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Abstract. Collecting grain measurements for large detrital
zircon age datasets is a time-consuming task, but a growing
number of studies suggest such data are essential to under-
standing the complex roles of grain size and morphology in
grain transport and as indicators for grain provenance. We
developed the colab_zirc_dims Python package to automate
deep-learning-based segmentation and measurement of min-
eral grains from scaled images captured during laser abla-
tion at facilities that use Chromium targeting software. The
colab_zirc_dims package is implemented in a collection of
highly interactive Jupyter notebooks that can be run either on
a local computer or installation-free via Google Colab. These
notebooks also provide additional functionalities for dataset
preparation and for semi-automated grain segmentation and
measurement using a simple graphical user interface. Our
automated grain measurement algorithm approaches human
measurement accuracy when applied to a manually measured
n= 5004 detrital zircon dataset. Errors and uncertainty re-
lated to variable grain exposure necessitate semi-automated
measurement for production of publication-quality measure-
ments, but we estimate that our semi-automated grain seg-
mentation workflow will enable users to collect grain mea-
surement datasets for large (n≥ 5000) applicable image
datasets in under a day of work. We hope that the co-
lab_zirc_dims toolset allows more researchers to augment

their detrital geochronology datasets with grain measure-
ments.

1 Introduction

Despite an increasing number of studies on the subject,
the degree to which detrital geochronology datasets are af-
fected by sample and mineral grain size remains unresolved.
Several detrital zircon studies have documented substantial
grain-size-dependent mineral fractionation leading to biased
detrital age spectra and erroneous provenance interpretations
(e.g. Lawrence et al., 2011; Ibañez-Mejia et al., 2018; Au-
gustsson et al., 2018; Cantine et al., 2021). Conversely, sev-
eral other studies have identified provenance-dependent grain
size relationships in detrital samples with little evidence of
age spectra biassing by selective transport processes (e.g.
Muhlbauer et al., 2017; Leary et al., 2020a, 2022). Because
the number of studies characterizing grain size of detrital zir-
con datasets remains relatively small, especially compared to
the number of studies employing detrital zircon geochronol-
ogy, we likely lack the necessary volume and diversity of
datasets to understand under which specific circumstances
zircon transport processes will bias age spectra and inter-
preted provenance (Leary et al., 2022). Two principal chal-
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lenges in collecting such data have been that few automated
approaches have been published (e.g. Scharf et al., 2022)
and that the time required to manually collect grain dimen-
sions from large detrital datasets is a substantial barrier to
widespread application of these methods (e.g. Leary et al.,
2020a).

Zircon grains can be measured manually using ana-
logue methods prior to laser ablation–inductively coupled
plasma–mass spectrometry (LA-ICP-MS), but doing so is
prohibitively time consuming. Grains may also be imaged,
characterized, and measured via scanning electron micro-
scope before or after analysis, but this too incurs time and
instrumentation costs that increase with sample size, and
such analyses are not standard at most labs. Many LA-ICP-
MS facilities using Teledyne Photon Machines laser ablation
systems with proprietary Chromium (Teledyne Photon Ma-
chines, 2020) targeting software save reflected-light images
of samples during analysis with scaling and shot location
metadata files and provide these files to facility users. Im-
ages from these facilities may be full-sample mosaics cap-
tured prior to analyses or single, grain-centred per-shot im-
ages captured during ablation. The former are provided by
the University of Arizona LaserChron Center (ALC), and
the latter are provided by the University of California, Santa
Barbara (UCSB), Petrochronology Center. Many researchers
who have not otherwise imaged their large-n detrital mineral
datasets do have access to these files, and these can be used
to locate and manually measure detrital mineral grains us-
ing the offline version of the Chromium targeting software
(Leary et al., 2020a).

Three limitations to manual grain measurement in
Chromium (Leary et al., 2020a) are that (a) in this method
grains may be partially exposed or over-polished at the
surfaces of epoxy mounts, so measurements are minimum
rather than true dimensions, (b) this method is extremely
time consuming, and (c) this method can only produce one-
dimensional (i.e. length) measurements. The first problem
is inherent to reflected-light images, but the latter two can
be mitigated and solved, respectively, via automated two-
dimensional grain image segmentation and measurement
of segmentation results. Deep learning methods, wherein
training-optimizable models are used to algorithmically ex-
tract information from data (e.g. images) with minimal pre-
processing (Alzubaidi et al., 2021), are at the cutting edge of
accuracy in image segmentation and thus allow grain image
segmentation to be automated to a greater degree than other
methods (e.g. thresholding).

We developed the colab_zirc_dims Python package, which
contains code to automatically segment and measure min-
eral grains from Chromium-scaled LA-ICP-MS reflected-
light images using deep learning instance segmentation (i.e.
where grains are treated as separate objects and distinguished
from one another) models. Such models are computationally
expensive to run and can be quite slow without a good, code-
compatible graphics processing unit (GPU). In order to max-

imize its accessibility, we implemented our code in Jupyter
notebooks (i.e. Kluyver et al., 2016), which can be run ei-
ther offline or online and installation-free using Google Co-
lab (Sitar, 2022b). Google Colab is a free service that allows
users to run Jupyter notebooks on cloud-based virtual ma-
chines with variably high-end GPUs from the NVIDIA Tesla
series (i.e. K80, T4, P100, and V100) that are allocated based
on availability. Because its user interface is notebook-based,
colab_zirc_dims is not a per se application but a set of simpli-
fied, highly interactive scripts that rely on a back end of code
in the colab_zirc_dims package. Deep-learning-based tech-
niques are increasingly applied to geologic image segmenta-
tion tasks such as fission track counting (Nachtergaele and
De Grave, 2021), cobble measurement (Soloy et al., 2020),
and photomicrograph grain segmentation (e.g. Bukharev et
al., 2018; Filippo et al, 2021; Jiang et al., 2020; Latif et al.,
2022). We expect such techniques to continue to proliferate
in the future, but the colab_zirc_dims package and process-
ing notebooks represent, to the best of our knowledge, the
first deep-learning-based approach to per-grain detrital min-
eral separate measurement.

2 Established image segmentation techniques and
related software

Automated segmentation of mineral grains in LA-ICP-MS
images can be achieved with some success using relatively
simple image segmentation techniques such as k-means clus-
tering, edge detection, and intensity thresholding. Otsu’s
thresholding method (i.e. Otsu, 1979), wherein image pix-
els are automatically segmented into background and fore-
ground classes via maximization of inter-class intensity vari-
ance, is particularly well suited for reflected-light images
because mineral grains appear as a bright phase against an
epoxy background (Fig. 1). Although grain segmentations
produced through Otsu thresholding are often accurate, they
tend to split single fractured grains into multiple sub-grains
(Figs. 1c, A1) and can be wildly inaccurate where image arte-
facts affecting pixel intensity (e.g. anomalous bright spots;
Fig. A1) are present. These problems are common to auto-
mated segmentation techniques, and edge detection methods
additionally contend with mis-segmentations along artificial
edge-like stitching artefacts where sub-image boundaries ap-
pear within larger, otherwise uniform mosaic images (e.g.
Fig. A1). Because deep learning models can be optimized
through training to ignore image artefacts and intra-grain
fractures, they are likely the best available tool for achiev-
ing fully automated mineral grain segmentations with near-
human accuracy.

Some existing software applications enable measurement
of mineral grains in images with varying degrees of au-
tomation. The offline version of the Chromium LA-ICP-
MS targeting application supports loading and viewing of
scaled alignment images and shot locations; users can manu-
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ally measure the axial dimensions of analysed grains using
a ruler-like “measure” tool (Leary et al., 2020a; Teledyne
Photon Machines, 2020). The ZirconSpotFinder module of
the MATLAB-based AgeCalcML application likewise sup-
ports loading and viewing of Chromium-scaled LA-ICP-MS
alignment images but also implements semi-automated grain
segmentation using user-selected thresholds, filtering of seg-
mented grains by surface area, and export of area-filtered
shot lists (Sundell et al., 2020). AnalyZr, a new applica-
tion designed specifically for measurement of zircon grains
in images, combines Otsu thresholding with a novel bound-
ary separation algorithm to automatically segment grains and
allows users to edit the resulting segmentations before ex-
porting automatically generated, grain-specific dimensional
analyses (Scharf et al., 2022). Analytical spot identification
and localization in AnalyZr is done manually through an in-
terface that also allows input of spot-specific comments and
qualitative internal grain zoning descriptors that persist into
the program’s exports (Scharf et al, 2022). Because AnalyZr
supports loading of grain image .png files from any source
with manual capture of image scale, it can be used to extract
more detailed per-grain information (e.g. unobscured grain
dimensions from transmitted-light images) than is obtainable
using only reflected-light images (Scharf et al., 2022). Ana-
lyZr’s manual spot placement and scaling implementations
and thresholding-based segmentation algorithm also, how-
ever, necessitate substantial human involvement in produc-
ing accurate grain segmentations and measurements. The co-
lab_zirc_dims package and notebooks are likely better suited
for rapid measurement of mineral grains in applicable (i.e.
with Chromium-scaled images) large-n datasets due to their
automated image loading, scaling, and generally accurate
deep-learning-based automated segmentation capabilities.

3 Methods

3.1 Dependencies

The colab_zirc_dims package was written in Python 3.8 and
relies on some non-standard Python packages (Van Rossum,
2023). Pillow and Matplotlib are used for image loading
and to create and save verification segmentation images, re-
spectively. Matplotlib was additionally used to create fig-
ures for this paper (Murray et al., 2023; Hunter, 2007).
OpenCV (Bradski, 2000) is used to display images and to
fit minimum-area circumscribing rectangles to masks (e.g.
Figs. 1e, A1c). NumPy is used for array operations and con-
versions, and pandas is used in some contexts for data orga-
nization and export (Harris et al., 2020; McKinney, 2010).
The measure module of scikit-image is used to produce un-
scaled dimensional analyses from segmented grain masks
and to extract mask outlines for conversion into user-editable
polygons (van der Walt et al., 2014). Interactivity in co-
lab_zirc_dims processing notebooks is implemented using
IPython (Pérez and Granger, 2007). Detectron2, which is a

deep learning library that was developed by Facebook and
is itself built on PyTorch, also developed by Facebook, was
used for model construction and training and is used to de-
ploy models within colab_zirc_dims processing notebooks
(Paszke et al., 2019; Wu et al., 2019).

Local and online execution of the colab_zirc_dims note-
books rely on Jupyter and Google Colab, respectively. We
recognize that Jupyter-style notebooks are an unconventional
platform for final deployment of scientific computing algo-
rithms and that Google Colab in particular does have some
significant disadvantages (e.g. run times will automatically
disconnect if left idle for too long) versus deployment in
a standalone, purpose-built local or web-based application.
Nevertheless, we believe that Google Colab’s benefits in this
use case outweigh its disadvantages, especially with regards
to accessibility. The colab_zirc_dims notebooks can be run
using otherwise expensive GPUs by anyone with a Google
account, regardless of their local hardware or prior Python
experience. We also mitigate potential connection-related is-
sues by implementing automatic saving to Google Drive dur-
ing online automated and semi-automated grain image pro-
cessing: if a user’s runtime disconnects, they can simply re-
connect and resume work from the last sample processed
before disconnection. The aforementioned timeout and con-
nectivity problems will not affect the processing notebooks
if they are run locally (i.e. Sitar, 2022b, “Advanced Local
Installation Instructions”). Local notebook execution conse-
quently remains an option for users who are equipped with
suitable hardware and either chafe against the constraints of
Google Colab or are otherwise unable to access Google ser-
vices.

3.2 Training and validation dataset

We present “czd_large”, a new training validation dataset
comprising 16 464 semi-automatically generated per-grain
annotations in 1558 LA-ICP-MS reflected-light images
of mineral grains (Table 1). Constituent images, which
are sourced from both ALC and UCSB, were compiled
via Chromium-metadata-informed (i.e. all images are non-
overlapping in real-world space) random selection. ALC
source mosaic images (Table 1) were captured during anal-
yses of detrital zircon from the Eagle and Paradox basins,
USA; dates and Chromium-derived manual grain measure-
ments resulting from these analyses were published by Leary
et al. (2020a). UCSB images (Table 1) were captured dur-
ing unpublished analyses of detrital zircon from units in
eastern central Nevada, USA. Automatic per-grain instance
segmentations were generated using a Mask-RCNN Resnet-
101 model trained on a smaller, manually annotated dataset
compiled from the same sources (Table B1; Sitar, 2022b,
“Training Datasets”). These automatic segmentations were
converted to the VGG image annotation format (Dutta and
Zisserman, 2019) using a custom Python script, and anno-
tations for every image were then manually reviewed and,
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Figure 1. Visualizations of image thresholding segmentation using Otsu’s method (Otsu, 1979) and its inherent problems in the context
of reflected light detrital zircon grain images (top row) and of the colab_zirc_dims segmentation and grain measurement process (bottom
row). (a) An original, unaltered LA-ICP-MS reflected-light image. (b) A binary image resulting from segmentation of the original image
into foreground (white) and background (black) classes using Otsu’s method. (c) The original image with “background” masked out using
the binary image. Red highlights indicate single grains that have been erroneously eroded, segmented into multiple grains along fractures,
or both. (d) The results (bounding boxes, probability scores, and masks) of instance segmentation of the original image using a Mask-
RCNN model (M-ST-C; see Table B1), as displayed by the Detectron2 “visualizer” module. (e) The resulting colab_zirc_dims verification
image, scaled in micrometres and displaying the identified central grain mask (yellow), mask centroid (green), minimum-area circumscribing
rectangle (blue), and ellipse with the same second-order moments as the grain mask along with its axes (red).

where necessary, corrected or extended using the VIA Im-
age Annotator (Dutta and Zisserman, 2019). Approximately
15 % of the full dataset was split off into a validation sub-
set via sample-stratified random selection (Table 1). We pro-
vide granular information (e.g. image sizes and scales, train-
ing versus validation set image and annotation distributions,
etc.) about the dataset and a link to download it in the “Train-
ing Datasets” subdirectory of our project GitHub page (Sitar,
2022b).

Some training and validation images contain likely detri-
tal apatite grains in addition to zircon, and we segmented
all visible mineral grains into a single “grain” class to avoid
harming our models’ generalization abilities in the presence
of varying image exposure and brightness levels. Models
trained on czd_large are consequently likely applicable to
segmentation of all reflected-light bright-phase minerals but
are unable to distinguish these minerals from one another.
Both automatically and manually generated annotations are
conservative with regards to interpreting grain extent; we
only segmented areas where grains are exposed above the

epoxy surface, except in cases where larger subsurface ex-
tents are incontrovertibly apparent.

3.3 Deep learning models

Using the czd_large dataset, we have trained several
Detectron2-based instance segmentation models (i.e. con-
figurations with trained weights) that can be applied in co-
lab_zirc_dims processing notebooks. As of colab_zirc_dims
v1.0.10, said models encompass several architectures and
variations therein, including Mask-RCNN models with
ResNet-FPN backbones, a Mask-RCNN model with a Swin-
T backbone implemented using third-party code (Ye et
al., 2021), and a Centermask2 model with a VovNetV2-99
backbone (Table B1). Given the rapid pace of progress in
deep learning research and our own graceless yet continual
progress in optimizing model hyperparameters for applica-
tion in colab_zirc_dims, we expect that these models could
be superseded by better-performing models in the future. As
such, we host our current models (i.e. configuration files and
links to weights) and all explanatory information (i.e. train-
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Table 1. A summary of the “czd_large” dataset used to train the deep learning model presented in this paper for reflected-light mineral grain
segmentation. Please refer to Sitar (2022b) for more in-depth information on the composition of the dataset.

Source Training set Validation set Training set Validation set
facility images images annotations annotations

ALC 1203 212 12 923 2326
UCSB 121 22 1039 176

1324 234 13 962 2502

Total 1558 16 464

ing metrics, post-training evaluation metrics, and summary
tables and diagrams) on a mutable “Model Library” page
within the project GitHub repository (Sitar, 2022b). Users
can refer to this page to learn more about the current se-
lection of models and to the linked Jupyter notebook files
if they would like to train their own models using our train-
ing workflow. Models are loaded for application in local and
Colab-based colab_zirc_dims processing notebooks through
a dynamic selection and downloading interface. Our current
default model is a Mask-RCNN model with a Swin-T-FPN
backbone (Table B1), which was selected due to its appar-
ent low propensity for producing aberrantly over-interpretive
segmentation masks (Sitar, 2022b). This model is herein re-
ferred to as “M-ST-C” and was used to produce all mea-
surements and segmentation images presented in the current
study.

3.4 Dimensional analysis of mineral grains

The initial step in dimensional analysis of grains using co-
lab_zirc_dims is standardized loading of grain images for
segmentation such that differently formatted image datasets
can be processed using a single set of algorithms. Shot-
centred single images (e.g. from UCSB) can be passed to
models for segmentation as they are, but segmentation of
grains from mosaic image datasets (e.g. from ALC) is per-
formed on scaled, shot-centred sub-images extracted from
mosaics using shot coordinate metadata. Grain-centred im-
ages are segmented by a deep learning model, and the result-
ing segmentations (e.g. Figs. 2d, A1c) are passed to an algo-
rithm that attempts to identify and return a “central” mask
corresponding to the shot target grain LA-ICP-MS analy-
sis (Fig. 2c). If no mask is found at the actual centre of
the image, as may be the case in slightly misaligned im-
ages, the algorithm searches radially outwards until either
a mask is identified or the central ∼ 10 % of the image has
been checked. To avoid erroneously returning significantly
off-centre (i.e. non-target) grains, the algorithm is considered
to have “failed” if it cannot find a grain mask after this search,
and null values are returned for the spot instead of shape pa-
rameters. If a central grain is found, its dimensions are anal-
ysed using functions from OpenCV (Bradski, 2000) and the
scikit-image measure module (van der Walt et al., 2014). The

resulting measurements and properties are, where applicable,
scaled from pixels to micrometres or cubic micrometres us-
ing a Chromium-metadata-derived scale factor.

Successful grain image processing by the colab_zirc_dims
grain segmentation and measurement algorithm will return
the following grain mask properties: area, convex area, ec-
centricity, equivalent diameter, perimeter, major axis length,
minor axis length, circularity, long-axis rectangular diameter,
short-axis rectangular diameter, best long-axis length, and
best short-axis length. Details on the derivation of all out-
put grain mask properties can be found on the “Processing
Outputs” section of the colab_zirc_dims GitHub page (Sitar,
2022b), but some properties merit further discussion. Circu-
larity, for instance, is calculated from scikit-image-derived
area and perimeter measurements using Eq. (1); this is a no-
tably simpler and likely less robust calculation than would be
required for grain roundness (i.e. Resentini et al., 2018).

Circularity=
4π ·Area

Perimeter2 (1)

Major and minor axis lengths are calculated from the mo-
ments of the grain mask image and reported axes thus cor-
respond to “the length of the . . . axis of the ellipse that has
the same normalized second central moments as the region”
(van der Walt et al., 2014). These axial measurements will
consequently fit exactly to perfectly elliptical and circular
grain masks but may be more approximate in the cases of
rectangular and irregularly shaped grains (e.g. Fig. 1e). Rect-
angular diameter measurements correspond to the long and
short axes of the minimum area circumscribing rectangle
(e.g. Fig. 1e) that can be fitted to a grain mask using the
OpenCV minAreaRect function (Bradski, 2000). Minimum
area rectangles will exactly fit to rectangular grain masks,
but in the case of more equant grains may be grossly mis-
aligned from the grain axes that a human researcher would
interpret. The two types of calculated axial measurement pa-
rameters each have drawbacks. To split the difference, we
implement “best” long- and short-axis measurement fields.
These fields return either moment-based or rectangle-based
axial measurements depending on whether each grain mask’s
aspect ratio (i.e. moment-based long-axis length divided by
moment-based short-axis length) is above or below an em-
pirically chosen threshold of 1.8. Minimum-area-bounding
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rectangles should trend towards co-axiallity with moment-
based axes with increasing aspect ratio, so rectangle-based
measurements are returned for grain masks with higher as-
pect ratios, while moment-based measurements are returned
for those with lower aspect ratios.

4 Implementation

4.1 The colab_zirc_dims package

Code for loading and parsing Chromium alignment and shot
list files, segmenting and measuring grains using deep learn-
ing models, and interacting with notebooks using widgets
is contained within the colab_zirc_dims package. We have
made this package available on the Python Package Index
(Python Package Index – PyPI, 2022) for easy installation
to local and virtual (i.e. Google Colab) machines. Some co-
lab_zirc_dims modules (e.g. utilities for reading Chromium
metadata files and basic segmentation functions) will work
without Detectron2 and other bulky dependencies, but these
must be installed for full functionality.

4.2 Dataset organization

Before using colab_zirc_dims notebooks to automatically
or semi-automatically measure grains, users must set up a
project folder containing their dataset (i.e. image and meta-
data files). If users plan to use colab_zirc_dims in Google
Colab, they must then upload their project folder to Google
Drive (Fig. 2a). Required formats for colab_zirc_dims
project folders are simple but necessarily differ slightly be-
tween dataset types (e.g. ALC mosaics or UCSB per-shot im-
ages), and they are thoroughly documented in the processing
notebook for each type of dataset. Once a project folder has
been created and (optionally) uploaded to a user’s Google
Drive, they can proceed either directly to notebook-based
processing in the case of per-shot image datasets or to an
additional, likewise notebook-based dataset preparation step
in the case of mosaic image datasets (Fig. 2a).

4.3 Notebooks

4.3.1 Dataset preparation tools

As we note in Sect. 3.4, segmentation and measurement of
grains in mosaic image datasets requires extraction of shot-
specific sub-images from larger mosaics using shot locations
in corresponding .scancsv shot metadata files. Information on
which mosaic file in a project folder matches which .scancsv
file must consequently be provided by users for process-
ing. Because deep learning models struggle to identify and
segment grains when they cannot see all grain boundaries
(e.g. if sub-images are smaller than grains), sub-image ex-
traction also requires a user-provided, mosaic-specific sub-
image size parameter (“Max_grain_size”) for accurate seg-
mentations and measurements. Colab_zirc_dims processing

notebooks read the aforementioned information from “mo-
saic_info” .csv files stored in project folders. Although these
mosaic_info files can be created manually, they can also be
generated quickly and easily using the “Mosaic_Match” co-
lab_zirc_dims notebook (Fig. 2b) that we provide. The Mo-
saic_Match notebook implements code that automatically
finds matches between shot lists and mosaics in a project
folder and allows users to generate, modify, and export mo-
saic_info tables (Fig. 2b). Users can view sample shot loca-
tions and sub-images using a “Display” function (Fig. 2b),
thus allowing interactive misalignment correction, adjust-
ment of sub-image sizes, and, in cases where multiple mo-
saics could potentially match a single .scancsv file, identifi-
cation and selection of the correct mosaic from a dynamically
populated dropdown menu. After exporting a mosaic_info
.csv file, users can proceed to fully automated or semi-
automated segmentation and measurement of their dataset
(Fig. 2b, c).

4.3.2 Fully automated segmentation and measurement

We provide notebooks for automated and semi-automated
processing of both mosaic image (“Mosaic_grain_process”)
and per-shot image (“Single_shot_image_grain_process”)
datasets. These notebooks are currently set up to fully sup-
port processing of ALC and UCSB datasets but will likely
work with datasets from other facilities without modification.
The per-shot image notebook additionally supports loading
and processing of any grain-centred reflected-light grain im-
ages without Chromium scaling metadata, in which case
users can provide custom per-sample scaling information
in a .csv file or use a default scale of 1 µm per pixel. Re-
searchers with datasets comprised of reflected-light images
that are not shot centred and lack Chromium metadata can
adapt (i.e. Fig. 2a) their image datasets for use with co-
lab_zirc_dims. This can be done either by using Chromium
Offline (Teledyne Photon Machines, 2020) to generate scal-
ing and/or shot placement metadata or by manually cropping
shot-centred images from mosaics (e.g. using ImageJ’s “mul-
ticrop” function; Schindelin et al., 2012). Such a workflow
(Fig. 2a) will, however, bypass most of the automation in the
colab_zirc_dims data loading process, and potential users are
advised that collecting grain measurements using other exist-
ing software (i.e. AnalyZr; Scharf et al., 2022) will likely be
less arduous.

Deep learning segmentation model weights are selected by
users from a dropdown menu and downloaded to virtual or
local machines from an Amazon Web Services S3 reposi-
tory (provided by us) prior to model initialization and pro-
cessing. After weight file download and model initialization,
users can select options for automated processing (Fig. 2c).
These options include whether to attempt segmentation with
various alternate methods (e.g. zooming out slightly, increas-
ing image contrast before reapplying the model, or, as a last
resort, using Otsu thresholding) if segmentation is initially
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Figure 2. A graphical summary of interfaces and workflow options available in colab_zirc_dims processing notebooks. Tasks that are handled
automatically or semi-automatically by processing notebooks are shown in blue boxes. (a) A summary of possible dataset inputs that can
be processed or made processable with the provided notebooks. (b) Summary of the workflow for preparing datasets for fully automated or
semi-automated segmentation. (c) Summary of possible workflows for automated or semi-automated grain measurement and for exploratory
visualization of the resulting measurements.
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unsuccessful and whether to save polygons approximating
model-produced masks for viewing or modification in the co-
lab_zirc_dims graphical user interface (GUI; Fig. 2c). Dur-
ing automated processing, per-grain dimensional analyses
(Sect. 3.3) in per-sample .csv files are saved and exported to
the user’s project folder (Fig. 2c) alongside verification mask
image .png files (e.g. Figs. 1e, A1c).

4.3.3 Notebook-based GUI for semi-automated
segmentation and measurement

We provide a simple, notebook-based GUI (Fig. 2c) ex-
tended from code in the Tensorflow Object Detection API
(Abadi et al., 2015) that allows users to view, modify, and
save polygon-based grain segmentation masks. These poly-
gon masks can either be loaded from a previous automated
or GUI-based processing session or generated on the fly on
a per-sample basis. After viewing or re-segmenting part or
all of a dataset, users can send their grain segmentations for
measurement and export (Sect. 4.3.2); grain dimension ex-
ports from the GUI will include additional tags indicating
whether each grain was segmented by a human or by a deep
learning model.

4.3.4 Notebook-based exploratory data visualization
interface

We do not provide any tools for assessing relationships be-
tween grain size or shape and age. Our processing note-
books do, however, include a simple interface that allows
users to interactively load and filter (e.g. by scan name) co-
lab_zirc_dims measurement data from their project folder
before visualizing said data using parameterizable bar–
whisker, histogram, and scatter plots (Fig. 2c).

5 Accuracy evaluations

We assessed the accuracy of our segmentation models by
comparing a manually generated grain-dimension dataset
(Leary et al., 2022) to automatically generated grain di-
mensions from the same samples measured using co-
lab_zirc_dims. The test dataset from Leary et al. (2022) con-
sists of samples collected from late Palaeozoic strata exposed
across Arizona, USA. These samples were deposited in the
same orogenic system – the Ancestral Rocky Mountains –
as the Leary et al. (2020a) training dataset, and the grain
ages and depositional environments are largely similar. The
test dataset is unrelated to the training dataset from UCSB
(see above). The full dataset was automatically processed us-
ing model M-ST-C and pure Otsu thresholding via the co-
lab_zirc_dims Mosaic_Process notebook and the resulting
automated best long-axis length and best short-axis length
measurements were compared to the manual (measured with
the Chromium measure tool) per-grain axial measurements

from the same dataset. For a sample-stratified random sub-
sample (n= 301) of the Leary et al. (2022) dataset, co-
lab_zirc_dims measurements of manual segmentation masks
generated using the colab_zirc_dims semi-automated mea-
surement GUI were also evaluated.

5.1 Machine error

Otsu thresholding as implemented in colab_zirc_dims is a
reasonably performing baseline segmentation method and
apparently produces dimensionally accurate masks for the
majority of grains in the Leary et al. (2022) dataset (Table 2).
Our default model, however, significantly outperforms the
baseline method of Otsu thresholding in every metric except
for speed (Table 2). Given that segmentation time for M-ST-
C is still a fraction of a second (Table 2) when run on a GPU-
equipped computer, deep-learning-based instance segmenta-
tion appears to be superior for producing high-quality seg-
mentation masks from reflected-light images. The Leary et
al. (2022) image dataset is also mostly free of artefacts (e.g.
Fig. A1), and we expect that the gulf in accuracy between
the two methods would widen if evaluated on a lower-quality
dataset.

Per-grain automated (M-ST-C) measurements for the full
Leary et al. (2022) dataset generally hew close to ground
truth measurements but with a significant number of data
points plotting well below the 1 : 1 measured versus ground
truth (i.e. Leary et al., 2022) line (Fig. 3a). The apparent
dominant cause of this negative skew (i.e. Eq. 2; Fig. 3b) is
under-segmentation of grains that are incompletely exposed
at the surface of epoxy mounts but whose full grain areas
are interpretable by humans from “shadows” visible in the
(mostly) reflected-light images (Fig. 4). We did not train our
model to interpret beyond clearly visible grain boundaries
and it consequently fails to reproduce human measurements
for these grains, but models might be able to do so with-
out diminished accuracy on “normal” grains given training
on a more interpretively segmented training dataset. Positive
measurement errors are rare (Fig. 3a, b) but are probably
mainly attributable to segmentation masks that merge dif-
ferent grains (Fig. 4). Failure to identify the correct central
grain in images (Fig. 4) is likewise rare but may cause posi-
tive, negative, or negligible measurement error depending on
the respective sizes of the target and mistakenly identified
grains. Cases where no grain could be identified are exceed-
ingly rare (Table 2, Fig. 4) and do not contribute directly to
measurement error but, like all identified errors, necessitate
manual re-segmentation of grains for production of accurate
measurements.

Pearson’s skewness coefficient=
3(mean-median)

standard deviation
(2)
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Figure 3. Plots displaying error distributions when comparing measurements produced by automated (M-ST-C) colab_zirc_dims segmenta-
tion against manual measurements (i.e. Leary et al. 2022). (a) Automated (y axis) versus manual (x axis; Leary et al., 2022) measurement
plots for long- and short-grain axes with linear regression lines plotted and Gaussian kernel density estimation (KDE) density shown via
heatmap. Root-mean-squared error (RMSE) is shown at the bottom right of each plot. (b) Histogram–KDE plots showing error distributions
along long and short axes. Statistical information is shown at the bottom right of each plot.

5.2 Human error

Automated measurement error metrics (e.g. Table 2) likely
encompass some error that would be present even if grains
were manually segmented, due to differential interpreta-
tions of grain areas between researchers. In the randomly
picked, sample-stratified grain subsample (n= 301) from the
Leary et al. (2022) dataset, we find that our default auto-
mated segmentation model (M-ST-C) achieves similar ax-
ial measurement absolute error metrics to the first author
(Michael C. Sitar) of this paper (Table 2). Though appar-
ently mostly free of interpretive grain extent underestimates,
the first author’s measurements tend to be larger than dataset
measurements (Table 2). Apparent over-interpretations of
grain extents by the first author likely reflect different im-
age display conditions (e.g. higher zoom and different con-
trast) during manual re-segmentation versus those present
during collection of dataset measurements. Various features
of colab_zirc_dims, namely automated segmentation of most
grains and uniform image display conditions during manual

segmentation of other grains, may enhance grain measure-
ment dataset reproducibility in addition to collection speed.

5.3 Impact of grain exposure

We find that automated processing using colab_zirc_dims
and our default model (M-ST-C) can approximately repro-
duce aggregate long- and short-grain axis length distribu-
tions for most samples in the Leary et al. (2022) mosaic im-
age and measurement dataset (Fig. 5). Systemic negative er-
rors along both grain axes are concentrated within four sam-
ples (1WM-302, 5PS-58, 2QZ-9, and 2QZ-272; Fig. 5). We
found that grains in these samples were consistently under-
exposed above mount surfaces and that “grain extent un-
derestimate” (Table 2; Fig. 4) segmentation errors were as
a result common enough to negatively impact sample axis
length distributions. Because these images are of sufficiently
high quality that subsurface grain extents were interpretable
by Leary et al. (2022), and because model M-ST-C gener-
ally only segments grain areas above resin surfaces, errors in

https://doi.org/10.5194/gchron-5-109-2023 Geochronology, 5, 109–126, 2023



118 M. C. Sitar and R. J. Leary: Technical note: colab_zirc_dims

Figure 4. Examples of automated (M-ST-C) segmentation mask error modes with estimated occurrence rates, with axes scaled in microme-
tres and correct grain segmentations outlined in light blue. Rates for “grain boundary underestimate” and “no central grain found” errors
are estimated from analysis of the entire Leary et al. (2022) dataset (i.e. Table 2). No “grain merging” or “wrong central grain” errors were
identified in a manual review of the n= 301 sample of the full dataset (i.e. Table 2), and their occurrence rates are estimated from their
non-appearance therein.

these samples can also be used as a proxy for dimensional
data loss from using reflected-light versus transmitted-light
images to measure shapes of very poorly exposed grains in
cases where reflected-light images do not reveal any infor-
mation about subsurface grain extents (Sect. 1; Leary et al.,
2020a). In the worst-evaluated sample, 1WM-302 (n= 180),
M-ST-C produces axial measurements that undershoot man-
ual long and/or short grain axis measurements (i.e. Leary et
al., 2022) by ≥ 20 % for 66.6 % of grains, with average grain
measurement errors of−18.0 % and−22.0 % along long and
short axes, respectively. Treating these automatically gener-
ated axial measurements as ground truth data could result in
significantly flawed analysis of relationships between grain
size and age. Such shape parameter underestimates present
only a minor (though potentially time-consuming) problem
for colab_zirc_dims users with poorly exposed grains whose
actual areas are still interpretable by humans (e.g. in the
case of 1WM-302); erroneous segmentation masks can sim-

ply be corrected manually using the GUI. Users who ob-
serve that their mounted crystals are both very poorly ex-
posed and invisible below the resin surface in their reflected-
light images may consider re-imaging their samples using
transmitted light and then measuring grains using a differ-
ent program (e.g. AnalyZr) to avoid collecting flawed data.
Researchers should consider excluding grain mounts that ap-
pear heavily over-polished from their datasets, as accurate
two-dimensional grain measurements for these mounts will
not be resolvable under any lighting conditions.

6 Viability of fully automated measurement

Due to low but significant segmentation error rates (Fig. 4)
stemming almost entirely from poor grain exposure, we be-
lieve that manual segmentation verification and correction
(i.e. semi-automated measurement) is necessary for pro-
duction of publication-quality grain measurement datasets.
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Figure 5. The top row shows a sample-by-sample boxplot comparison of human (Leary et al., 2022) and automated (M-ST-C) measurements
along long and short grain axes. The middle two rows show additional scatter and bar–whisker plots showing relationships between human
and automated grain long-axis length measurements and U–Pb age, with samples binned by depositional period. The bottom row shows a
KDE plot of detrital zircon U–Pb ages in the Leary et al. (2022) dataset. Boxplot boxes extend from Q1 to Q3, and whiskers extend from
Q1− 1.5 · (Q3−Q1) to Q3+ 1.5 · (Q3+Q1); sample medians are indicated by black horizontal lines within each box.

Assuming time requirements of 35 min total to automati-
cally generate segmentation masks, 1 s per grain to man-
ually check masks, 20 s to correct each mis-segmentation,
and, conservatively (Fig. 4), that 15 % of grains must be re-
segmented via GUI, we estimate that it would take about
6 h to semi-automatically collect zircon grain measurements
for the full (n= 5004) Leary et al. (2022) dataset using co-
lab_zirc_dims.

We also believe, however, that fully automated measure-
ment using colab_zirc_dims is a viable method for rapid ap-
proximation of grain dimensions in both optimal samples

(i.e. with well-exposed grains) and larger datasets where the
majority of samples have well-exposed grains. Meaningful
relationships between grain dimensions and age appear to be
resolvable solely based on fully automated measurement of
such datasets. Leary et al. (2022) used zircon grain dimen-
sion data to reinterpret the provenance and transport mech-
anism of 500–800 Ma zircons within the Pennsylvanian–
Permian Ancestral Rocky Mountains system in south-west
Laurentia. This reinterpretation was primarily based on the
arrival of dominantly small (<60 µm) 500–800 Ma zircons
in that study area at the Pennsylvanian–Permian boundary.
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Leary et al. (2022) interpreted these grains as having been
transported into the study area principally by wind and rein-
terpreted their provenance as Gondwanan (as opposed to
Arctic and/or northern Appalachian as previously interpreted
by Leary et al., 2020b). We find (Fig. 5) that this relationship
is observable in fully automated (i.e. M-ST-C) measurement
results from the dataset. Our hope is that the increased abil-
ity to explore such age–grain dimension relationships and to
generate large grain dimension datasets from tool sets such
as those presented here and by Scharf et al. (2022) will im-
prove future provenance interpretations, specifically as they
relate to grain transport processes (e.g. Lawrence et al., 2011;
Ibañez-Mejia et al., 2018; Leary et al., 2020a; Cantine et al.,
2021).

7 Limitations

Although our models (e.g. M-ST-C) evidentially generalize
well to our test set, and we believe that they will most likely
generalize well to other datasets, they are still untested on
data from facilities not represented in their training dataset
(i.e. besides ALC and UCSB). In addition, although they
have been exposed to some relatively euhedral detrital zircon
grains in the UCSB training images, our models are notably
also untested on crystals derived from primary igneous and
volcanic rocks. Some uncertainty remains in how well our
models will work when applied to more diverse data by co-
lab_zirc_dims users. We hope that any users who find that
colab_zirc_dims struggles with their image data will share
said data with us so that we can use it to expand on our train-
ing dataset and so improve our models’ utility.

Measurements produced using colab_zirc_dims will re-
tain all uncertainties that are innate to the methodology of
measuring grain dimensions from reflected-light images. Al-
though most facilities aspire to polish their laser ablation zir-
con mounts to half the thickness of the zircons, it is pos-
sible that differences in sample preparation methods could
produce significant systematic inter-facility or even intra-
facility (i.e. between different analysts) biases in measurable
two-dimensional grain dimensions; it remains somewhat un-
clear whether data derived through sample preparation and
imaging at different facilities can be compared. Addition-
ally, because there is some variability in the quality of pol-
ish achieved at ALC in the test dataset (Leary et al., 2020a;
see above discussion of samples 1WM-302, 5PS-58, 2QZ-
9, and 2QZ-272), careful manual checking of polish quality
will always be required in any dataset as described above. Ul-
timately, a study in which pre- (e.g. Finzel, 2017) and post-
mount (Leary et al., 2020a; Scharf et al., 2022; current study)
grain dimension measurements can be collected on the same
samples, or one in which differential preparation methods are
simulated (e.g. through slicing of three-dimensional micro-
CT data, as applied to apatite by Cooperdock et al., 2019),
will be the best way to quantify the bias introduced by pol-
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ishing and/or by different facilities. However, such a test is
well beyond the scope of the current study.

8 Future developments

The colab_zirc_dims package and Jupyter-style notebooks
make it significantly faster and easier to augment an appro-
priate LA-ICP-MS dataset with grain measurements. We will
continue to maintain and update colab_zirc_dims and in the
future hope to test and, if necessary, modify our code to
extend full support to datasets from facilities beyond ALC
and UCSB, possibly including those using targeting soft-
ware other than Chromium. Although individual researchers
are our intended user base for colab_zirc_dims, we also be-
lieve that deep learning models hold great potential utility
for LA-ICP-MS facilities. Such facilities are well resourced
to create large, customized training datasets and could im-
plement trained models in a variety of applications includ-
ing provision of per-spot grain measurements as a standard
data product, fully automated spot picking, and possibly au-
tomated phase identification. Our training–validation dataset
and pre-trained models (Sitar, 2022b) may lower the bar-
rier to entry for researchers and/or facilities hoping to apply
machine-learning-based or deep-learning-based methods to
similar problems.

9 Conclusions

We created a new, large dataset for instance segmentation
of detrital zircon grain instances from reflected light images
saved during LA-ICP-MS analysis. Using this dataset, we
trained a suite of deep learning models and developed code
that uses the models to rapidly extract per-grain dimensional
measurements from LA-ICP-MS images collected at facili-
ties using Chromium targeting software. We present this code
as the colab_zirc_dims Python package, and we implement it
in a collection of interactive Jupyter notebooks. These note-
books allow users to automatically or semi-automatically
process datasets that can be run locally after installation
of code dependencies or online in Google Colab with zero
setup, hardware requirements, or installation.

The colab_zirc_dims deep-learning-based automated
measurement algorithm approaches human measurement
accuracy on a sample-by-sample basis and can be used to
rapidly approximate grain size distributions for samples
with well-exposed zircon grains without any human involve-
ment. Our semi-automated segmentation workflow allows
researchers to create manually reviewed and corrected
grain size measurements for large-n datasets in under a
day, although data collected through this process inherit
all uncertainties related to the methodology of measuring
mounted polished grains in reflected-light images.

We believe that colab_zirc_dims makes it drastically eas-
ier to augment applicable LA-ICP-MS datasets with grain
measurements and hope that allowing more researchers to
do so will expand our understanding of the relationships be-
tween zircon dimensions and age in varied environments. We
also hope to extend full colab_zirc_dims support to datasets
that do not currently work with its processing notebooks
in the future and encourage users to share samples of such
datasets with the first author.
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Appendix A: Additional examples of segmentation
results

Figure A1. Comparison between Otsu thresholding and convolutional neural network (CNN)-based instance segmentation results in the
presence of diverse grain morphologies and image artefacts, including anomalous bright spots (top row), heavily fractured grains (middle
row), and tiling artefacts (bottom row). (a) Original grain-centred images clipped from ALC mosaics. (b) Segmentation masks produced via
Otsu’s thresholding method (Otsu, 1979). (c) Instance segmentation results produced by a Mask-RCNN model (M-ST-C) (left column) and
resulting colab_zirc_dims verification image plots (right column).
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Appendix B: Glossary of deep learning terminology

Table B1. A glossary of deep learning terminology used in this study.

Term Explanation Reference(s)

Weights Training-optimizable parameters that are applied to data
at various points within a neural network.

Convolutional neural network (CNN) A neural network wherein convolutional layers
(roughly, these pass sliding filters over inputs) are
used to abstract data. This allows processing of larger
datasets (e.g. images) with fewer weight parameters.

Backbone network A module within a larger model that abstracts input
data into an intermediate “feature map” that is passed
to other modules to produce the final model outputs.
Larger model architectures are commonly referred to
using the syntax “[model architecture name]-[backbone
network name]”.

FPN Feature Pyramid Network – a network that enhances
feature maps via convolutional up-sampling. Can be at-
tached to a backbone network within a larger model to
improve resolution of small objects.

Lin et al. (2016)

Mask-RCNN A CNN-based model architecture developed by He et
al. (2018). Internal modules use the feature map re-
turned by a backbone network to propose regions that
may contain objects. Later, independent modules fit
bounding boxes to (and create masks for) each detected
object. The most commonly used Mask-RCNN back-
bone is the ResNet network (He et al., 2015).

He et al. (2015, 2018)

Swin-T Swin-“Tiny” is the smallest variant of the “Swin” model
architecture (Liu et al., 2021), which is based on “trans-
former” architecture (Vaswani et al., 2017). In trans-
former networks, inputs are respectively translated to
and from a higher dimensional space by “encoder” and
“decoder” modules. These are impractical for direct ap-
plication to images, as computational complexity scales
exponentially with pixel count. The Swin architecture
deals with this by splitting up image data using smaller,
shifting windows.

Liu et al. (2021),
Vaswani et al. (2017)

Centermask A CNN-based model architecture developed by Lee and
Park (2020). Similar to Mask-RCNN, except objects are
detected and fit with bounding boxes by a single mod-
ule, without an intermediate region proposal stage, prior
to mask generation for each object. The standard back-
bone is VoVNet (Lee et al., 2019).

Lee et al. (2019),
Lee and Park (2020)
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Code availability. The colab_zirc_dims source code, small ex-
ample datasets, and links to pre-formatted template project fold-
ers and the latest versions of colab_zirc_dims Google Colab
notebooks are available at the colab_zirc_dims GitHub page
(Sitar, 2022b, https://doi.org/10.5281/zenodo.7425633). Additional
code for reproducing error evaluations and figures presented
in this paper using new or previous automatically generated
measurements is included at Zenodo (Sitar and Leary, 2022,
https://doi.org/10.5281/zenodo.7434851).

Data availability. The full Leary et al. (2022) dataset of images
and measurements that we used for model evaluation, our training
dataset, and the full measurement and evaluation dataset supporting
the results presented in our paper can be found at Zenodo (Sitar and
Leary, 2022, https://doi.org/10.5281/zenodo.7434851).

Video supplement. A video tutorial for colab_zirc_dims version
1.0.10 (Sitar, 2022a) is available at the URL https://www.youtube.
com/watch?v=ZdO6B-dvHm0.
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