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Abstract. In situ cosmogenic 14C (in situ 14C) in quartz pro-
vides a recently developed tool to date exposure of bedrock
surfaces of up to ∼ 25 000 years. From outcrops located in
east-central Sweden, we tested the accuracy of in situ 14C
dating against (i) a relative sea level (RSL) curve constructed
from radiocarbon dating of organic material in isolation
basins and (ii) the timing of local deglaciation constructed
from a clay varve chronology complemented with traditional
radiocarbon dating. Five samples of granitoid bedrock were
taken along an elevation transect extending southwestwards
from the coast of the Baltic Sea near Forsmark. Because these
samples derive from bedrock outcrops positioned below the
highest postglacial shoreline, they target the timing of pro-
gressive landscape emergence above sea level. In contrast, in
situ 14C concentrations in an additional five samples taken
from granitoid outcrops above the highest postglacial shore-
line, located 100 km west of Forsmark, should reflect local
deglaciation ages. The 10 in situ 14C measurements pro-
vide robust age constraints that, within uncertainties, com-
pare favourably with the RSL curve and the local deglacia-
tion chronology. These data demonstrate the utility of in situ
14C to accurately date ice sheet deglaciation, and durations

of postglacial exposure, in regions where cosmogenic 10Be
and 26Al routinely return complex exposure results.

1 Introduction

The pacing of the retreat of ice sheets in North America
and Eurasia, since their maximum expansion during the last
glaciation, remains an active research field (e.g. Hughes et
al., 2016; Stroeven et al., 2016; Patton et al., 2017; Dalton et
al., 2020, 2023). Understanding the triggers and processes
causing the demise of these ephemeral ice sheets yields
the best blueprint for understanding the future behaviour
of the Greenland and Antarctic ice sheets in a warming
climate. Coupling the behaviour of deglaciating ice sheets
over the course of the Late Glacial and Early Holocene to
increasingly precise climate reconstructions, including cli-
matic events, requires increased precision in ice sheet recon-
structions (e.g. Bradwell et al., 2021). Precision can be en-
hanced through coupling geomorphological mappings of ice
sheet margins (such as moraines, grounding zone wedges,
lateral meltwater channels, and ice-dammed lake shorelines
and spillways) with numerical field constraints from a diverse
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array of dating techniques (e.g. Stroeven et al., 2016; Brad-
well et al., 2021; Regnéll et al., 2023).

Ice sheet reconstructions, especially in North America,
have become highly detailed through radiocarbon dating
(Dyke et al., 2002; Dalton et al., 2020). With the advance
of offshore imaging of glacial geomorphology (Greenwood
et al., 2017, 2021; Bradwell et al., 2021), radiocarbon dating
has received a renewed upswing in recent years (e.g. Dal-
ton et al., 2020; Bradwell et al., 2021). However, large land-
scape areas lack radiocarbon age constraints on ice sheet re-
treat because of an absence of datable organic material. For-
tunately, optically stimulated luminescence ages on buried
sand layers (e.g. Alexanderson et al., 2022) and cosmogenic
nuclide-apparent exposure ages on exposed bedrock and er-
ratics have narrowed some of the gaps (e.g. Hughes et al.,
2016; Stroeven et al., 2016; Dalton et al., 2023). In studies
using cosmogenic nuclides, an “apparent” exposure age is
derived from a simple calculation from the nuclide concen-
tration under consideration (Lal, 1991; Gosse and Phillips,
2001). Correctly interpreting the exposure age relies on mod-
elling that considers geological factors that can reduce the
nuclide concentration relative to the time since initial sub-
aerial exposure (such as erosion and burial by glacial ice, wa-
ter, snow, and/or soil; Gosse and Phillips, 2001; Schildgen et
al., 2005; Ivy-Ochs and Kober, 2008). Exposure dating is the
only technique available in regions where ice sheet erosion
has left the surface bare or covered by a thin drape of till.
Kleman et al. (2008) show that for Fennoscandia, these con-
ditions are widespread in coastal regions where ice acceler-
ated towards its streaming sectors and where wave wash dur-
ing glacial rebound further thinned or removed pre-existing
sediment covers.

Coastal sectors in formerly glaciated regions provide sites
important to the study of paleoglaciology. They offer an
abundance of bedrock exposures from which patterns and
processes of subglacial erosion can be studied through cos-
mogenic nuclide exposure dating (e.g. Hall et al., 2020).
Also, because of the interplay with postglacial sea levels,
coastal areas yield data on glacio-isostatic rebound that are
critical to the geodynamic modelling of Earth rheology and
thicknesses of former ice sheets (e.g. Lambeck et al. (1998,
2010) and Patton et al. (2017) for Fennoscandian exam-
ples). Geodynamic models require validation against mea-
surements of vertical crustal motion (Steffen and Wu, 2011),
such as those provided by recent global positioning system
(GPS) measurements (e.g. Lidberg et al., 2010) and post-
glacial records of crustal rebound afforded by relative sea
level (RSL) curves (e.g. Påsse and Andersson, 2005). The
construction of RSL curves, detailing the history of land sur-
face emergence from sea level, is traditionally done either
using sediments accumulated in isolation basins at different
elevations above sea level or by dating uplifted gravel beach
ridges. Typically, isolation basins, and their sediments, show
a progression from marine to brackish and finally to fresh-
water environments as they are uplifted through tidal levels

(Long et al., 2011). Histories of land uplift above sea level are
documented using microfossil and macrofossil analyses of
isolation basin sediments and radiocarbon dating on macro-
fossils (Romundset et al., 2011). Uplifted beach ridges can be
radiocarbon-dated from a variety of materials (Blake, 1993)
but most confidently from driftwood, whalebone, and shells
(e.g. Dyke et al., 1992). Gravel beach ridges have also been
investigated using OSL (optically stimulated luminescence)
and 10Be exposure dating even though, other than the high-
est beach ridge, they may be prone to clast reworking (Briner
et al., 2006; Simkins et al., 2013; Bierman et al., 2018). A
distinct advantage of constructing RSL curves using cosmo-
genic nuclides is that land surface emergence above sea level
may be additionally dated from boulders (Briner et al., 2006)
or bedrock (Bierman et al., 2018).

The potential for cosmogenic surface exposure dating of
the last ice sheet retreat in recently glaciated low-relief cra-
tonic landscapes would seemingly be high because of the fre-
quent outcropping of glacially sculpted quartz-bearing crys-
talline bedrock. However, either the ice sheet may have been
non-erosive, or the erosion was insufficiently deep to remove
all the cosmogenic nuclide inventory from previous exposure
periods. Apparent ages are therefore often older than indi-
cated by radiocarbon dating (Heyman et al., 2011; Stroeven
et al., 2016) because they include a component of nuclide in-
heritance. Apparent ages younger than indicated by radiocar-
bon dating can also occur if sampled rock surfaces have been
shielded, for example by sediments, following deglaciation.
Concentrations of 10Be and 26Al, in either bedrock or erratic
boulders, often reflect complex exposure histories rather than
simple deglacial exposure durations (Heyman et al., 2011;
Stroeven et al., 2016).

In this study we use 14C produced in situ in quartz-bearing
bedrock (in situ 14C) because it potentially circumvents an
overt reliance on the need for deep erosion (> 3 m) to re-
move the inherited signal from previous exposure periods
(Gosse and Phillips, 2001). Because of its short half-life of
5700 ± 30 years, inherited in situ 14C will decay if ice sheet
burial at investigated sites during the last glacial phase (ma-
rine isotope stage 2; MIS2) exceeded 25–30 kyr, which is ca.
five half-lives (Briner et al., 2014).

Some studies assessing changes in glacier and ice sheet
extents over Late Glacial–Holocene timescales have used in
situ 14C (Miller et al., 2006; Fogwill et al., 2014; Hippe et
al., 2014; Schweinsberg et al., 2018; Pendleton et al., 2019;
Young et al., 2021; Schimmelpfennig et al., 2022). In these
studies, in situ 14C has been applied with other nuclides with
longer half-lives, in particular 10Be, to unravel complex his-
tories of glacier advance and retreat (e.g. Goehring et al.,
2011) and spatial patterns in glacial erosion in mountainous
terrain (e.g. Steinemann et al., 2021). Extensive regions for-
merly covered by ice sheets are characterized by low-relief
and low-elevation terrain. The effectiveness of in situ 14C
in dating ice sheet retreat in these non-alpine settings and
in quantifying shoreline displacement from bedrock samples
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has not been previously assessed. The aim of this study is
therefore to validate the use of 14C formed in situ in bedrock
as a reliable chronometer by evaluating its performance in
duplicating (i) a previously established Holocene RSL curve
based on radiocarbon dating (Hedenström and Risberg, 2003;
SKB, 2020) and (ii) the timing of deglaciation above the
highest (postglacial) shoreline in nearby east-central Sweden
according to reconstructions of deglaciation of the last ice
sheet (Hughes et al., 2016; Stroeven et al., 2016).

2 Study area

Our study is focused on east-central Sweden. This region
includes low elevation and low relief terrain in Forsmark–
Uppland and higher elevation and higher relief terrain in
adjacent Dalarna–Gävleborg (Fig. 1). This region was se-
lected because Forsmark is the location of a planned geo-
logical repository for spent nuclear fuel (e.g. SKB, 2022).
As such, this region has been intensively studied and has a
wealth of geologic data relevant to our study. This wealth in-
cludes in-depth analyses of bedrock and environmental prop-
erties, including influences of glacial and postglacial pro-
cesses (e.g. Lönnqvist and Hökmark, 2013; Hall et al., 2019;
Moon et al., 2020; SKB, 2020).

From spatio-temporal ice sheet reconstructions by Kle-
man et al. (2008), the study area was glaciated 16–20 times
for a total duration of ca. 330 kyr over the past 1 Myr.
The last deglaciation of the study area is well-constrained
by two recent reconstructions that differ in their approach
(Hughes et al., 2016; Stroeven et al., 2016). The Hughes
et al. (2016) reconstruction relies primarily upon chrono-
logical constraints supplied from radiocarbon, thermal lu-
minescence, optically stimulated luminescence (OSL), in-
frared stimulated luminescence, electron spin resonance, ter-
restrial cosmogenic nuclide (TCN), and U-series dating. Pub-
lished landform data, mostly with respect to end moraines
and generally accepted correlations of ice margin positions
between individual moraines, provide complementary evi-
dence. In contrast, the Stroeven et al. (2016) reconstruction
combines geomorphological constraints for ice sheet margin
outlines, including ice-marginal depositional landforms and
meltwater channels, ice-dammed lakes, eskers, lineations,
and striae, with chronological constraints supplied by radio-
carbon, varve, OSL, and TCN dating. Whereas Hughes et
al. (2016) reconstruct ice sheet retreat every 1 kyr and for ev-
ery ice margin plot its position as “most credible”, “min”, and
“max”, Stroeven et al. (2016) present ice margin positions for
every 100 years inside the Younger Dryas standstill position
(Stroeven et al., 2015). These marginal positions are tempo-
rally and spatially defined by the “Swedish timescale” clay
varve record along the Swedish east coast (De Geer, 1935,
1940; Strömberg, 1989, 1994; Brunnberg, 1995; Wohlfarth
et al., 1995). From Stroeven et al. (2016), the last deglacia-
tion of the study area occurred at 10.8 ± 0.3 ka, which

Figure 1. Sample locations for in situ 14C dating in (a) Dalarna–
Gävleborg and (b) Forsmark–Uppland. The five Dalarna–
Gävleborg sample sites are located on what were islands above the
highest postglacial shoreline (shown), whereas the five sample sites
from Forsmark–Uppland are located below the highest shoreline
(not shown because the entire area was submerged). See inset maps
for locations of panels (a) and (b) and for the 10.7 and 10.8 ka re-
treat isochrones (blue) from Stroeven et al. (2016) and 11 ka (most-
credible, minimum, and maximum) retreat isochrones (red) from
Hughes et al. (2016). The rectangle in panel (b) approximately in-
dicates the site selected for the planned geological repository for
spent nuclear fuel at Forsmark. DEM with 2 m resolution, from li-
dar data (Lantmäteriet, 2020).

overlaps the timing of deglaciation of the study area from
Hughes et al. (2016), within uncertainty (Fig. 1). The high-
est postglacial shoreline in east-central Sweden is located at
a present elevation of ∼ 200 m a.s.l. in Dalarna–Gävleborg,
which is ∼ 100 km west of Forsmark (SGU, 2015). The expo-
sure duration of bedrock above the highest postglacial shore-
line represents the time since local deglaciation. Hence, in
situ 14C ages from bedrock above the highest postglacial
shoreline should conform to the reconstructed deglaciation
age of 10.8 ± 0.3 ka from Stroeven et al. (2016).

Below the highest postglacial shoreline, in the Forsmark–
Uppland region, the last deglaciation occurred in a marine
environment, and the landscape has progressively emerged
above sea level through postglacial isostatic uplift. A RSL
curve constructed from radiocarbon dating of basal organic
sediments trapped in isolation basins along elevation tran-
sects describes the progressive emergence of the Forsmark–
Uppland landscape above sea level (Robertsson and Persson,
1989; Risberg, 1999; Bergström, 2001; Hedenström and Ris-
berg, 2003; Berglund, 2005; SKB, 2020). Ages calculated
from in situ 14C from bedrock outcrops along an elevation
transect would then mirror the Forsmark RSL curve for their
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corresponding elevations (but they would be slightly older
because of nuclide production through shallow water before
emergence).

A potential complication to the accurate exposure age dat-
ing of bedrock surfaces using in situ 14C in east-central Swe-
den is that the most recent period of ice sheet burial may have
been insufficiently long to decay in situ 14C inventory inher-
ited from prior exposure. Here, the extent of the Fennoscan-
dian Ice Sheet during interstadial MIS3 and the timing of
ice advance across the Forsmark region during late MIS3 are
crucially important. Kleman et al. (2020) have identified ice-
free conditions around Idre (330 km NW, up-ice, of our study
area; Fig. 1) between 55 and 35 ka, which implies inundation
of our study area by ice after 35 ka. Combined with a well-
constrained final deglaciation age of 10.8 ± 0.3 ka (Stroeven
et al., 2016), it appears that our study area has most recently
(during MIS2) been inundated by glacial ice for, at most,
24 kyr. This inference is in line with results from ice sheet
modelling indicating a 22 kyr duration of ice cover at Fors-
mark during MIS2 (SKB, 2020). Consequently, it is possible
that in situ 14C concentrations may reflect subaerial expo-
sure of bedrock in our study area during MIS3, in addition to
Holocene exposure, resulting in an offset towards older ages
relative to the RSL curve for Forsmark (Hedenström and Ris-
berg, 2003; SKB, 2020) and the deglaciation chronologies of
Hughes et al. (2016) and Stroeven et al. (2016).

3 Methods

3.1 Sampling of bedrock outcrops for in situ 14C
measurements

We used the following sampling strategy to evaluate the ac-
curacy of bedrock exposure ages derived from in situ 14C
against the Forsmark RSL curve and the deglaciation of the
last ice sheet in east-central Sweden. A rigorous scheme was
applied to ensure that we avoided sampling quartz altered
through hydrothermal processes that is likely to occur in ma-
jor pegmatite intrusions; outcrops located in major defor-
mation zones; and outcrop-scale veins, fractures, and adja-
cent rock volumes. Consequently, sampling was done on out-
crops of metagranitoid from the early-Svecokarelian GDG-
GSDG suite that dominates the Bergslagen lithotectonic unit
(Stephens and Jansson, 2020). A petrological examination
using transmitted light polarization microscopy was applied
to thin sections to ascertain that the quartz was unlikely to
contain multi-fluid-phase, vapour-phase, or solid-phase in-
clusions. All samples were collected using an angle grinder,
which permits the sampling of hard crystalline bedrock iso-
lated from outcrop edges, fractures, and quartz veins and
consistently limits sample thicknesses to 3 cm.

We collected a total of 10 samples for in situ 14C anal-
yses. Five of these were collected along a SW–NE transect
near Forsmark (Fig. 1b). These outcrops were chosen be-
cause they span an elevation gradient of 9.4–56.0 m a.s.l.,

and the exposure ages derived from in situ 14C can there-
fore be evaluated against the Forsmark RSL curve. We col-
lected a further five samples from locations above the highest
shoreline (Fig. 1a) to determine the age of local deglacia-
tion for comparison with published deglaciation chronolo-
gies (Hughes et al., 2016; Stroeven et al., 2016). Sample lo-
cations were logged on a 2 m resolution lidar digital elevation
model (DEM) displayed in ArcGIS 10 on a tablet computer.
A GPS add-in tool in ArcGIS 10 was used to record posi-
tional data within a horizontal precision of 2 m. The eleva-
tion of each sample location was extracted from the DEM
and has a precision of tens of centimetres. The influence of
these minor positional uncertainties on our 14C calculations
is trivial, and none of the sample sites are influenced by topo-
graphic shielding that could reduce the accumulation of 14C
in bedrock.

Each sampled bedrock outcrop formed a local topographic
high, which minimizes the risk of burial by soil and snow
(Supplement file S1). Moss mats were present on all sampled
outcrops. Although we avoided sampling bedrock that was
moss-covered, we cannot be certain that moss mats did not
formerly cover the sample sites. Given a compressed thick-
ness of 0.5 cm and an estimated density of 0.7 g cm−3, this
may have contributed to a shielding of the sampled rock sur-
faces of 0.35 g cm−2, which is negligible and is therefore ex-
cluded from our age inferences.

3.2 Laboratory preparation for accelerator mass
spectrometry (AMS)

Samples were physically and chemically processed at the
Purdue Rare Isotope Measurement Laboratory (PRIME Lab)
at Purdue University, USA. Concentrations of in situ 14C
were determined from purified quartz separates through au-
tomated procedures (Lifton et al., 2023). Approximately 5 g
of quartz from each sample was added to a degassed LiBO2
flux in a reusable 90 % Pt/10 % Rh sample boat and heated to
500 °C for 1 h in ca. 6.7 kPa of research purity O2 to remove
atmospheric contaminants, which were discarded. The sam-
ple was then heated to 1100 °C for 3 h to dissolve the quartz
and release the in situ 14C, again in an atmosphere of ca.
6.7 kPa of research purity O2 to oxidize any evolved carbon
species to CO2. The CO2 from the 1100 °C step was then pu-
rified, measured quantitatively, and converted to graphite for
14C AMS measurement at PRIME Lab (Lifton et al., 2023).
To test for data reproducibility, sample BG21-002 was ran-
domly selected to undergo laboratory preparation and AMS a
second time. Measured concentrations of in situ 14C are cal-
culated from the measured isotope ratios via AMS following
Hippe and Lifton (2014; Table 1).
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Figure 2. Production rate calibration of 14C in quartz. (a) Reference spallation 14C production rate calibration based on data from Schim-
melpfennig et al. (2012), Young et al. (2014), Lifton et al. (2015), Borchers et al. (2016), and Phillips et al. (2016), corrected per Hippe and
Lifton (2014) and compiled in Koester and Lifton (2023). An uncertainty-weighted production rate is calculated for each of the eight sites.
Outliers, which are not included in the uncertainty-weighted production rates, are determined based on the requirement that there should
be at least three samples yielding a reduced chi-square statistic

(
X2

R

)
with a p value of at least 0.05 for the assumption that the individual

production rates from a site are derived from one normal distribution. For X2
R, but not the uncertainty weighting, we use the largest of

the sample-specific production rate uncertainty based on the 14C concentration uncertainties and 5 % of the sample production rate. This
procedure does not punish samples with low measurement uncertainties, which otherwise risk exclusion as outliers. We adopt a global ref-
erence spallation 14C production rate of 12.81 ± 1.25 atoms g−1 yr−1, calculated as the arithmetic mean of the eight site production rates
with the uncertainty being based on an uncertainty-weighted deviation of all included single-sample production rates, excluding outliers.
(b) Calibration of 14C production rate from muons based on the data of Lupker et al. (2015). The calibration is based on the method used in
the CRONUScalc calculator (Marrero et al., 2016; Phillips et al., 2016). The figure shows the best-fit 14C concentration profiles produced
from spallation, slow muons, and full production. The best fit yields a near-zero production from fast muons (cf. Lupker et al., 2015). The
production rate calibration has been carried out using the expage calculator version 202403 (Heyman, 2024) in an iterative way to make the
global reference spallation 14C production rate converge with the production rate from muons.

3.3 Exposure age calculations

The expage calculator version 202403 (Heyman, 2024) is
used to calculate apparent exposure ages. It is based on
the original version 2 CRONUS calculator (Balco et al.,
2008), the LSDn production rate scaling (Lifton et al., 2014),
and the CRONUScalc calculator (Marrero et al., 2016), us-
ing the geomagnetic framework of Lifton (2016) with the
SHA.DIF.14k model for the last 14 kyr. Exposure ages are
calculated using resulting time-varying 14C production rates
accounting for decay and interpolated to match the measured
14C concentration. The production rate from muons is cal-
ibrated against the Leymon High core 14C data of Lupker
et al. (2015), and the production rate from spallation is cal-
ibrated against updated global 14C production rate calibra-
tion data (Schimmelpfennig et al., 2012; Young et al., 2014;
Lifton et al., 2015; Borchers et al., 2016; Phillips et al., 2016;
Koester and Lifton, 2023, 2024). This calibration is done it-
eratively for spallation and muons to reach convergence us-
ing the expage production rate calibration methods (Fig. 2;
Heyman, 2024).

Exposure age calculations along the Forsmark–Uppland
transect account for 14C production during emergence
through shallow water. Burial of sampled surfaces by snow
is excluded from the age calculations for all sample sites be-
cause we know neither how snow burial depths and durations
vary between sites nor how they vary through time. The ef-
fect of snow burial would be to slightly decrease cosmogenic

nuclide production in the underlying rock surface (Schildgen
et al., 2005), and we have minimized this effect through our
sampling strategy.

4 Results

Analytical results for in situ 14C samples and procedural
blanks are presented in Table 1. The mean and standard de-
viation are used to correct measured 14C sample invento-
ries (Table 1) because procedural blanks are well-constrained
during the analytical time frame. Inferred ages for the five
in situ 14C samples from the Forsmark–Uppland transect
(i.e. below the highest postglacial shoreline) are shown rel-
ative to the Holocene RSL curve for Forsmark and the ex-
pected in situ 14C exposure age curve considering subaque-
ous cosmogenic nuclide production (Fig. 3; Table 2). Expo-
sure age uncertainties are large with internal uncertainties
(measurement uncertainties; Balco et al., 2008) of 5 %–9 %
and external uncertainties of 13 %–25 % (also including pro-
duction rate uncertainties, which are high relative to 10Be;
Borchers et al., 2016; Phillips et al., 2016). Apparent expo-
sure ages increase consistently with elevation and match ex-
pected ages within uncertainty. The two highest samples have
near-identical apparent exposure ages and elevations. How-
ever, these samples provide independent ages because they
are horizontally separated by 624 m (Fig. 1b). There is good
agreement between ages inferred from these in situ 14C data
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Figure 3. Apparent 14C exposure ages for five Forsmark samples
from below the highest shoreline (Fig. 1b; Table 2) with 1σ exter-
nal uncertainties. The expected exposure ages are calculated assum-
ing the RSL curve is correct, the 14C spallation production rate is
correct, partial exposure as the sample approaches the water sur-
face, and full postglacial exposure for the duration above sea level.
Hence, the expected exposure age curve is a few hundred years older
than the RSL curve. The RSL curve is from SKB (2020), and un-
certainties for the 1–6 ka interval are calculated from the original
radiocarbon data in Hedenström and Risberg (2003). The RSL un-
certainty envelope is also transposed onto the expected exposure age
curve.

and the RSL curve constructed from organic radiocarbon dat-
ing of isolation events (Hedenström and Risberg, 2003; SKB,
2020).

Apparent exposure ages for the five in situ 14C samples lo-
cated above the highest shoreline in Dalarna and Gävleborg
(Fig. 1a) are shown in Fig. 4 and Table 2. The weighted mean
age from all five samples is 11.9 ± 1.5 ka. These data display
a X2

R of 1.78 and a p value of 0.13 based on 1σ internal
uncertainties, which does not support a rejection of the hy-
pothesis that the apparent exposure ages represent the same
population. In addition to the samples being from the same
population, the exposure ages are consistent, within uncer-
tainty, with the expected deglaciation age of 10.8 ± 0.3 ka
(Stroeven et al., 2016). Replicate measurements of sample
BG21-002 closely agree, and an age based on a weighted
mean 14C concentration is shown in Fig. 4.

5 Discussion

The in situ 14C bedrock exposure ages from the Forsmark–
Uppland transect (i.e. below the highest postglacial shore-
line) consistently increase with elevation and overlap the ex-
pected exposure age curve, within uncertainty (Fig. 3). This
study adds to the few previous applications of cosmogenic
nuclides to defining postglacial landscape emergence above

Figure 4. Exposure ages from samples above the highest shore-
line (Fig. 1a; Table 2). The individual samples (filled black circles)
display a 1σ internal uncertainty (measurement uncertainty; black
lines). For the repeat sample BG21-002, the exposure age is cal-
culated with a weighted mean 14C concentration using a 2 % un-
certainty. The cosmogenic nuclide ages yield a reduced chi-square(
X2

R

)
statistic of 1.78 and a p value of 0.13 based on internal uncer-

tainties, which indicates that they are from the same population. The
colour gradient for the Stroeven et al. (2016) deglaciation chronol-
ogy indicates the 0.1–0.5 ka uncertainty range, whereas the uncer-
tainty for the Hughes et al. (2016) chronology reflects the maximum
and minimum estimates for deglaciation of the study area, which
are unequally distributed around the most credible estimate (orange
line).

Table 2. Apparent in situ 14C ages from bedrock quartz located in
Dalarna–Gävleborg and Forsmark–Uppland.

Sample1 Latitude Longitude Elevation 14C age2

(°) (°) (m a.s.l.) (ka)

BG21-001 60.47432 16.33134 236.5 10.6 ± 2.2 (±0.6)
BG21-002 60.40615 16.22197 212.6 12.3 ± 2.9 (±0.8)
BG21-002R 60.40615 16.22197 212.6 12.4 ± 3.0 (±1.1)
BG21-003 60.38459 16.17649 216.3 12.9 ± 3.2 (±0.9)
BG21-004 60.38451 16.17440 217.8 12.7 ± 3.0 (±0.7)
BG21-005 60.36888 16.30526 248.1 11.6 ± 2.6 (±0.9)
BG21-006 60.38490 18.22308 9.4 1.5 ± 0.2 (±0.1)
BG21-007 60.37892 18.19129 12.2 2.6 ± 0.3 (±0.2)
BG21-008 60.30504 18.04993 30.3 4.5 ± 0.6 (±0.2)
BG21-009 60.22988 17.94989 56.0 8.2 ± 1.5 (±0.5)
BG21-010 60.22431 17.95051 55.9 8.2 ± 1.4 (±0.4)

1 All samples have a thickness of 3 cm, a density of 2.7 g cm−3, and a shielding factor of 1. Zero
erosion is assumed. 2 The 14C age and 1σ external uncertainty (1σ internal uncertainty).

sea level (Briner et al., 2006; Bierman et al., 2018). Briner
et al. (2006) present good (visual) congruence with a record
of shoreline emergence built from radiocarbon-dated drift-
wood and fauna by Dyke et al. (1992) using 10Be measure-
ments in boulders on beaches derived from wave-washed till.
Their study also mentions that building a relative sea level
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Figure 5. Modelled in situ 14C concentration evolution over the last 80 kyr in the five samples (BG21-001–BG21-005) from above the
highest shoreline. The 14C development is modelled assuming no glacial or interglacial erosion, continuous exposure to cosmic rays during
ice-free periods, and full shielding from cosmic rays (no 14C production) during periods with ice cover. The points just left of the plots
display the measured 14C concentrations for the six sample measurements (Table 1). (a) Scenario with short periods of MIS4 and MIS2 ice
cover from 66 to 60 ka and from 28 ka to deglaciation around 10.7 ka. (b) Scenario with longer periods of MIS4 and MIS2 ice cover from 70
to 57 ka and from 35 ka to the deglaciation around 10.7 ka. Due to the rapid decay of 14C (half-life of 5700 ± 30 years), both scenarios yield
similar end-point concentrations of 14C that overlap, within uncertainties, the measured sample concentrations.

curve from pebbles, cobbles, and plucked bedrock suffered
from inheritance problems, an experience shared by Mat-
mon et al. (2003) while attempting the dating of chert on
beach ridges in southern Israel and heeded by Bierman et
al. (2018). Bierman et al. (2018) successfully dated land-
scape emergence on Greenland using 10Be across a range of
settings, including bedrock below the highest shoreline, cob-
bles from beach ridges at the highest shoreline, and boulders
and bedrock above the highest shoreline. They note that suc-
cess hinges on the requirement of warm-based ice and deep
glacial erosion in exposing bedrock devoid of an inherited
cosmogenic nuclide inventory. In many regions, however, in-
cluding east-central Sweden and more widely in Fennoscan-
dia, these conditions are not met either because of cold-based
conditions (Patton et al., 2016; Stroeven et al., 2016) or be-
cause of weakly erosive warm-based ice, such as at Forsmark
(Hall et al., 2019; SKB, 2020), during all or much of glacial
time. Cosmogenic nuclide inheritance is therefore a part of
the landscape fabric. Bierman et al. (2018) advocate the use
of in situ 14C as a methodology to circumvent inheritance
problems. Our study is the first to follow up on that sug-
gestion and shows, convincingly, that using in situ 14C can
extend the study of landscape rebound to regions where ice
sheet erosion was insufficiently deep to allow for the appli-
cation of long-lived nuclides.

Five bedrock samples from above the highest postglacial
shoreline are well-clustered, and the weighted mean age (and
full uncertainty) of 11.9 ± 1.5 ka overlaps with the predicted
deglaciation age of 10.8 ± 0.3 ka (Fig. 4; Hughes et al., 2016;
Stroeven et al., 2016). Because derived exposure ages over-
lap with the predicted deglaciation age, we further infer that
the in situ 14C samples, including those located below the
highest postglacial shoreline, within uncertainty, lack signif-
icant inheritance from previous exposure. Model scenarios of
in situ 14C concentration evolution over varying durations of

MIS2 and MIS4 ice cover are consistent with minor inheri-
tance, even with short periods of ice coverage and no glacial
or interglacial erosion (Fig. 5). Even if the last ice sheet had
advanced over the region as late as 28 ka, there would only be
a negligible inventory of inherited 14C atoms produced prior
to the MIS2 ice advance.

Our in situ 14C data from above the highest (postglacial)
shoreline demonstrate their potential for constraining the
deglaciation chronology of former ice sheets. This is espe-
cially true for regions with thin till drapes, abundant bedrock
exposures, and sparse moraines outlining successive retreat
stages. In Fennoscandia, thin tills commonly occur (cf. Kle-
man et al., 2008), and ice sheet retreat appears to have pro-
ceeded uninterrupted inside the Younger Dryas moraine belt
(apart from the Central Finland Ice Marginal Formation;
e.g. Rainio et al., 1986; Stroeven et al., 2016). Even though
the post-Younger Dryas deglaciation of east-central Sweden
is well-constrained by a clay varve chronology below the
highest postglacial shoreline (Strömberg, 1989), there are
vast areas above the highest shoreline that remain poorly con-
strained by data (Stroeven et al., 2016). In addition to a lack
of datable deglacial landforms, this is attributable to glacial
erosion of bedrock having frequently been insufficient to re-
move inventories of long half-life 10Be and 26Al (Patton et
al., 2022), thereby leaving nuclides inherited from exposure
prior to the last glaciation (Heyman et al., 2011; Stroeven et
al., 2016). Because of the short 14C half-life and an improved
sampling methodology, in situ 14C may now be a prime can-
didate nuclide to be included in last deglaciation studies on
glaciated cratons, such as the dating of boulders deposited
along glacial flowlines. This is a technique practised success-
fully using 10Be (Margold et al., 2019; Norris et al., 2022).
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6 Conclusions

A total of 10 in situ 14C measurements of bedrock are con-
sistent with a RSL curve for Forsmark derived from organic
radiocarbon dating of basal sediments in isolation basins and
the Fennoscandian Ice Sheet deglaciation chronologies from
Stroeven et al. (2016) and Hughes et al. (2016). This study
introduces the use of in situ 14C in Fennoscandian Ice Sheet
paleoglaciology and outlines a promise of its use as a basis
for supporting future shoreline displacement studies and for
tracking the deglaciation in areas that lack datable organic
material and where 10Be and 26Al routinely return complex
exposure results.
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