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Abstract. Distributional data such as detrital age popula-
tions or grain size distributions are common in the geolog-
ical sciences. As analytical techniques become more sophis-
ticated, increasingly large amounts of distributional data are
being gathered. These advances require quantitative and ob-
jective methods, such as multidimensional scaling (MDS),
to analyse large numbers of samples. Crucial to such meth-
ods is choosing a sensible measure of dissimilarity between
samples. At present, the Kolmogorov–Smirnov (KS) statis-
tic is the most widely used of these dissimilarity measures.
However, the KS statistic has some limitations such as high
sensitivity to differences between the modes of two distri-
butions and insensitivity to their tails. Here, we propose the
Wasserstein-2 distance (W2) as an additional and alternative
metric for use in geochronology. Whereas the KS distance is
defined as the maximum vertical distance between two em-
pirical cumulative distribution functions, the W2 distance is
a function of the horizontal distances (i.e. age differences)
between observations. Using a variety of synthetic and real
datasets, we explore scenarios where the W2 may provide
greater geological insight than the KS statistic. We find that
in cases where absolute time differences are not relevant (e.g.
mixing of known, discrete age peaks), the KS statistic can
be more intuitive. However, in scenarios where absolute age
differences are important (e.g. temporally and/or spatially
evolving sources, thermochronology, and overcoming labo-
ratory biases), W2 is preferable. The W2 distance has been
added to the R package, IsoplotR, for immediate use in de-
trital geochronology and other applications. TheW2 distance
can be generalized to multiple dimensions, which opens op-
portunities beyond distributional data.

1 Introduction

A distributional dataset is one where the information does not
lie in individual observations but in the distribution of many
observations associated with one sample. Such data are com-
mon in the geological sciences, for example, detrital mineral
ages or grain size distributions. Zircon U–Pb ages, in igneous
and detrital samples, are one particularly widely used class of
distributional data, which are used inter alia to constrain sed-
iment provenance, global magmatic processes, and the evo-
lution of plate tectonics (e.g. Condie et al., 2009; Cawood
et al., 2012; Reimink et al., 2021). Grain size distributions
are another common form of geological distributional data.
Analytical advances mean that increasingly large amounts of
distributional data are being generated in the Earth sciences,
meaning that qualitative comparison of samples is becom-
ing infeasible, and objective dissimilarity metrics between
samples must be used. Some measure of dissimilarity (or
more specifically, distance) is also required for many widely
used statistical methods such as clustering, ANOVA, and di-
mension reduction. Dissimilarity metrics in geochronology
at present are most commonly used for dimension-reducing
techniques such as multidimensional scaling (MDS) or prin-
cipal component analysis (PCA). Such methods have become
popular for analysing large numbers of detrital age spectra si-
multaneously (Vermeesch, 2013; Sharman et al., 2018; Ver-
meesch, 2018a). Fitting models (e.g. sediment source parti-
tioning) using distributional data also requires a definition of
dissimilarity for comparing observed and predicted distribu-
tions (e.g. Amidon et al., 2005; De Doncker et al., 2020).

Published by Copernicus Publications on behalf of the European Geosciences Union.



264 A. Lipp and P. Vermeesch: Comparing detrital age spectra using the Wasserstein distance

Table 1. A toy, single grain per sample dataset.

Sample A B C D

Age, Ma 1 1 2 11

For all uses, the choice of which dissimilarity metric to
use is vital as different metrics result in different numerical
results and thus different geological interpretations. In gen-
eral, the most appropriate metric will depend on the data
being analysed and the scientific question under investiga-
tion. The Kolmogorov–Smirnov (KS) distance, calculated as
the maximum vertical distance between two empirical cu-
mulative distribution functions (ECDFs), has emerged as a
“canonical” distance metric between mineral age distribu-
tions (Berry et al., 2001; Vermeesch, 2018a). However, the
KS distance has a number of drawbacks, chiefly that it is in-
sensitive to variability in the tails of distributions since only
the maximum vertical difference between ECDFs is impor-
tant. A number of alternative dissimilarity measures have
previously been proposed to address this issue, including es-
tablished methods such as the Kuiper statistic and ad hoc
dissimilarity measures such as the “likeness” and “cross-
correlation” coefficients (Satkoski et al., 2013; Saylor et al.,
2012). Unfortunately, these alternatives have drawbacks, in-
cluding a propensity for the ad hoc dissimilarity measures to
produce counterintuitive results when applied to extremely
large and/or precise datasets (Vermeesch, 2018a).

In this paper, we present an alternative to the KS dis-
tance that does not suffer from some of these limitations:
the Wasserstein distance (also known as the Earth mover’s
or Kantorovich–Rubinstein distance). To introduce the chief
principle behind this measure, let us consider a simple toy
example. Table 1 contains four samples (A through D), each
of which contains exactly one single grain analysis.

As the KS distance is the vertical difference between
ECDFs, it is insensitive to the absolute, “horizontal” age
differences between individual observations. Thus, the KS
distances between A and the other three samples are
KS(A,B)= 0, KS(A,C)= 1 and KS(A,D)= 1. Counter to
our expectation, the KS distance cannot “see” the relative age
difference between sample A and samples C and D. For the
toy example, the Wasserstein distance simply corresponds
to the horizontal distance between the four samples. Thus,
W (A,B)= 0, W (A,C)= 1, and W (A,D)= 10, which is a
more sensible result than that achieved with the KS distance.

In the following sections, we first introduce the Wasser-
stein distance in a more realistic setting and formally define
it. Next, we discuss how it can be decomposed into intuitive
terms that accord with how qualitatively, as geologists, we
might compare distributions. We then proceed to compare the
Wasserstein distance to the KS distance using a simple yet re-
alistic synthetic example. Finally, we analyse a series of case
studies, analysing real datasets using both the Wasserstein

and KS distances. We thus evaluate the benefits and draw-
backs of both metrics, identifying scenarios in which one
metric may be preferred to the other. Whilst we focus pri-
marily on detrital age distributions, we emphasize that much
of the following discussion applies equally to any form of
distributional data.

2 The Wasserstein distance

The Wasserstein distance is a distance metric between two
probability measures from a branch of mathematics called
“optimal transport”. Optimal transport is often intuited in
terms of moving piles of sand from one location to another
with no loss or gain of material (e.g. Villani, 2003). The prob-
lem that optimal transport solves is finding the way to trans-
port the sand such that the least sand is moved the least dis-
tance. The Wasserstein distance is the cost associated with
this most efficient transportation. The association with mov-
ing piles of sand is why the Wasserstein distance is often
termed the Earth mover’s distance. Figure 1a shows an exam-
ple of how one univariate probability distribution, µ, based
on a detrital age spectrum, is transformed into another, ν, ac-
cording to the optimal transport plan. Elsewhere in the Earth
sciences, the Wasserstein distance is increasingly used for
solving non-linear geophysical inverse problems (e.g. En-
gquist and Froese, 2014; Métivier et al., 2016; Sambridge
et al., 2022) and has been proposed as a tool for fitting hy-
drographs (Magyar and Sambridge, 2023). Full mathemati-
cal treatments of the Wasserstein distance and optimal trans-
port are beyond the scope of this paper, but interested readers
are referred to Villani (2003) or Peyré and Cuturi (2019). A
geophysical perspective is given in Sambridge et al. (2022).

2.1 Formal definition

We consider two univariate probability distributions, µ and
ν, which have cumulative distribution functions (CDFs) M
and N , respectively. The pth Wasserstein distance between
µ and ν is given by

Wp(µ,ν)=

 1∫
0

|M−1
−N−1

|
pdt

1/p

, (1)

whereM−1 indicates the inverse of the CDFM and 0≤ t ≤ 1
(Villani, 2003). Note that this definition of Wp assumes that
the cost function is given by |x−y|p (e.g. the Euclidean dis-
tance where p = 2), which is the case for most distributional
data in geology. In the further special case of p = 1 (i.e. the
first Wasserstein distance, W1), Eq. (1) can be rewritten sim-
ply as

W1(µ,ν)=
∫
X

|M −N |dx, (2)
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Figure 1. Intuition of the Wasserstein distance. (a) Green and blue
filled polygons show two example kernel density estimates (KDEs)
of mineral ages from two samples (based on data from Morton et al.,
2008). The distributions are labelled µ and ν for consistency with
Eq. (1). Semi-transparent coloured lines are probability distribu-
tions spaced equally in Wasserstein space between µ and ν (termed
“barycentres”; Benamou et al., 2015). (b) Empirical cumulative dis-
tribution functions (ECDFs) of the detrital ages used to calculate
the distributions shown in (a), same colours. The first Wasserstein
(W1) distance corresponds to the total area between the two ECDFs
(shaded pink). The Kolmogorov–Smirnov (KS) distance is the max-
imum distance between the two ECDFs (black double-headed ar-
row).

which is the area between two CDFs (e.g. Fig. 1b). Recall
that the KS distance between two distributions is the maxi-
mum distance between the two corresponding CDFs. Whilst
theW1 is easily visualized, we actually use the Wasserstein-2
distance (W2) going forward since the squared distance (i.e.
p = 2) between observations is the standard distance met-
ric in most statistical analyses (e.g. least squares regression).
Additionally, the W2 decomposes into readily interpretable
terms, as discussed below.

We focus on these univariate instances as they apply to the
most common geological distributional data including detri-
tal age distributions and grain size distributions. However,
we note that the Wasserstein distance is, in general, multi-
variate. As a result, some form of the Wasserstein distance
could prove useful for analysing a number of other geologi-
cal datasets such as the geochemical compositions of detrital
minerals, or joint U–Pb and Lu–Hf isotope analysis (see Ver-
meesch et al., 2023). Statistics for comparing distributional
data in multiple dimensions are increasingly needed (Sundell
and Saylor, 2021).

Like the KS distance, theW2 satisfies the triangle inequal-
ity, and as such, is a true metric. This property means that
classical as well as metric and non-metric MDS can be used

with a W2-defined dissimilarity matrix. As W2 is sensitive to
absolute time differences, metric (or classical) MDS, which
seeks to preserve absolute distances, may be preferable to
non-metric MDS. For the rest of this paper, metric MDS is
used.

2.2 Decomposition

A particularly useful property of theW2 between two univari-
ate distributions is that it can be decomposed in terms of the
differences between the two distributions’ location, spread,
and shape. Irpino and Romano (2007) show that

W 2
2 (µ,ν)=

Location︷ ︸︸ ︷
(µ− ν)2

+

Spread︷ ︸︸ ︷
(σµ− σν)2

+

Shape︷ ︸︸ ︷
2σµσν(1− ρµν), (3)

where µ is the mean of µ, σµ is the standard deviation of
µ, and ρµν is the Pearson correlation coefficient between the
quantiles of the distributions µ and ν. These three terms also
accord with, qualitatively, how we as geologists might com-
pare two distributions.

2.3 Discrete data

Most distributional data in the Earth sciences do not, in raw
form, follow continuous probability distributions. Instead,
samples may be discrete sets of observations, e.g. lists of in-
dividual mineral ages. The above formulations can be easily
applied to such cases by describing the probability functions
µ and ν as weighted sums of δ functions. For example, let
us consider two samples xm and xn with p and q numbers of
observations, respectively:

µ=

p∑
i

miδxm , ν =

q∑
i

niδxn , (4)

where m and n are weight vectors, such that
∑
mi =

∑
ni =

1. In most geological cases, these weights would be uniform,
mi = 1/p; ni = 1/q, giving each observation within a sam-
ple equal weight. In this scenario, M and N are the familiar
empirical cumulative distribution functions (ECDFs), given
as a series of step functions (e.g. Fig. 1b).

2.4 A synthetic example

To demonstrate the intuition of the W2, we explore a simple
synthetic example. We consider two probability density func-
tions of mineral ages: a bimodal distribution and a unimodal
distribution, both constructed from Gaussians with the same
scale (Fig. 2a). We fix the bimodal distribution at 1000 Ma
but translate the unimodal distribution along the time axis.
For each translated distribution, we calculate both the KS
distance and W2. Figure 2b displays the behaviour of both
distances under this scenario. The KS distance shows an un-
expectedly complex response containing a series of steps, as
the peaks of the distributions align and misalign. At around
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Figure 2. Comparing the Wasserstein distance to the Kolmogorov–
Smirnov distance. (a) Two synthetic probability density functions,
modelled on the U–Pb age spectra. The black bimodal distribution
is fixed at 1000 Ma, and the green unimodal distribution is translated
along the time axis. (b) For each translated distribution, we calculate
the KS distance (red line) and the W2 (blue line). The dashed green
line and circles indicate values associated with the location of the
green distribution shown in (a).

±400 Ma, once the distributions stop overlapping, the KS
distance plateaus at its maximum value of 1. By contrast, the
W2 increases monotonically with increasing distance. Away
from the origin, theW2 approximates a linear function of the
amount of translation, as is predicted from Eq. (3). At the
origin, the non-zero value of theW2 is the cost of turning the
unimodal distribution into the bimodal distribution without
translation.

We argue that the behaviour of the W2 is more geolog-
ically intuitive than the KS distance under this scenario. It
is useful geological information if two distributions differ in
their means by 400, 500, or 1000 Ma, but if the distributions
do not overlap, the KS distance is insensitive to this. The
Wasserstein distance is, by contrast, sensitive to the absolute
offset between non-overlapping distributions. Additionally,
the stepped response of the KS distance under translation is
undesirable. Under the simple operation of translating a uni-
modal distribution, we would expect our dissimilarity to in-
crease at a constant, or at least predictable (e.g. quadratic),
rate. The change of the KS distance with translation is, coun-
terintuitively, non-linear. By contrast, the W2 increases lin-
early with respect to translation.

We reiterate that at a translation of 0 Ma, the W2 (and the
KS distance) is still non-zero, reflecting the fact that even
when the average ages are aligned, the shapes of the uni-

modal and bimodal distributions do not match. This illus-
trates the tendency of theW2 in geochronological data to pri-
oritize aligning the average ages of distributions before con-
sidering matching individual peaks. Such behaviour contrasts
with approaches that seek to only match probability peaks
neglecting any information of absolute ages (e.g. Saylor and
Sundell, 2016).

3 Discussion

As stated above, the most appropriate dissimilarity metric to
use will depend on the scientific question being answered. In
general, the Wasserstein distance is most appropriate when
absolute differences along the time axis (or more generally,
the x axis) provide useful information to solving the geo-
logic problem. The KS distance, however, is more appropri-
ate when the size of the time differences between peaks is
not relevant. Both the KS distance and the W2 are calculated
in terms of differences between ECDFs. Due to these simi-
larities in construction, in many cases the results from using
the KS distance and W2 are, encouragingly, similar. One ex-
ception is whether ages are log-transformed prior to analysis.
Because the KS distance considers only the order of the ages,
it will be the same whether a log transform is used or not. The
W2, however, will be different, and it will consider relative
not absolute age differences. Such an example is discussed
below (Fig. 5).

Here, we discuss a variety of realistic scenarios where the
KS and W2 may result in different interpretations. In each,
we evaluate the advantages and disadvantages of using the
W2 or KS. These case studies can be used to determine which
metric is most appropriate for a particular scenario.

3.1 Discriminating contributions from discrete
endmembers

We first consider a scenario where the samples are assumed
to be mixtures, in differing proportions, of some known or
unknown fixed endmembers. This situation is one where ab-
solute distance along the time axis is not relevant, as the na-
ture of the endmembers is not sought, simply their relative
contributions to a set of mixtures. Instead, it is the vertical
differences in the probability at a given age that are relevant.
The KS distance, which is sensitive to such vertical differ-
ences in age distributions, is better suited for this than the
W2. Indeed, in such a scenario, the W2 can result in some
counterintuitive behaviour.

For example, let us consider three unimodal potential sed-
iment sources, as shown in Fig. 3a. We now consider two
mixture samples. The first is an equal mixture of X and Y ,
and the second is an equal mixture of Y and Z (bottom two
plots, Fig. 3a). Geologically, we would expect these samples
to be about half as similar to the two source endmembers.
However, a W2 MDS map identifies these samples as being
removed from their two endmembers (Fig. 3b). Additionally,
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Figure 3. Mixing of discrete endmembers. (a) Three theoretical,
unimodal source age distributions with peaks at 10, 20, and 100 Ma,
and two mixture samples. Sample 1 is an equal mixture of X and
Y and Sample 2 a mixture of Y and Z. (b) Metric MDS map of
the three sources and the mixtures using the W2 (stress = 0.05).
(c) Same as (b) for KS distance (stress= 0.05). This is a scenario
where KS distance may be preferable to W2.

because of the absolute time difference between Source Z
and the other sources, Sample 2 is treated as a considerable
outlier. The KS distance performs better here, placing the
mixtures approximately halfway between the expected end-
members. However, in such a well-defined mixing scenario
as this, methods such as endmember mixture modelling may
be more appropriate than statistical dimension reduction (e.g.
Weltje, 1997; Sharman and Johnstone, 2017; Dietze and Di-
etze, 2019).

3.2 Temporally varying source age distributions

In contrast, scenarios where the shape of sediment source
age distributions evolves in space and time are well suited
to using theW2. This is because theW2 considers all parts of
a distribution, whereas the KS distance only compares one
point, the location of maximum ECDF separation. For ex-
ample, Fig. 4 displays detrital zircon age distributions gath-
ered by DeGraaff-Surpless et al. (2002) from sediments from
a section (Cache Creek) across the Great Valley Group in
California, USA. The age populations are shown as kernel
density estimates (KDEs) and histograms, in stratigraphic or-
der, in Fig. 4a. The uppermost samples show an increasingly
broader distribution than the lower four unimodal samples.
DeGraaff-Surpless et al. (2002) attribute this trend, inter alia,
to expanding sediment source areas.

Figure 4b–c displays MDS maps calculated using the W2
and KS distance, respectively. The W2 map clearly identifies

Figure 4. Temporally evolving source distributions. (a) KDEs and
histograms for zircon age distributions for samples from the Cache
Creek section across the Great Valley Group, arranged in strati-
graphic order (DeGraaff-Surpless et al., 2002). (b) MDS map using
the W2 (stress= 0.28) for data shown in (a). (c) Same as (b) using
KS distance (stress= 0.18). In this scenario, the results from theW2
are preferable.

the stratigraphic order of the samples by the changing distri-
bution shape. Additionally, it clusters the four unimodal sam-
ples together. By contrast, the KS map does not identify the
stratigraphic trend, locating the lowermost stratigraphic sam-
ple GV64 with the uppermost samples KDS3 and GV44. We
conclude then that the W2 has better captured the geological
information in this scenario.

3.3 Thermochronology

In thermochronology, age distributions shift along the time
axis according to thermal signals (e.g. exhumation). In many
thermochronological studies, we may seek to characterize
how such a signal evolves in space and time. For this ques-
tion, absolute distance along the time axis is useful infor-
mation and so the W2 may be more effective than the KS
distance. For example, Wobus et al. (2003) use 40Ar/39Ar
detrital mica thermochronometry to explore spatially vary-
ing exhumation along a spatial transect in the Himalaya. The
KDEs of the samples are shown in Fig. 5a, arranged south to
north. The southern samples (WBS1, WBS2, WBS3, WBS8)
show old exhumation signals, but a dramatic shift to younger
ages is observed north of a distinct physiographic transition.
The MDS maps of these samples are shown using the KS
distance and the W2 in Fig. 5b–c, respectively. As there is

https://doi.org/10.5194/gchron-5-263-2023 Geochronology, 5, 263–270, 2023



268 A. Lipp and P. Vermeesch: Comparing detrital age spectra using the Wasserstein distance

Figure 5. Analysing thermochronological data using W2 and KS
distances. (a) KDEs for a detrital mica 40Ar/39Ar dataset of Wobus
et al. (2003) arranged from south to north across a physiographic
transition of the central Himalaya in Nepal. Note the logarith-
mic scale. (b) The MDS configuration using the W2, following a
log transform (stress= 0.02). (c) MDS map using the KS statistic
(stress= 0.18). In this example, theW2 performs better than the KS
distance at identifying the geographic trend.

limited overlap between the samples, the KS distance strug-
gles to capture the north–south progression in exhumation
age. Whilst the physiographic division is found, it weights it
equally to variation within one cluster. By contrast, the W2
map correctly identifies the simple temporal and geographi-
cal trend of the samples from south to north.

3.4 Combining data from multiple laboratories

A final scenario where the W2 could be preferable is when
comparing samples from different laboratories which are af-
fected by interlaboratory bias. Košler et al. (2013) provided
10 different laboratories with identical synthetic zircon sam-
ples with a known age distribution. Different instruments in-
troduced small differences in the ages of each peak. For ex-
ample, in Fig. 6, we display the results from Lab 1 (red)
and Lab 4 (pink) as KDEs. The expected peak at ∼ 1200 Ma
(dashed line) is offset between the two samples. As it is the
maximum distance between two ECDFs, the KS distance is
very sensitive to minor offsets in sharply defined peaks. In
this case, the KS distance between these theoretically iden-
tical samples is large at 0.348, which is over one third of
the maximum possible distance between samples. Indeed, the
KS distance considers a synthetic, purposefully misaligned
series of peaks (black KDE) to be more similar to the Lab 4

results than the results from Lab 1. The W2 does not suf-
fer from this oversensitivity to minorly offset peaks and cor-
rectly identifies the samples from Lab 1 and Lab 4 as being
much more similar than the random synthetic distribution.

4 Implementation

We provide the example code (https://doi.org/10.5281/
zenodo.7937484) in both Python and R that demonstrates
how to calculate theW2 between two univariate distributions
(U–Pb zircon ages). For these examples, we make use of the
POT and transport packages in Python and R, respec-
tively, which implement solutions to Eq. (1) (Flamary et al.,
2021; Schuhmacher et al., 2022).

IsoplotR

Additionally, the W2 has been added to the IsoplotR pack-
age in R, which calculates dissimilarity matrices and MDS
maps (Vermeesch, 2018b). This software can be accessed
using a (online) graphical user interface at https://isoplotr.
es.ucl.ac.uk/ (last access: 15 May 2023). Alternatively, the
function can also be accessed from the R command line.
The following snippet uses the W2 to calculate an MDS map
for the dataset from Wobus et al. (2003) discussed in the
paper (Fig. 5). The data required are also available at the
above repository. Note that the MDS map produced may
show slight differences to those in the paper due to the de-
pendence of metric MDS on a random state variable. This
variability can introduce reflections and/or rotations of the
data, but the underlying structure is unchanged.

# load the package:
library(IsoplotR)

# Load in the data
DZ <- read.data("wobus.csv",

method="detritals")

# example 1. calculate the W2 distance
matrix for the dataset:

d <- diss(DZ,method="W2")

# example 2. apply MDS to the dataset:
mds(DZ,method="W2")

5 Conclusions

The second Wasserstein distance, W2, is an effective metric
for comparing distributional data in the geological sciences
such as detrital age spectra or grain size. Unlike the KS dis-
tance, the W2 can be extended to further dimensions. The
W2 is a function of the horizontal distances between obser-
vations, in contrast to the KS distance, which corresponds to
vertical differences between ECDFs. Using a variety of case
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Figure 6. Comparing samples from an interlaboratory calibration study. KDEs (a) and ECDFs (b) of two samples from the interlaboratory
comparison study of Košler et al. (2013), plus a purposefully misaligned synthetic sample. Dashed lines mark the true ages of the detrital
mixture. According to the KS statistic, the age distribution produced by Lab 4 is more similar to the synthetic distribution than it is to the
distribution produced by Lab 1, despite the absence of any shared age components. The W2 correctly deems the distribution produced by
Lab 4 to be closer to that of Lab 1 than to the synthetic mixture.

studies, we explore scenarios where the W2 may or may not
be preferable to the KS distance. In scenarios where discrete,
known age peaks are mixed, the KS distance may be prefer-
able. However, in other scenarios where absolute differences
along the time axis are useful information, the W2 is prefer-
able. Example scenarios include spatially and/or temporally
evolving source distributions, thermochronological data, and
combining detrital samples from different laboratories. The
Wasserstein distance has been added to the IsoplotR soft-
ware, and example scripts are provided in Python and R.

Code and data availability. The code and data repository are
found at https://doi.org/10.5281/zenodo.7937484 (Lipp, 2023).
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