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Abstract. We present a deep-learning approach based on
the physics-informed neural networks (PINNs) for estimat-
ing thermal evolution of the crust during tectonic uplift with
a changing landscape. The approach approximates the tem-
perature field of the crust with a deep neural network, which
is trained by optimizing the heat advection–diffusion equa-
tion, assuming initial and boundary temperature conditions
that follow a prescribed topographic history. From the trained
neural network of temperature field and the prescribed veloc-
ity field, one can predict the temperature history of a given
rock particle that can be used to compute the cooling ages
of thermochronology. For the inverse problem, the forward
model can be combined with a global optimization algorithm
that minimizes the misfit between predicted and observed
thermochronological data, in order to constrain unknown pa-
rameters in the rock uplift history or boundary conditions.
We demonstrate the approach with solutions of one- and
three-dimensional forward and inverse models of the crustal
thermal evolution, which are consistent with results of the
finite-element method. As an example, the three-dimensional
model simulates the exhumation and post-orogenic topo-
graphic decay of the Dabie Shan, eastern China, whose post-
orogenic evolution has been constrained by previous ther-
mochronological data and models. This approach takes ad-
vantage of the computational power of machine learning al-
gorithms, offering a valuable alternative to existing analyti-
cal and numerical methods, with great adaptability to diverse
boundary conditions and easy integration with various opti-
mization schemes.

1 Introduction

Thermochronology has been used extensively in Earth sci-
ences for estimating ages and rates of geological and land-
scape evolution processes. To interpret the data, it must
be understood how the thermal structure of the crust has
changed over time and space. In the thermochronology com-
munity, analytical and numerical methods have advanced the
analysis and interpretation of data by providing quantitative
estimates of temperature fields, tectonic deformation, and
landscape changes under various scenarios (e.g., Stüwe et al.,
1994; Braun, 2003). However, these methods also involve
strict assumptions and limitations which hinder their applica-
tion to geological problems in a broader range of geological
and landscape settings. The analytical methods are computa-
tionally efficient but almost only applicable to problems with
constant uplift rates. They also require either the assumption
of a steady-state temperature field (Stüwe et al., 1994; Bran-
don et al., 1998) or additional temperature data to quantify
the transience of the field (Willett and Brandon, 2013). Nu-
merical methods have the advantage of simulating the tran-
sient state of the thermal evolution (Braun, 2003; Braun et al.,
2012), but implementing complex boundary conditions in
numerical models is a significant challenge. Solving inverse
problems with numerical models has a high computational
demand which increases exponentially with the dimension-
ality of the space of unknown parameters.

Recently, the deep-learning method of physics-informed
neural networks (PINNs) was proposed for solving partial
differential equations, and its application has been demon-
strated in many research fields including Earth sciences (e.g.,
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He and Tartakovsky, 2021; Rasht-Behesht et al., 2022). This
mesh-free method benefits from the increasing capabilities
of machine learning algorithms. Here we show that PINNs
can be used to solve the heat transfer equation in the crust
for given rock uplift and landscape histories. Using example
models, we show that PINNs can provide estimates of the
thermal models with good agreement with numerical solu-
tions while allowing more flexibility in the model configu-
ration. Moreover, PINNs also support the simultaneous op-
timization of the forward and inverse problems. Therefore,
these advantages of PINNs indicate the potential of PINNs
for solving problems with more intricate boundary condi-
tions. Our examples are implemented using the TensorFlow 2
library (Abadi et al., 2016) and global optimizers from the
SciPy library (Virtanen et al., 2020), but we expect that sim-
ilar results can be achieved using other machine learning li-
braries and optimization schemes.

2 From thermochronological ages to exhumation
rates: existing methods

In this section we provide a brief overview of the widely
used methods for interpretation of thermochronological data,
highlighting in particular how they deal with the subsurface
thermal field and its influence on the observed data.

2.1 Age–elevation relationship and thermal history
modelling

Some conventional methods interpret thermochronological
data without quantifying the thermal structure in the crust.
The age–elevation relationship (AER) is an approach in low-
temperature thermochronology for estimating the rock ex-
humation rates (e.g., Fitzgerald et al., 1995; Fitzgerald and
Malusà, 2019), using the apparent ages collected at different
elevations on a vertical profile. Although this method is based
on the concept of “closure temperature” (Dodson, 1973), it
only assumes that the timer, i.e., a thermochronometer, starts
at the same depth in the crust and does not require a calcu-
lation of the values of the closure temperature or its depth.
Therefore, as rocks of different elevations, from higher to
lower, should have passed the closure depth (i.e., depth of
the closure temperature isotherm) consecutively, a positive
correlation between the cooling ages and elevations of the
samples is expected. For a steady-state cooling history (Wil-
lett and Brandon, 2002), this should result in a linear rela-
tionship between apparent ages and sample elevations, with
a slope equal to the exhumation rate for the time span indi-
cated by the thermochronological ages. However, as a change
in the exhumation rate can perturb the isotherms, the AER
approach is unreliable when the cooling rate is not constant
or the thermal field is transient. In addition, application of
the method is often limited by the difficulty of sampling on
(near-)vertical profiles.

HeFTy (Ketcham, 2005) and QTQt (Gallagher, 2012) are
widely used programs for estimating thermal history mod-
els using thermochronological data. The forward modelling
functions in the programs can predict thermochronological
data for a given thermal history path which is defined by
a finite number of time–temperature points, based on sim-
ulating the noble gas production–diffusion or fission-track
production–annealing kinetics. The forward model is often
used together with a Monte Carlo sampling method to es-
timate the optimal thermal history that suits observed ther-
mochronological data. When the time–temperature paths of
multiple samples on a vertical profile are made available by
modelling, they can be used to infer changes in the geother-
mal gradient over time: assuming that the elevation offset
between samples on the profile has remained constant, the
optimal temperature offset history can be used to provide
constraints on the evolution of the paleo-geothermal gradi-
ent. Both QTQt and the recent version of HeFTy have the
function to simultaneously sample the time–temperature off-
set space for multiple samples on a vertical profile; therefore
the result will also yield an optimal history for the geothermal
gradient (e.g., Jiao et al., 2014; Jepson et al., 2022). This ap-
proach requires no assumption of a steady-state or monotonic
cooling history. However, neither of the two programs solves
the heat transfer equations nor explicitly models the physi-
cal mechanisms that cause these changes. Moreover, at any
time in the parameter space, the modelling procedure uses
linear interpolation to determine the temperatures of samples
according to their positions on the profile, which is not con-
sistent with the crustal thermal profile in the case of rapid
exhumation.

2.2 Calculating crustal temperatures

To ensure that the estimated exhumation rate is consistent
with the physics of heat transfer, the thermal structure of the
crust can be solved as a forward model using analytical meth-
ods or numerical models in one, two, or three dimensions.
For example, the finite-difference code Tc1D (Whipp, 2022)
computes the one-dimensional (1D) temperature model of
the crust for various initial and boundary conditions, and it
can be applied to predict thermochronological ages under dif-
ferent tectonic and geomorphic processes.

To elucidate the exhumation of the Olympic Mountains on
the Cascadia margin, Brandon et al. (1998) designed an ap-
proach to compute the apatite fission-track age for 1D steady-
state exhumation. For a given exhumation rate, the approach
uses an analytical approximation (Stüwe et al., 1994) of the
heat advection–diffusion equation to solve the thermal pro-
file of the crust, which is then used to find the exhumation
rate and the closure temperature (dependent on cooling rate;
Dodson, 1973) through a numerical iteration. By using dif-
ferent kinetic parameters for track annealing or noble gas
diffusion in the closure temperature equation, this approach
has been updated to estimate exhumation rates from various
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thermochronometers (Reiners et al., 2003; Van Der Beek and
Schildgen, 2023). To avoid the assumption of a steady-state
scenario, Willett and Brandon (2013) proposed an alterna-
tive approach to solve the thermal profile of the Earth over
a half-space domain, which requires constraints on the final
geothermal gradient to quantify the transience of the thermal
profile.

To solve the 1D heat transfer problem, the methods men-
tioned in the previous paragraph all assume a constant ex-
humation rate for the time period from the date indicated by
a thermochronometer’s cooling age to the present day. Fox
et al. (2014) developed a linear inversion method to infer the
variation in exhumation rates in time and space. To estimate
the temporal variation in rates, the method also uses a 1D
thermal model and the approximation of Dodson (1973) but
considers the closure depth as a summation of rates over a
finite number of time intervals. This discretization leads to
more unknown parameters (i.e., exhumation rates) than data
(i.e., cooling ages) and is thus an underdetermined problem.
Therefore, the solution of the problem through linear inver-
sion relies on some independent knowledge of the unknowns
(e.g., a priori mean exhumation rate and the variance on this
mean) to construct the covariance matrix of the exhumation
rates. In the covariance matrix, Fox et al. (2014) also intro-
duce a spatial correlation function in order to smooth the ex-
humation rates in space.

The 1D thermal models ignore the heat transport in hor-
izontal directions. To capture the perturbation of isotherms
by surface topography, instead of a sample’s true elevation,
the mean elevation filtered by the wavelength of topography
(Stüwe et al., 1994; Mancktelow and Grasemann, 1997) has
been used in the 1D models for solving the thermal pro-
file of the crust (Brandon et al., 1998; Willett and Bran-
don, 2013; Fox et al., 2014; Van Der Beek and Schildgen,
2023). Two-dimensional (2D) numerical modelling has also
been used to solve the temperature fields under undulating
topography during exhumation. Mancktelow and Grasemann
(1997) used a 2D finite-difference method to compute the
transient isotherms to assess the influence of topography and
rock uplift on estimated exhumation rates in active orogens.
To constrain the exhumation pattern and history of the central
Wasatch Mountains using thermochronological data, Ehlers
et al. (2003) coupled a 2D velocity field and a thermal model
to compute the temperature field evolution in the mountains;
the thermal model is solved using a finite-difference method.
To simulate the temperature field around hydrothermal sys-
tems, Luijendijk (2019) published a model to solve the sub-
surface heat flow in the 2D sections using the finite-element
method, which has been used to predict apatite fission-track
and (U-Th) /He data.

In the low-temperature thermochronology community,
simulation of the three-dimensional (3D) crustal thermal
field evolution has been mostly performed using Pecube
(Braun, 2003; Braun et al., 2012), a finite-element code writ-
ten in Fortran. This code solves the 3D heat transfer equation

in the crust under a prescribed velocity field and evolving
topography, and it uses the solution to compute temperature
histories of rocks and ages of various thermochronometers.
The program has restricted formats for defining boundary
conditions and integrating data and therefore is not straight-
forward to impose complex boundary conditions that are not
already implemented. For example, the code uses a sim-
plified kink-band model to compute the rock velocity field
driven by the displacement on a single fault or an array of
faults with the same strike; therefore it cannot simulate other
kinematic models without significant modifications. Pecube
can also operate in the inverse mode, which uses the neigh-
bourhood algorithm (Sambridge, 1999a, b), an optimization
method coded in C, to search for the best-fit values of param-
eters that specify the input tectonic or topographic scenarios.
However, the search relies on solutions of a large number of
forward problems and can thus be very demanding for com-
putational power for high-dimensional problems with a large
finite-element grid or many time steps.

3 Physics-informed neural networks

Neural networks perform complex and nonlinear data oper-
ations by mimicking the structure and function of biological
neurons. In deep learning, multiple neural layers are com-
bined as deep neural networks (DNNs) to decipher high-level
information from the raw data. In scientific machine learn-
ing, deep learning is incorporated with fundamental physi-
cal laws, aiming to develop reliable, scalable, and physics-
consistent machine learning models to facilitate new dis-
coveries from scientific data. Physics-informed neural net-
works (PINNs) were recently proposed to solve forward
and inverse problems involving partial differential equations
(PDEs) (Raissi et al., 2019). In the context of PINNs, a fully
connected neural network is generally employed to approxi-
mate the solution of the PDEs, e.g., the temperature, T (z, t),
by taking the spatial and temporal coordinates (z and t) as
the inputs. As demonstrated in Fig. 1, the neural network is
composed of multiple hidden layers with trainable param-
eters and nonlinear activation functions. The parameters in
the network can be learned using a loss function based on the
governing equations (i.e., PDEs) and the boundary and ini-
tial conditions of the PDEs. For inverse problems, we add a
misfit term representing the difference between the network
output and the observation. Two separate optimizers are used
for the loss function and data misfit. In the following sections
we will demonstrate the setup of the neural networks case by
case using numerical experiments.

A key procedure in PINNs is to compute the derivatives of
the PDEs. To address this issue, PINNs use automatic differ-
entiation (AD) to represent all differential operators that exist
in the PDEs. The AD calculates the derivatives of the outputs
with respect to the network inputs based on the chain rule,
which is different from numerical computations and avoids
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Figure 1. Workflow for forward and inverse modelling of the 1D thermal profile for thermochronology. fi and fb are functions for the initial
and boundary conditions of the model, respectively.

discretization and truncation errors. After training with the
loss function (and data misfit), the trained network can be
used to approximate the solution of PDEs at any location and
any time.

PINNs have been applied in various disciplines such as
fluid mechanics (Cai et al., 2021a; Raissi et al., 2020; Boster
et al., 2023) and have demonstrated great potential in solving
governing equations of physical laws in complex domains,
especially in solving inverse problems. They have also at-
tracted attention in the community of Earth sciences. For ex-
ample, Waheed et al. (2021) used PINNs to solve the eikonal
equation in 2D for predicting travel times of seismic waves in
isotropic and anisotropic media. He and Tartakovsky (2021)
used PINNs to solve the advection–dispersion and Darcy
flow equations in 1D and 2D fields with spatially varying hy-
draulic conductivity. Rasht-Behesht et al. (2022) used PINNs
to solve the acoustic wave propagation and full waveform in-
versions under different and complex boundary conditions.

4 One-dimensional thermal profile: a synthetic
model

4.1 Forward solution

4.1.1 Method and problem setup

In our first example, the 1D forward model describes the
thermal profile evolution of a 30 km thick crust from 0 to
100 Myr, with the surface and basal temperatures fixed at
0 and 600 °C, respectively. The model exhumation rate re-
mained constant at 0.05 km Myr−1 from 0 to about 60 Myr,
after which it increased to 0.6 km Myr−1. The rapid exhuma-
tion continued for about 20 million years, and around 80 Myr
the exhumation slowed down to 0.1 km Myr−1 and remained
at this rate for the rest of the model time (Fig. 2a).

The 1D heat advection–diffusion equation to solve is given
by

∂T

∂t
+ u

∂T

∂z
− κ

∂2T

∂z2 = 0, (1)

where T is the temperature ( °C), t is the model time (Myr),
u is the rock uplift rate (km Myr−1), κ is the thermal diffu-
sivity here set at 25 km2 Myr−1, and z is the vertical position
(km) relative to the model base (z= 0). In this model we as-
sume no topographic change over time, so u is equal to the
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Figure 2. Setup of the 1D thermal model of the crust. (a) Rock uplift function of the model. (b) Collocation (grey dots) and boundary
condition points (coloured cross) of the PINN model.

exhumation rate. We solve the model in the space defined by

t ∈ [0, 100] and z ∈ [0, 30], (2)

for which Dirichlet boundary conditions are imposed as

T (t,0)= 600 and T (t,30)= 0, (3)

with a linear gradient prescribed for the initial condition, i.e.,

T (0,z)= 600− 20z. (4)

We assume that u is time-dependent and impose its time de-
pendence in terms of logistic functions as

u(t)= u0+
u1− u0

1+ e−(t−t1)/1t +
u2− u1

1+ e−(t−t2)/1t , (5)

in which u0 = 0.05 km Myr−1, u1 = 0.6 km Myr−1, u2 =

0.1 km Myr−1, t1 = 60 Myr, t2 = 80 Myr, and 1t = 1 Myr.
1t is an inertia factor that imposes a time length for the tran-
sition between two rock uplift rates.

To solve the forward model, we approximate T as a deep
neural network (DNN) and such that T (t,z) can be learned
by minimizing the loss function

L= Lf +αLb, (6)

where Lf penalizes the residual of the governing equations
(i.e., PDEs) and Lb imposes the boundary conditions and ini-
tial conditions of the PDEs; α is a weighting parameter. In
our experiments presented in the paper, assigning α to 1 en-
sures effective optimization of the PINN models. Here the
initial condition is regarded as a special boundary condition.
Lf and Lb are computed by

Lf =
1
Nf

Nf∑
i=1
|f (t if ,z

i
f )|2, (7)

Lb =
1
Nb

Nb∑
i=1
|T ib − T (t ib,z

i
b)|2, (8)

in which f (t,z) is defined for the left-hand side of the heat
transfer equation (Eq. 1), {t if ,z

i
f }
Nf
i depicts the Nf collo-

cation points for f (t,z), and {t ib,z
i
b}
Nb
i depicts the Nb initial

and boundary training data on T (t,z).

In our demonstration, we use the TensorFlow 2 library
(Abadi et al., 2016) to build the DNN, which includes three
hidden layers with 20 neurons in each layer and an additional
transform layer to impose the boundary conditions as hard
constraints (Lagaris et al., 1998; Lu et al., 2021). The hyper-
bolic tangent function (tanh) is used as the activation func-
tion, and the Adam optimizer (Kingma and Ba, 2015) is used
for minimizing the loss function (Eq. 6). The model is set
up with 2000 randomly sampled collocation points. Another
500 points are used to impose the initial and boundary condi-
tions, including 100, 200, and 200 points for the initial ther-
mal structure, the surface temperature, and the basal temper-
ature, respectively (Fig. 2b). For the solution presented here,
the DNN is optimized through 50 000 iterations. The initial
learning rate is set at 0.001, which decays at a factor of 0.9
for every 1000 steps; i.e., at the ith step the learning rate is
0.001× 0.9i/1000.

As a comparison, we also solve the same problem using
the finite-element method (FEM), which provides estimates
of the heat transfer equations by discretizing the time–space
domain using 101 points on the crustal profile and a time
step of 1 Myr. To compare the final solutions of the PINN
and FEM, we compute the square and infinity norms of the
misfits between the predictions of the two methods as

l2 =

√√√√ n∑
i=1

(T ipinn− T
i

fem)2 and (9)

l∞ =
n

max
i=1

(|T ipinn− T
i

fem|), (10)

in which T ipinn and T ifem are the temperatures predicted by the
PINN and FEM at locations of each element used in FEM
and n is the total number of elements. Based on the temper-
ature histories estimated, we also predict the thermochrono-
logical ages of the present-day surface rocks using an em-
pirical model of the fission-track annealing (Ketcham et al.,
2007) and the noble gas diffusion kinetics (summarized by
Reiners and Brandon, 2006) solved by a finite-difference
method (Braun et al., 2006). Then the percent errors in ages
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Figure 3. Loss curves of the 1D forward model. Lf and Lb are
losses from the heat transfer equation and the boundary conditions,
respectively, whereas L is the total loss.

between the predictions are calculated as

δ =

∣∣∣∣apinn− afem

afem

∣∣∣∣× 100%, (11)

in which apinn and afem are ages calculated by the thermal
histories estimated using the PINN and FEM, respectively.

4.1.2 Results

In the first 3000 iterations, the model loss L has decreased
rapidly from > 10 000 to < 10 (Fig. 3). After that, the Lb
experiences some fluctuations, but L continues to decrease
smoothly and becomes more stable after 30 000 iterations.
Figure 4 shows the thermal profiles at different model times
predicted by the PINN at various stages of the training,
in comparison to the FEM solutions. Between the final
PINN and the FEM solutions at model times of 40, 70, and
100 Myr, the l2 calculated for 101 elements is 3.8, 51.0, and
30.0 °C, respectively, and the l∞ is 0.6, 11.4, and 3.5 °C,
respectively, indicating reasonable consistency between the
two methods (Fig. 4). For the rock at the present-day surface,
the PINN also predicts a time–temperature path very consis-
tent with the FEM result (Fig. 5a), with a temperature differ-
ence < 20 °C for any point on the path and < 10 °C for the
most part of the history (Fig. 5b). For the same rock, the pre-
dicted difference in cooling ages between the two modelling
methods is < 7 % for apatite (U-Th)/He and apatite fission-
track and < 3 % for other thermochronometers (Fig. 5d).

4.2 Inverse problem

4.2.1 Method and model setup

We transform the forward model to an inverse problem by
considering u0, u1, u2, t1, and t2 in the rock uplift function
(Eq. 5) as unknown parameters. All other parameters defin-
ing the thermal model remain the same as in the forward
problem (Sect. 4.1). Implementation of the DNN follows a
similar setup to that of a forward model, except that the five
unknown parameters are updated and optimized during the
iterations by reducing the misfit between predicted and ob-
served ages. The age misfit function is defined by

φ =
1
Na

Na∑
i=1

(
aip− a

i
o

σ io

)2

, (12)

where aip is the predicted age, aio is the observed age, σ io is
the uncertainty on the observation, and Na is the total num-
ber of observed ages. For the problem demonstrated here,
synthetic age data predicted from the temperature history
computed using the FEM (Fig. 5) are used as data, and a
10 % uncertainty (standard deviation) is assumed for each
data point. For calculation of the synthetic observed data,
0.05 km Myr−1, 0.6 km Myr−1, 0.1 km Myr−1, 60 Myr, and
80 Myr are used as “true” values of u0, u1, u2, t1, and t2 in
the rock uplift function (Eq. 5), respectively.

The Adam algorithm is used to fit {t if ,z
i
f }
Nf
i for loss func-

tions derived from the physical law and boundary conditions.
To circumvent local minima, the search for optimal values
of the unknown parameters in the rock uplift function is
conducted using a modified Lipschitzian approach, DIRECT
(Jones et al., 1993; Jones and Martins, 2021), which is a
global, derivative-free optimization algorithm implemented
in the SciPy library (Virtanen et al., 2020). DIRECT operates
by progressively partitioning the search space into smaller
hyperrectangles and evaluating the objective function at the
centre of each. In the subsequent iteration, hyperrectangles
with optimal solutions are selected and subdivided for fur-
ther evaluation. This process is repeated to locate the global
minimum in the search space.

The configuration of the DIRECT algorithm requires ad-
justing a single parameter, ε, which defines the minimal ac-
ceptable improvement in the function value from the current
best solution to the next potentially optimal hyperrectangle
for division. A larger ε guides the search to explore a broader
domain, whereas a smaller ε directs a more local exploita-
tion. To optimize the memory usage in our application, we
use a strategy in which, after a certain number of iterations,
if a parameter value of the optimal solution has no signifi-
cant change (less than 5 % within the search domain), the DI-
RECT search recommences within a narrowed search space,
reducing the domain for this parameter by 10 %.

More specifically, we define the initial search space for
the parameters u0, u1, u2, t1, and t2 within ranges of 0–
2 km Myr−1, 0–2 km Myr−1, 0–2 km Myr−1, 0–100 Myr, and
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Figure 4. Predicted thermal profiles of the crust at different model times. Coloured lines depict the PINN solutions after 2000, 10 000,
20 000, and 50 000 training iterations of training, respectively. The dashed line indicates the solution using the FEM solution.

0–100 Myr, respectively. We start the Adam optimization of
the DNN model by assigning the midpoint values of the
search space to the unknown parameters. After nadam itera-
tions, we use the refined DNN model to explore the space
of unknown parameters using the DIRECT approach over
ndirect iterations. This process is repeated for multiple cycles
to optimize the DNN model and seek the optimum parame-
ter values. In the presented example, the initial nadam is set
to 100 and increased by 50 % for each DIRECT cycle, up to
a ceiling of 10 000. The learning rate for Adam follows the
same schedule used for the forward model; i.e., at the ith it-
eration the learning rate is 0.001× 0.9i/1000. For each cycle,
ε is maintained at 0.1, and the maximum number of DIRECT
iterations, ndirect, is limited to 30 with the maximum number
of function evaluated fixed at 1000. Cumulatively, the opti-
mization encompasses > 55 000 Adam iterations and > 290
DIRECT iterations, based on > 15 000 age misfit function
evaluations.

We also address the inverse problem using a Markov chain
Monte Carlo (MCMC) approach. In the MCMC sampling
process, the space of unknown parameters is searched itera-
tively, and at each iteration the parameter values with higher
likelihood are accepted to the Markov chain. After sampling,
the chain is used to estimate the probability distribution of
the parameters. To evaluate the parameter values, the for-
ward thermal model is simulated with the FEM based on
101 elements on the profile and a time step of 1 Myr. The log-
likelihood of a forward model is calculated by comparing the

predicted thermochronological ages with the observation, as

log(L)=−
Na∑
i=1

 ln(2π )
2
+ ln(σ io)+ 0.5

(
aip− a

i
o

σ io

)2
 . (13)

In our analysis, the space of five unknown parameters is ex-
plored by an affine invariant ensemble sampler (Goodman
and Weare, 2010) within predefined domains. The search is
conducted by 20 walkers, with each starting from a random
location in the parameter space and moving for 50 000 steps.
Ultimately, the generated chain comprises 1 000 000 combi-
nations of parameter values from the search space.

4.2.2 Results

The optimization performance is shown as the evolution
of the loss from the physical law and boundary conditions
(Fig. 6a), as well as misfits between the predicted and ob-
served thermochronological data (Fig. 6b). The loss func-
tion curve, despite minor fluctuations between DIRECT cy-
cles (Fig. 6a), shows a reduction pattern similar to that of the
forward model (Fig. 3). Figure 7 shows the sampled values
used to evaluate the age misfit function. During the DIRECT
search, the minimum age misfits decrease progressively un-
til around 200 DIRECT iterations (Fig. 6b), after which the
age misfits and parameter values of the optimal solution sta-
bilize (Fig. 7). Finally, the searches of all five parameters are
narrowed to ranges centred around the “true” values, except a
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Figure 5. Comparison of the thermal histories and ages computed
from the PINN and FEM solutions of the forward model. (a) Pre-
dicted time–temperature paths and cooling ages for rock sample
ended at the surface. Coloured lines represent the PINN predictions
after 2000, 10 000, 20 000, and 50 000 iterations, respectively. The
dashed line indicates the FEM solution. (b) Temperature discrep-
ancy between the PINN and the FEM solutions. Line colour depicts
the iteration numbers performed by the PINN, as shown in the leg-
end of panel (a). (c) Thermochronological ages computed from the
thermal models solved by the PINN and FEM. (d) Percent error
between the ages predicted by the PINN and FEM. AHe represents
apatite (U-Th) /He, AFT represents apatite fission track, ZHe repre-
sents zircon (U-Th) /He, KsAr represents K-feldspar 40Ar / 39Ar,
BiAr represents biotite 40Ar / 39Ar, and MuAr represents mus-
covite 40Ar / 39Ar.

Figure 6. Optimization process of the 1D inverse model. (a) Loss
function curve of the optimization. (b) Age misfits evaluated by the
DIRECT search.

relatively larger uncertainty on the estimated rate of the rapid
uplift, u1.

The MCMC sampling coupled with the FEM model has
also identified optimal values for the unknown parameters.
Among the 20 walkers deployed, 3 failed to reach equilib-
rium at the end of the sampling, whereas the remaining walk-
ers achieved stationary states after around 17 000 iterations
(Fig. 8). Similar to the result of the DIRECT search, a large
uncertainty exists for the estimate of u1 (Fig. 8b).

Figure 9 presents predictions of the optimized PINN
model and the “best-fit” FEM model, the model with the
maximum likelihood from the MCMC chain. For both mod-
els, the predicted cooling paths of the rock at the current sur-
face align closely with the “true” thermal history (Fig. 9a).
The temperature discrepancy at any given time between the
PINN solution and the “true” thermal history is < 17 °C and
typically < 8 °C (Fig. 9b), whereas that between the “best-
fit” FEM model and the “true” thermal history is < 25 °C.
Moreover, the optimized PINN and “best-fit” FEM mod-
els predict similar thermochronological ages for the surface
sample, both consistent with the data computed from the syn-
thetic “true” history (Fig. 9c), with the maximum difference
at 5.3 % and 3.7 %, respectively (Fig. 9d).

5 Three-dimensional temperature field:
post-orogenic decay of the Dabie Shan

In this section, we use an example from the Dabie Shan
(Fig. 10) to demonstrate the application of PINNs for solving
the 3D temperature field under changing topography. Com-
pared to the 1D model, the 3D model requires configura-
tion of more complex boundary conditions and is computa-
tionally more intensive. The Dabie Shan in eastern China is
a Mesozoic mountain range that underwent rapid exhuma-
tion during the Triassic–Jurassic orogeny along the bound-
ary between the North and South China blocks (Nie et al.,
1994; Hacker et al., 1995; Ratschbacher et al., 2006). Based
on apatite and zircon (U-Th) /He and apatite fission-track
ages, Reiners et al. (2003) suggested that since the Late Cre-
taceous, the post-orogenic exhumation of the Dabie Shan
has been slow and could be constant at a rate of 0.01–
0.06 km Myr−1. By investigating the same dataset using nu-
merical methods, Braun and Robert (2005) estimated the
post-orogenic exhumation and topographic evolution of the
Dabie Shan and inferred that, since the Late Cretaceous, the
mountain range has been exhumed at a mean rate of 0.01–
0.04 km Myr−1 and that its topographic relief has reduced by
a factor of 2.5–4.5 during the last 60–80 million years. There-
fore, thermochronological data provide good constraints on
the post-orogenic exhumation of the Dabie Shan, which can
be simulated by a simple model with constant exhumation
rates, making the mountain range an ideal natural labora-
tory for testing new thermochronological modelling methods
(e.g., Fox et al., 2014).

5.1 Forward solution

5.1.1 Method and model setup

Assuming that the rock motion is in the vertical direction, the
3D heat transfer equation is given by

∂T

∂t
+ u

∂T

∂z
− κ

(∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2

)
= 0, (14)
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Figure 7. Parameter values sampled by the DIRECT method coupled with the PINN model for the 1D inverse model. Dots are colour-coded
according to evaluated function value (age misfit). Dashed horizontal lines indicate the “true” parameter values.

Figure 8. Parameter values sampled by the MCMC method coupled with the FEM model for the 1D inverse model. Dots are colour-coded
according to the log-likelihood of the forward models. Dashed horizontal lines indicate the “true” parameter values.

where x, y, and z are spatial coordinates and other parame-
ters are the same as in Eq. 1. We focus on the last phase of the
Mesozoic orogeny and the post-orogenic exhumation history
of the mountain and therefore solve its thermal history since
150 Ma. The model space is defined as

t ∈ [0, 150], x ∈ [0, 159], y ∈ [0, 199],

and z ∈ [0, 36.5], (15)

in which the range of the z domain is configured to include
a crustal thickness (hc = 30 km) below sea level and the po-
tential maximum elevation of the mountain range during the
model run (hs). The temperature at the base of the model is
fixed at 600 °C. The Earth surface temperature is set to 15 °C
at sea level and calibrated according to the elevation using an

atmospheric lapse rate at−5 °C km−1. Therefore, the bound-
ary conditions are imposed as

T (t,x,y,0)= 600 and

T (t,x,y,zs(t,x,y))= 15− 5hs(t,x,y), (16)

in which zs and hs are the vertical coordinate and surface
elevation, respectively, with a relationship

zs = hs+ 30. (17)

To simulate the surface relief change, we follow Braun and
Robert (2005) and define a scenario in which between 0 to
70 Myr (equivalent to geological time 150 and 80 Ma) the
surface relief was 4 times as high as that of today, and after
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Figure 9. Thermal histories and ages predicted by the optimized
PINN model and the “best-fit” FEM model from the MCMC sam-
pling chain. (a) Predicted time–temperature paths and cooling ages
for a surface rock sample at the end of the model history. (b) Tem-
perature discrepancy between the predicted time–temperature paths
and the “true” model. (c) Thermochronological ages calculated
from the PINN solution and the “best-fit” FEM model, compared
to the synthetic data from the “true” thermal history. (d) Percent
error between the predicted ages and synthetic data.

that the topography has gradually decreased in a linear fash-
ion towards the current level. The topography is imposed as

hs(t,x,y)= w(t)hs(0,x,y), (18)

in which w is a time-dependent amplification factor for to-
pography (Fig. 11b), prescribed by

w(t)=

w0, t ∈ [0, td]

1+ (w0− 1)
150− t
150− td

, t ∈ (td, 150],
(19)

where w0, set at 4, is the amplification of topography at the
beginning of model (t = 0) and td, set at 70 Myr, is the model
time when the post-orogenic decay of the topography starts.
The present-day topography (hs(0,x,y)) is extracted from
the global elevation model (GEBCO 2014) and resampled
to a 2 km resolution.

The initial thermal field is imposed using a linear inter-
polation of temperatures between the model base and earth
surface, i.e.,

T (0,x,y,z)= T (0,x,y,0)

−
T (0,x,y,0)− T (0,x,y,zs(0,x,y))

zs(0,x,y)
z. (20)

Based on conclusions of Reiners et al. (2003) and Braun and
Robert (2005), we assume a spatially uniform rock uplift

model and define it using a piecewise function (Fig. 11a),

u(t)=

{
u0, t ∈ [0, t1]

u1, t ∈ (t1, 150],
(21)

where u0 = 0.6 km Myr−1, u1 = 0.05 km Myr−1, and t1 =

40 Myr. Therefore, the rock uplift remained constant at
0.6 km Myr−1 between 0 and 40 Myr, and then the rate de-
creased to 0.05 km Myr−1 and remained constant until the
end of model.

Similarly to the solution of the 1D model, we approximate
T as a DNN and train it using the same loss function (Eq. 6).
The loss functions from 3D heat transfer law and boundary
(and initial) conditions become

Lf =
1
Nf

Nf∑
i=1
|f (t if ,x

i
f ,y

i
f ,z

i
f )|2, (22)

Lb =
1
Nb

Nb∑
i=1
|T ib − T (t ib,x

i
b,y

i
b,z

i
b)|2, (23)

in which f (t,x,y,z) stands for the left-hand side of the 3D
heat transfer equation (Eq. 14).

The DNN used for the 3D model comprises 16 hidden lay-
ers, each with 20 neurons, and an additional layer to trans-
form the outputs. The tanh activation function and Adam
optimizer are employed, similarly to those used for the 1D
model. An exponential decay function, 0.001× 0.9i/10000,
is used to define the learning rate. We selected 2000 random
points to define the initial thermal field (Fig. 12a), and we
used 2000 and 10 000 points to impose the temperatures at
the model base and on the surface topography, respectively
(Fig. 12b). We configured the model with 100 000 colloca-
tion points (Fig. 12c), half of which are allocated randomly
within the orogenic phase (t ∈ [0, 40]) and the remainder
during the post-orogenic phase (t ∈ (40, 150]).

To evaluate the accuracy of the solution of the PINN, we
also computed the thermal field evolution of the Dabie Shan
using the FEM code, Pecube (Braun, 2003). The FEM model
is set up on a 120×120×31 (x×y×z) grid, with the thermal
field solved at a time step of 1 Myr. The rock uplift history
and boundary conditions are identical to those in the PINN
model.

5.1.2 Results

Figure 13 shows the loss curves through the optimization
process, which present a progressive decrease until stabi-
lization after approximately 300 000 iterations. Figure 14
presents the temperature profiles on three transects across the
model at 40 and 150 Myr computed by the PINN, which re-
veal significant perturbations of the crustal thermal structures
caused by the rock uplift and surface topography, resembling
the patterns of the FEM solution. At 40 Myr, at the major-
ity of locations (90 %), the temperature differences predicted
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Figure 10. (a) Location of the Dabie Shan, eastern China. (b) Topography of the Dabie Shan and locations of thermochronological data.

Figure 11. Inputs of the 3D thermal evolution model of the Dabie
Shan. (a) Rock uplift model. (b) Topographic amplification model.

by the PINN and FEM are < 10 °C. On these transects, the
l2 and l∞ of the temperature discrepancies between the so-
lutions of the two methods are 240–426 and 26–35 °C, re-
spectively; these values are calculated from the solutions at
the 3131 element locations used in the FEM (Fig. 15). At
150 Myr when the rock uplift rate has decreased and the topo-
graphic relief is lower, the discrepancies between the PINN
and FEM solutions are significantly reduced, with the l2 and
l∞ decreasing to 70–112 and 8–10 °C, respectively.

Figure 16 shows the misfits in the AHe and AFT ages for
the present-day surface rocks at 42 000 locations, which are
calculated from their thermal histories predicted by the PINN
and FEM. For both thermochronometers, the predicted age
misfits at all locations are < 20 %. At most locations (90 %),
the misfits between AHe ages predicted by the two methods
are < 6 %, and those between AFT ages are < 10 %. Com-
pared to AHe ages, the higher misfits in predicted AFT ages
reflect larger discrepancies in the temperature solutions be-
tween the PINN and FEM for the periods of high rock uplift
rate and significant topographic relief (Fig. 15). At the sites
with observed data, the misfits in predicted AHe, AFT, and
ZHe ages between the PINN and FEM solutions are < 13 %,
< 15 %, and < 2 %, respectively, which generally fall within

the error margins or clustering ranges of the measured data
(Fig. 17).

5.2 Inverse problem

5.2.1 Model setup

To test the effectiveness of PINNs in constraining the ex-
humation models using real data, we formulate an inverse
problem, aiming to estimate the post-orogenic uplift and to-
pographic evolution of the Dabie Shan using published low-
temperature thermochronological ages. In our analysis, we
seek to constrain the orogenic rock uplift rate (u0), the end-
ing time of the rapid uplift (t1), and the rock uplift rate dur-
ing the post-orogenic period (u1), as described in Eq. (21).
In addition, we estimate the amplification factor for the to-
pography during the orogenic phase (w0) and the onset time
for topographic decay (td) as described in Eq. (19). We con-
fine the search for these five parameters, u0, u1, w0, t1, and
td, within the ranges of 0–1 km Myr−1, 0–1 km Myr−1, 0–6,
0–50 Myr, and 50–100 Myr, respectively. To guide the opti-
mization process, thermochronological age data reported by
Reiners et al. (2003) (Fig. 10b) are used, considering only the
ages < 150 Ma.

Similarly to the 1D model inversion, we use both the
Adam and DIRECT algorithms to optimize the DNN model
and explore the search space. For the Adam iterations, we set
the learning rate using the same exponential decay function
applied in the forward 3D model. In the DIRECT search, we
use the “restart-and-zoom-in” strategy akin to that employed
in the forward 3D model but increase the number of cycles
to 40. Each DIRECT cycle includes up to 30 iterations and a
maximum of 1000 function evaluations. Altogether, the in-
version process comprises > 500 000 Adam iterations and
> 1000 DIRECT iterations, evaluating > 40 000 age misfit
functions.
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Figure 12. The initial and boundary conditions and collocation points for the 3D thermal model of the Dabie Shan. Control points are
projected onto the {x,y,z} space. (a) The initial thermal field. (b) Boundary temperatures at the surface and base of the model. (c) Collocation
points.

Figure 13. Loss curves for the 3D forward model.

As a reference, we also explore the multi-dimensional
parameter space using the neighbourhood algorithm (NA)
(Sambridge, 1999a), in which the forward model is com-
puted using Pecube (Braun, 2003). It is worth noting that,
compared to the modelling employed by Braun and Robert
(2005) in the same region, we do not consider the isostatic re-
bound in response to the exhumation; thus the result may dif-
fer slightly. To reduce the computational demands compared
to the model used in the forward problem (Sect. 5.1), we re-
duce the FEM grid size to 80×80×31 by increasing the hori-
zontal spacing between elements. The NA divides the param-
eter space into Voronoi cells and evaluates the model misfit
according to the parameter values at the cell centres. The sub-
sequent iteration generates new samples within a subset of
cells containing the best-fit models from the previous itera-
tion. This process is repeated to find the optimal parameter
values that fit the observed data. Here the NA search for pa-
rameters u0, u1,w0, t1, and td are within the same domains as
predefined for the inversion of the PINN model. The search
comprises 150 iterations with each running forward models
in 60 cells, out of which the 75 % best cells are resampled for
the next iteration. In total, the NA inversion includes 9060
forward Pecube runs.

5.2.2 Results

The training process of the PINN is shown in Fig. 18 as
the evolution of the thermal model loss and the misfits in
predicted ages. The parameter values evaluated by the DI-
RECT search are shown in Fig. 19. Notably, the loss func-
tion curve displays more fluctuation compared to the for-
ward model, but it maintains a general decreasing trend. This
fluctuation reduces as the learning rate decreases (Fig. 18a).
Upon the stabilization of the loss function after approxi-
mately 200 000 Adam and 500 DIRECT iterations, the pre-
dicted minimum age misfits have a declining pattern for
around 250 DIRECT iterations and show minimal changes
thereafter (Fig. 18b). During the parameter search, conver-
gence mostly occurs within the initial 100 and then from 500
to 1000 DIRECT iterations (Fig. 19). Finally, estimates for
the parameters u0, u1, w0 , t1, and td are confined to the
ranges of 0.7–0.95 km Myr−1, 0–0.18 km Myr−1, 2–5.5, 21–
45 Myr, and 74–91 Myr, respectively.

The NA search based on forward Pecube models exhibits
patterns comparable to those observed in the optimization
of the PINN model. Specifically, the search for u0 also con-
verges rapidly to a range of 0–0.1 km Myr−1, while the other
four sampled parameters show significant convergence only
after approximately 80 iterations. In the NA search the pa-
rameters u0, u1, w0, t1, and td are ultimately confined within
the ranges of 0.8–1 km Myr−1, 0.01–0.13 km Myr−1, 4.1–
5.1, 33–44 Myr, and 88–97 Myr, respectively (Fig. 20). Ex-
cept for the parameter w0 being confined to a narrower range
by the NA, the search results by the two inverse models over-
lap over significant ranges.

6 Discussion

6.1 Comparison between the PINN and numerical
method

We have demonstrated that, in the study of thermochronol-
ogy, PINNs are comparably as effective as conventional nu-
merical methods. In both the 1D and 3D forward models we
presented, the mean temperature difference across all points
at any given time between the PINN and FEM solutions is
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Figure 14. Predicted isotherms on three transects across the Dabie Shan at model times of 40 and 150 Myr. Solutions using the PINN and
FEM are compared. Locations of the transects are shown in Fig. 16.

< 0.5 °C, with the maximum difference at specific points
ranging between 10 and 30 °C, which appear to occur dur-
ing periods of rapid rock uplift and exhumation (Figs. 5b
and 15). This level of discrepancy is minor compared to the
typical uncertainties in thermal histories derived from ther-
mochronological data. For 90 % of the surface samples in
our examples, temperature discrepancies between the PINN
and FEM solutions resulted in< 10 % misfits in the predicted
ages. Larger misfits up to 20 % were found in cooling ages
of samples that record rapid rock exhumation in areas with
high topographic relief (Figs. 10b and 17b). These misfits in
age estimates are at comparable magnitude to inherent uncer-
tainties in measured age data, and they can be less significant
than the data dispersion caused by the variability in the ki-
netics of noble gas diffusion or fission-track annealing.

For simple forward models, conventional numerical meth-
ods do not require optimization, thus having an advantage

in the computational efficiency over PINNs. For instance,
solving the 1D forward model in Sect. 4.1 using the FEM
required a few milliseconds on a modern CPU (Intel Xeon
Gold 5420+), whereas training the PINN model with 80 neu-
rons for 50 000 iterations on a GPU (NVIDIA RTX 6000
Ada) took several hundred seconds, which is 5 orders of
magnitude longer than the time required for the FEM solu-
tion. This contrast diminishes as the model’s dimensionality,
size, and complexity increase. To illustrate this, simulating
the 3D forward model of the Dabie Shan in Sect. 5.1 on a
120× 120× 31 grid over 150 time steps took approximately
2400 s using Pecube, whereas training the PINN with 320
neurons over 400 000 iterations required around 32 000 s,
merely 1 order of magnitude longer than the FEM solution.

For inverse problems, the computational time escalates as
the parameter space expands, which necessitates the evalua-
tion of a larger number of numerical models. In Sect. 4.2, the
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Figure 15. Discrepancies in temperature solutions between the PINN and FEM on three transects across the Dabie Shan at model times of
40 and 150 Myr. Locations of the transects are shown in Fig. 16.

MCMC sampling which required the evaluation of 1 000 000
FEM models consumed approximately 8000 s. This duration
represents an increase by 6 orders of magnitude from a sin-
gle forward solution. In contrast, the inverse analysis using
DIRECT and the PINN model, which evaluated over 15 000
age misfit functions, was completed within 7000 s, mark-
ing an increase in time by only 1 order of magnitude from
the PINN forward model solution. For the 3D Dabie Shan
model (Sect. 5.2), the NA inversion, using 30 CPU cores and
coupled with a Pecube model on an 80× 80× 31 grid, re-
quired approximately 300 000 s of clock time to explore the
search space and evaluate 9060 misfit functions. The cumu-
lative computation time across all processors amounted to
∼ 9 000 000 s, which is 4 orders of magnitude greater than
the time used for solving a single forward model. Conversely,

the DIRECT search and the PINN model optimization evalu-
ated 38 130 age misfit functions within 560 000 s, which is in-
creased by 1 order of magnitude from the 3D forward model.

Although the computational performance metrics pre-
sented herein are not derived from rigorous benchmarks, they
provide a preliminary comparison of the efficiency of PINNs
and traditional numerical methods. It is evident that, for in-
verse problems, PINNs have an advantage due to their seam-
less integration of parameter search and forward model op-
timization within one single training process. This integra-
tion prevents PINNs from an exponential increase in com-
putational time as the dimensionality of the inverse problem
increases, illustrating the method’s potential for inverse anal-
ysis of expansive models with complex boundary conditions,
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Figure 16. Maps of the Dabie Shan showing the predicted age misfits between the PINN and FEM solutions. A–A′, B–B′, and C–C′ indicate
locations of the transects in Fig. 14.

Figure 17. Predicted and observed thermochronological ages versus sample elevations.

Figure 18. Optimization process of the 3D inverse model of the
Dabie Shan. (a) Loss function curve of the optimization. (b) Age
misfits evaluated by the DIRECT search.

which can be unattainable with traditional numerical meth-
ods.

6.2 Directions for future development

In our applications, we have modelled the rock uplift as a
vector in the vertical direction independent of spatial loca-
tions. However, thermo-tectonic research often requires us to
consider rock uplift and exhumation rates that vary both tem-
porally and spatially. Previous work (e.g., Cai et al., 2021b)
has demonstrated the feasibility of incorporating a compre-
hensive 3D velocity field in the DNN. However, the effec-
tiveness of PINNs in scenarios with abrupt changes in the ve-
locity field requires further exploration or improvement (e.g.,
Rasht-Behesht et al., 2022). This capability is vital for study-
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Figure 19. Evaluated parameter values for the 3D inverse model of the Dabie Shan using the DIRECT algorithm (Jones et al., 1993) and the
PINN model.

Figure 20. Evaluated parameter values for the 3D inverse model of the Dabie Shan using the neighbourhood algorithm (Sambridge, 1999a)
coupled with the Pecube model.

ing tectonically active regions, where fault activities can sig-
nificantly disrupt exhumation and geothermal patterns, and
thus will be a focus of our future development of the method.

Our current approach to the inverse problem yields an op-
timized solution of the heat transfer model. Although the
search process results in a collection of sampled parame-
ter values, they are not appraised to quantify the uncertain-
ties associated with the optimized model. To address this,
a Bayesian neural network can be employed in the PINN
framework. This way, the parameters in the neural network
would follow Gaussian distributions in contrast to the de-
terministic parameters of a traditional fully connected net-
work (Yang et al., 2021). This modification would allow the

Bayesian PINNs to accommodate noisy data and provide un-
certainty estimates for the inferred parameters in the PDEs.

We have outlined the basic configurations for optimizing
PINNs and their integration with the DIRECT search algo-
rithm for inverse analysis. However, we expect that model
domains of greater complexity, which require a denser array
of collocation points, may need more fine-tuning of the train-
ing strategies. Enhancing the algorithm and its configuration
for the efficient optimization of PINNs is an active field of
research (Jagtap et al., 2020; Shukla et al., 2021). For the
inverse analysis, the flexibility in problem formulation with
PINNs facilitates the incorporation of various search and op-
timization algorithms. Our ongoing efforts include integrat-

Geochronology, 6, 227–245, 2024 https://doi.org/10.5194/gchron-6-227-2024



R. Jiao et al.: PINNs for thermochronology 243

ing and testing these algorithms, to ensure stable training out-
comes from PINNs.

7 Conclusions

We have presented applications of physics-informed neu-
ral networks (PINNs) in solving crustal heat transfer prob-
lems for thermochronology. By harnessing the computational
power of deep learning, PINNs offer a flexible and efficient
alternative to traditional analytical and numerical techniques.
The method allows a straightforward integration of initial
and boundary conditions, as well as observed data, and can
be used together with gradient-based and derivative-free op-
timization methods to solve both forward and inverse prob-
lems. By applying PINNs to a 1D synthetic model and a 3D
natural model of the Dabie Shan under varying tectonic and
topographic conditions, we have demonstrated the potential
of this approach for estimating the thermal and exhumation
histories of the crust during tectonic and landscape evolution.
Future work will focus on improving the optimization strate-
gies for inverse models, quantifying the model uncertainties,
and expanding the application of PINNs to more intricate ge-
omorphic, geologic, and geodynamic scenarios.
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