot error correlations are important when cal-
culating weighted means (Vermeesch, 2015) and isochrons.
Taking into account the full covariance structure of the data
affects both the accuracy and the precision of any derived age
information. For example, the conventional weighted mean
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Figure 3. Time-resolved signals (counts) of (a) Temora2 (spot Tem@6) analysed by a Cameca 1280HR instrument at IGG-CAS Beijing;
(b) M127 zircon (spot M127.1.2) analysed by a SHRIMP-II instrument at Geoscience Australia.

Table 2. Uncertainty budget of the four Temora2 zircon analyses highlighted in Fig. 8. The first two data columns show the calibrated
206Pb / 238U log ratios and their standard errors ignoring the uncertainty of the calibration fit (i.e. using internal uncertainties only). The
third column shows the total error including the external uncertainty associated with the calibration fit. The upper triangular matrix shown in
the remaining three columns contains the (total) error correlations of the four aliquots.

ln[206Pb / 238U] int. unc. tot. unc. r[∗,b] r[∗,c] r[∗,d]

(%) (%)

a −2.692 0.32 0.70 0.62 0.36 −0.34
b −2.685 0.31 0.44 0.36 −0.17
c −2.693 0.30 0.36 0.019
d −2.719 0.45 0.56

can be replaced with a matrix expression that accounts for
correlated uncertainties (Eq. 92 of Vermeesch, 2015). Ap-
plying this modified algorithm to the positively correlated
aliquots a and b of Table 2 changes the weighted mean from
−2.6922 to −2.6854 and increases the standard error of that
mean from 0.37 % to 0.44 %. Applying the same calculation
to the negatively correlated aliquots a and d changes their
weighted mean from −2.7083 to −2.7076 and reduces un-
certainty from 0.43 % to 0.35 %. To take full advantage of
the covariance matrix will require the development of a new

generation of high-level data reduction software. For exam-
ple, future versions of IsoplotR (Vermeesch, 2018a) will
be modified to handle these rich data structures. A compre-
hensive discussion of this topic falls outside the scope of this
paper.

13 The R package simplex

The SIMS data processing algorithm presented in this pa-
per is implemented in an R package called simplex. The
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Figure 4. Within-spot drift correction of the background-corrected SHRIMP data from Fig. 3. Dotted lines are log-linear functions whose
element-specific slopes (γX in Eq. 17) are used for the drift correction but for no other purpose. Solid lines mark the duration of each mass
spectrometer cycle, with the black dots representing the starting point of each individual mass station within the cycles. The solid lines are
parallel to the dotted lines (in log space) and express how the isotope ratio fits can be translated to match the asynchronous mass spectrometer
signals. Vertical axes have units of counts per second.

programme can be run in three modes: online, offline, and
from the command line. The online version can be accessed
at https://isoplotr.es.ucl.ac.uk/simplex/ (last access: 16 Au-
gust 2022). It contains three example U–Pb datasets, includ-
ing the two datasets used in this paper, plus a Cameca mon-
azite U–Th–Pb dataset.

The simplex package currently accepts raw data as
Cameca .asc and SHRIMP .op and .pd files. Support for
SHRIMP .xml files will be added later. The online version
is a good place to try the look and feel of the software. How-
ever, it is probably not the most practical way to process lots
of large data files. For a more responsive user experience,
simplex can also be run natively on any operating system
(Windows, Mac OS, or Linux). To this end, the user needs to
install R on their system (see https://r-project.org/ for details,
last access: 16 August 2022). Within R, the simplex pack-
age can be installed from the GitHub code-sharing platform

using the remotes package by entering the following com-
mands at the console.
install.packages("remotes")
remotes::install_github("pvermees/simplex")

Once installed, the simplex graphical user interface
(GUI) can be started by entering the following command at
the console.

simplex::simplex()

A third and final way to use simplex is from the com-
mand line. This allows advanced users to create automa-
tion scripts and extend the functionality of the package. The
simplex package comes with an extensive API (Applica-
tion Programming Interface) of fully documented user func-
tions. An overview of all these functions can be obtained by
typing the following command at the console.

help(package="simplex")
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Figure 5. (a) Background- and drift-corrected ratio fits to the SHRIMP data from Fig. 3, obtained using the generalised linear model of
Eq. (19). The slope parameter (γ Y

X
in Eq. 19) is zero for isotopes of the same element and non-zero for isotopes of different elements.

Vertical axes are unitless. (b) The four (log-)ratio fits can be converted back to five isotope signal fits using the inverse log-ratio transforma-
tion. Multiplying the normalised ion beam intensity fits with the total number of counts per sweep allows direct comparison with the raw
measurements, which are shown as filled circles. Vertical axes have units of counts. Note that the measurements have Poisson uncertainties,
which scale with the square root of the values.

Figure 6. (a) U–Pb calibration curve for the Temora2 SHRIMP data using the time-zero (τ = 0) intercepts (green ellipses). Black and white
dots mark the first and last cycles of each analysis, respectively. (b) The log-ratio data and calibration fit for the same data, but evaluated at
the midpoint (τ = 544), resulting in a more precise calibration. All uncertainties are shown at 95 % confidence.

14 Discussion

This paper introduced a new algorithm for SIMS U–Pb
geochronology, in which raw mass spectrometer signals are
processed using a combination of log-ratio analysis and Pois-
son counting statistics. In contrast with existing data reduc-
tion protocols, which handle each aliquot of an analytical
sequence separately, the new algorithm simultaneously pro-
cesses all of them in parallel. It thereby produces an inter-
nally consistent set of isotopic ratios and their associated co-
variance matrix. This covariance matrix is a rich source of
information that captures both random and systematic un-

certainties, including inter-spot error correlations that have
hitherto been ignored in geochronology.

The example data of Sect. 12 showed that these inter-spot
error correlations can be either positive or negative (see also
Vermeesch, 2015; McLean et al., 2016). Ignoring them af-
fects both the accuracy and precision of high-end data pro-
cessing steps such as isochron regression and concordia age
calculation. Unfortunately, existing postprocessing software
such as Isoplot (Ludwig, 2003) and IsoplotR (Ver-
meesch, 2018a) does not yet handle inter-spot error corre-
lations. Further work is needed to extend these codes and
take full advantage of the new algorithm. IsoplotR was
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Figure 7. (a) Calibration plot of the SHRIMP 91500 zircon data using Temora2 as a reference material. Dotted lines are parallel to the
regression line of Fig. 6b. (b) The same data shown on a Tera–Wasserburg concordia diagram, which was obtained with IsoplotR and
does not take into account systematic errors associated with the calibration fit. All uncertainties are shown at 95 % confidence. The white
ellipse marks the weighted mean composition, with MSWD and p values representing the goodness of fit for equivalence, concordance, and
equivalence+concordance.

Figure 8. Calibration curve of the Cameca data using 91500 zircon
as a reference material (top half of the plot) and Temora2 zircon
as a sample (bottom half). a–d mark four Temora2 aliquots whose
uncertainty budget is explored in Table 2.

designed with such future upgrades in mind: its input window
contains a large number of spare columns that will accommo-
date covariance matrices in a future update. Once the afore-
mentioned high-end data reduction calculations have been
updated, it will be possible to fully quantify the gain in pre-
cision and accuracy of the new algorithm compared to the
previous generation of SIMS data reduction software.

The data reduction principles laid out in this paper are
applicable not only to U–Pb geochronology, but also to
other SIMS applications such as stable isotope analysis. In
fact, simplex already handles such data for multicollector
Cameca instruments. It is worth mentioning that the stable
isotope functionality can also be used to correct 207Pb / 206Pb
ratio measurements for mass-dependent isotope fractiona-
tion, as was briefly discussed in Sect. 10. Future updates of
the mass-dependent fractionation correction will also address
the overcounted background problem that was mentioned in
Sect. 6.

Besides U–Pb geochronology and stable isotopes, the
new data reduction paradigm can also be adapted to other
chronometers and other mass spectrometer designs, such as
thermal ionisation mass spectrometry (TIMS, Connelly et al.,
2021), noble gas mass spectrometry (Vermeesch, 2015), and
LAICPMS (McLean et al., 2016). The simplex package
already includes a function to export data to IsoplotR.
Adding similar functionality to other data processing soft-
ware will improve geochronologists’ ability to integrate mul-
tiple datasets whilst keeping track of systematic uncertain-
ties, including those associated with reference materials and
decay constants.

Appendix A

This section provides further algorithmic details for the new
U–Pb data processing workflow. It assumes that ions are
recorded on SEM detectors, which is by far the most com-
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mon configuration. The case of Faraday collectors is similar
and, in fact, simpler.

Within-spot drift is modelled using a log-linear function
(Eq. 17) with a distinct intercept (αx) for each ion channel (x)
and shared slopes (γX) between isotopes of the same element
(X). To illustrate this concept, consider the case of 204|6|7Pb
(inclusion of 208Pb is a trivial extension). Let n̂ix be the time-
dependent parameter of the shot noise for 20xPb, where x ∈
{4,6,7}:

n̂ix = bkg+ exp(αx + γPbt
i
x)d ′x . (A1)

Then the log-likelihood function of the parameters given the
data is defined as

LLd
(
α{x},γPb|n

i
x

)
=

Const.+
∑
x

N∑
i=1

(
nix ln

[
n̂ix

]
− n̂ix

)
, (A2)

where N represents the number of cycles. The parame-
ters α{x} = {α4,α6,α7} and γPb are estimated by maximising
LLd with respect to them. Only γPb is used in subsequent
calculations. The intercepts α{x} are discarded.

The next step of the data reduction extracts log ratios from
the raw data using a log-linear model that is similar to the
within-spot drift correction (Eq. 19). Here, in contrast with
the drift correction, the intercepts are just as important as
the slopes. For isochemical ratios such as 207Pb / 206Pb, the
slope of the drift-corrected log ratios is zero and we only
need to estimate the intercept. For multichemical ratios such
as 238U / 206Pb, both the slope and the intercept are non-zero.
In order to keep track of covariances, it is useful to process all
the isotopes together using a common denominator. For ex-
ample, using 206Pb (6) as a common denominator and 204Pb
(4), 207Pb (7), 238U (u), and UO (o) as numerators,

iβx6=
0βx6 + γ

x
6 τ

i
6 + γX

(
τ ix − τ

i
6

)
+ ln[d ′6] − ln[d ′x], (A3)

where X stands for Pb if x ∈ {4,6,7}, for U if x = u, and for
UO if x = o. Then the normalised ion counts are given by

θ iy = exp
[
iβ
y

6

]
/Di

and

θ i6 = 1/Di (A4)

for y ∈ {4,7,u,o}, with

Di = 1+
∑
y

exp
[
iβ
y

6

]
+

nib∑
zn
i
z

, (A5)

in which z ∈ {4,6,7,u,o,b}. Then the log-likelihood is cal-
culated as

LLl
(

0β
{x}
6 ,γ

{x}
6 |n

i
x

)
= Const.+

N∑
i=1

∑
x

nix ln
[
θ ix

]
, (A6)

where γ 4
6 = γ

7
6 = 0 because there is no elemental fraction-

ation between the Pb isotopes. From the log ratios with a
common denominator, it is easy to derive any other log ratio:

τβ
y
x=

τβ
y

6−
τβx6 . (A7)

One of the main advantages of the new data reduction
method is its ability to keep track of the full covariance struc-
ture of the data, including inter-spot error correlations. This
ability is derived from the fact that all parameters are de-
rived by the method of maximum likelihood, which stipu-
lates that the approximate covariance matrix of any set of
estimated parameters can be obtained by inverting the nega-
tive matrix of second derivatives (i.e. the Hessian matrix) of
the log-likelihood function with respect to said parameters.

6 ≈−H−1 (A8)

For example, to estimate the covariance matrix of the log-
ratio slopes and intercepts for a single-spot analysis, the Hes-
sian is a 6× 6 matrix that includes the second derivatives of
LLl with respect to β4

6 , β7
6 , βu

6 , βo
6 , γ u

6 , and γ o
6 . Computing

this matrix is tedious to do by hand but straightforward to do
numerically.

Given the covariance matrix of the log ratios, subsequent
data reduction steps propagate the analytical uncertainties by
a conventional first-order Taylor approximation. Thus, if y =
f (x), then

6y ≈ Jf6xJT
f , (A9)

where Jf is the Jacobian matrix (and JT
f its transpose) of

partial derivatives of f with respect to x. For example, to
estimate the m×m covariance matrix of m fractionation-
corrected 206Pb / 238U ratios, error propagation of Eq. (23)
would involve an m× (2m+3) Jacobian matrix and a (2m+
3)× (2m+ 3) covariance matrix containing the uncertainties

of A, B, and ln
[

206Pb
238U

]r

a
, as well as τβ6

u(j ) and τβou(j ) (for j
from 1 to m).

Code and data availability. The source code, installation in-
structions, and example datasets for simplex can be accessed at
https://github.com/pvermees/simplex/ (last access: 16 August 2022;
https://doi.org/10.5281/zenodo.6954203, Vermeesch, 2022).
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