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Abstract. Isochrons are usually fitted by “York regression”,
which uses a weighted least-squares approach that accounts
for correlated uncertainties in both variables. Despite its
tremendous popularity in modern geochronology, the York
algorithm has two important limitations that reduce its util-
ity in several applications. First, it does not provide a sat-
isfactory mechanism to deal with so-called “errorchrons”,
i.e. datasets that are overdispersed with respect to the ana-
lytical uncertainties. Second, York regression is not readily
amenable to anchoring, in which either the slope or the in-
tercept of the isochron is fixed based on some external in-
formation. Anchored isochrons can be very useful in cases
where the data are insufficiently spread out to constrain both
the radiogenic and non-radiogenic isotopic composition.

This paper addresses both of these issues by extending a
maximum likelihood algorithm that was first proposed by
Titterington and Halliday (1979). The new algorithm offers
the ability to attribute any excess dispersion to either the in-
herited component (“model 3a”) or diachronous closure of
the isotopic system (“model 3b”). It provides an opportunity
to anchor isochrons to either a fixed non-radiogenic compo-
sition or a fixed age. Last but not least, it allows the user to
attach meaningful analytical uncertainty to the anchor. The
new method has been implemented in IsoplotR for imme-
diate use in Ar/Ar, Pb/Pb, U/Pb, Th/Pb, Rb/Sr, Sm/Nd,
Lu/Hf, Re/Os, K/Ca, and U–Th–He geochronology.

1 Introduction

Isochrons are mixing lines between radiogenic and inherited
isotopic endmembers. They are an essential component of
radiometric geochronology and exist in several forms. Sec-
tions 1–7 of this paper will deal with the simple case of
“P/D isochrons”, which apply to geochronometers that are

based on the decay of a single radioactive parent nuclide (P ;
e.g. 87Rb, 40K, 147Sm) to a particular daughter nuclide (D;
e.g. 87Sr, 40Ar, 143Nd). Sections 8 and 9 will discuss Pb/Pb
and U/Pb isochrons, respectively. These are based on the
paired decay of two parents (238U and 235U) to two daughters
(206Pb and 207Pb, respectively) and require linear regression
in two or three dimensions.
P/D isochrons come as two types. “Conventional”

isochrons are straight-line relationships of the following
kind:[
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where i is the aliquot number (1≤ i ≤ n), d is a non-
radiogenic sister isotope of D, [D/d]0 is the inherited com-
ponent, λ is the decay constant, and t is the time elapsed since
isotopic closure. A full list of definitions is provided in Ap-
pendix A. “Inverse” isochrons are obtained by permuting P ,
D, and d:[
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The choice between conventional and inverse isochrons de-
pends on the relative precision of the mass spectrometer mea-
surements. Inverse isochrons are preferred if d �D. Oth-
erwise, conventional isochrons are fine (Li and Vermeesch,
2021).

Equations (1) and (2) can be recast into a generic linear
form:

yi = a+ bxi . (3)

Table A1 maps the parameters of this generic equation to the
parameters of Eqs. (1) and (2) as well as subsequent vari-
ants thereof. Equation (3) is usually solved by York et al.
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398 P. Vermeesch: Errorchrons and anchored isochrons

(2004) regression (hereafter simply referred to as “York re-
gression”). York regression uses a least-squares algorithm to
estimate the intercept (a) and slope (b) of the isochron line
from an n× 5 table of paired isotopic ratio measurements,
along with their standard errors and their error correlations.

Although this paper will use the York parameters a and
b to fit the isochron, all results will be presented in terms
of the geologically more meaningful inherited endmember
ratio [D/d]0 and radiogenic endmember ratio [D/P ]∗ ≡
eλt−1, where [D/d]0 = a and [D/P ]∗ = b for conventional
isochrons and [D/d]0 = 1/a and [D/P ]∗ =−b/a for in-
verse isochrons (Li and Vermeesch, 2021).

The most accurate and precise results are obtained from
samples that are evenly spread along the isochron line, span-
ning the entire range of values from the inherited to the radio-
genic endmember. Unfortunately, this condition is not always
fulfilled. It is not uncommon for most or all aliquots in a sam-
ple to cluster together at one point along the isochron, mak-
ing it difficult to accurately estimate the endmember com-
positions. For example, no precise isochron ages can be ob-
tained from samples whose radiogenic daughter component
is dwarfed by the inherited daughter component. Conversely,
the composition of the inherited component cannot be pre-
cisely estimated in extremely radiogenic samples. Finally,
when the data cluster together in the middle, then neither
endmember component can be reliably determined (Fig. 1).

Sometimes, such poorly constrained isochrons can be
fixed using external information. For example, if the com-
position of the inherited component is known through some
independent means (e.g. by analysing a cogenetic mineral
that is naturally poor in P and rich in D and d), then this
information can be used to anchor the isochron. Anchoring
reduces the number of unknown parameters by 1, benefitting
numerical stability and precision. Conversely, if the age of
the sample is known, then the inherited component can be
estimated by anchoring to the radiogenic endmember.

There is currently no formally documented way to anchor
York regression. A commonly used “hack” is to add an extra
data point with infinite precision representing either the in-
herited or radiogenic endmember component. However, this
hack does not provide a satisfactory mechanism to assign un-
certainty to the anchor. This paper solves that problem. Sec-
tion 2 introduces a maximum likelihood formulation of York
regression, which is amenable to anchoring with uncertainty.
Section 3 shows how this formulation can be used to model
“errorchrons” that are overdispersed with respect to the ana-
lytical uncertainties.

Section 4 provides further details about the implementa-
tion of maximum likelihood regression, which can attribute
overdispersion to either the intercept (“model 3a”) or slope
(“model 3b”) of the linear fit. It turns out that model 3b is
computationally more challenging than model 3a. Section 5
shows how this issue can be avoided by inverting and flipping
the isochron axes.

Section 6 shows how anchored isochron regression rep-
resents a trivial special case of the maximum likelihood al-
gorithm. Section 7 attaches two different geological inter-
pretations to the uncertainty of isochron anchors. These two
interpretations lead to two different fit models (“model 1”
and “model 3”, which are so named for historical reasons).
Sections 8 and 9 apply the same logic to Pb/Pb and U/Pb
isochrons, respectively. Finally, Sect. 10 shows how the new
algorithms can be used within the IsoplotR software package.

2 Maximum likelihood formulation of York
regression

York et al. (2004) use the method of least squares to fit the
general problem of weighted regression with correlated un-
certainties in both variables. Titterington and Halliday (1979)
obtained identical results using the method of maximum like-
lihood. The latter approach offers greater flexibility than least
squares and will be used in the remainder of this paper.

The method of maximum likelihood is a standard statis-
tical technique to estimate the parameters of a probability
distribution from a set of measurements. In the case of two-
dimensional isochron regression, the parameters are the in-
tercept a, the slope b, and the true (but unknown) xi values.
The data are theXi and Yi measurements along with their as-
sumed uncertainties and error correlations (see Appendix A
for a full list of definitions). For a dataset of n aliquots,
there are 2n measurements (n Xi values and n Yi values)
and n+ 2 parameters (a, b, and n xi values). That leaves
2n− n− 2= n− 2 “degrees of freedom” to estimate the pa-
rameters.

This overconstrained problem can be solved by minimiz-
ing the paired differences (“residuals”) between the true xi
and yi values (where yi = a+bxi) and between the measured
Xi and Yi values.{
Xi = xi + εx,i

Yi = a+ bxi + εy,i
(4)

To make the problem tractable, the vector of residuals 1i

is assumed to be drawn from a bivariate normal distribution
with zero mean and covariance matrix 6i :

1i ≡

[
Xi − xi
Yi − yi

]
=

[
εx,i
εy,i

]
and

6i ≡

[
s[Xi]

2 s[Xi,Yi]

s[Xi,Yi] s[Yi]
2

]
. (5)

The product of the normal probabilities for all the aliquots
(from 1≤ i ≤ n) is called the “likelihood” of the parameters
given the data. Maximizing this number produces the most
accurate possible parameter estimates â, b̂, and x̂i . Alterna-
tively, and equivalently, the same estimates can be obtained
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Figure 1. P/D isochron diagrams for a synthetic dataset generated using the procedures of Appendix B. The true slope and intercept
are a = 1 and b = 1 for the conventional isochrons (a–c) and a = 1 and b =−1 for the inverse isochrons (d–f). These parameter values
correspond to [D/d]0 = [D/P ]∗ = 1. The true trends are shown as dashed lines and the estimated trends as solid lines, with 95 % confidence
envelopes shown in grey. The estimated parameter values are shown above the panels. Unconstrained isochron regression (a, d) yields
imprecise and inaccurate results. Fixing the inherited component (b, e) or the radiogenic component (c, f) greatly improves both aspects of
the fit.

by maximizing the logarithm of the likelihood. This is the
preferred approach as it improves numerical stability and fa-
cilitates the estimation of the parameter uncertainties. The
log-likelihood function can be formally defined as

−LL(parameters|data)= n ln(2π )+
1
2

n∑
i=1

(
ln |6i | +1T

i 6−1
i 1i

)
. (6)

This formulation allows for correlated uncertainties between
the variables (s[Xi,Yi] 6= 0 in Eq. 5) but not between aliquots
(s[Xi,Yj ] = 0 if i 6= j ). Daëron and Vermeesch (2023) dis-
cuss the generalized case of “omnivariant” regression, where
this requirement has been relaxed and Eq. (6) is replaced with
a single matrix expression.

3 Dealing with overdispersion

The degree to which the residuals 1i are consistent with the
assumed analytical uncertainties 6i can be assessed using a
chi-square test and the MSWD parameter. Readers who are
not familiar with these concepts are referred to Appendix C
for details. Isochrons that exhibit significant overdispersion
with respect to the analytical uncertainties are colloquially
referred to as errorchrons. Whether it is right to use such a

pejorative term for this common phenomenon is debatable
(Schaen et al., 2021). Four approaches may be used to deal
with errorchrons.

Model 1. Inflate the analytical uncertainties by a factor√
MSWD.

Model 2. Ignore the analytical uncertainties and replace
York regression with orthogonal regression or a similar
technique. This approach will not be discussed further
in this paper.

Model 3. Quantify the dispersion as an additional free pa-
rameter. There are two options for doing so.

Model 3a. Attribute the excess dispersion to variability
of the inherited component and, hence, the isochron
intercept. For conventional isochrons, this means
that the true isotopic ratios of the cogenetic aliquots
do not belong to a single isochron line but to a
family of parallel isochron lines whose intercepts
are normally distributed (Titterington and Halliday,
1979). The standard deviation of this normal distri-
bution (σa) can be used to quantify the dispersion
of the data around the “central” isochron line.
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Model 3b. Attribute the excess dispersion to di-
achronous closure of the isotopic system. This
mechanism produces families of conventional
isochrons that share a common intercept but dif-
fer in their slopes. Again, the distribution of the
slopes can be assumed to follow a normal distri-
bution, with mean b and standard deviation σb. The
latter value can be used to quantify the dispersion
of the data, which in this case captures the degree
of diachroneity.

Model 3a isochron regression can be formalized by modi-
fying Eq. (4) as follows:{
Xi = xi + εx,i

Yi = a+ bxi + εa + εy,i .
(7)

The dispersion parameter σa can be estimated (as σ̂a) by in-
corporating it into the covariance matrices:

6a,i ≡

[
s[Xi]

2 s[Xi,Yi]

s[Xi,Yi] s[Yi]
2
+ σ 2

a

]
. (8)

The equivalent expressions for model 3b regression are{
Xi = xi + εx,i

Yi = a+ (b+ εb)xi + εy,i
(9)

and

6b,i ≡

[
s[Xi]

2 s[Xi,Yi]

s[Xi,Yi] s[Yi]
2
+ (xiσb)2

]
, (10)

respectively.

4 Specific cases

Three specific cases of Eq. (6) are of interest in the present
discussion.
Model 1.

LL1(a,b,x|X,Y,6)= constant−
1
2

n∑
i=1

1T
i 6−1

i 1i (11)

Model 3a.

LL3a(a,b,σa,x|X,Y,6)=

constant−
1
2

n∑
i=1

(
ln |6a,i | +1T

i 6−1
a,i1i

)
(12)

Model 3b.

LL3b(a,b,σb,x|X,Y,6)=

constant−
1
2

n∑
i=1

(
ln |6b,i | +1T

i 6−1
b,i1i

)
(13)

Note that the (logged) determinant of the covariance matri-
ces is not included in the constant for model 3 fits because
6a,i and 6b,i are both functions of x, whereas 6i is not.
LL can be numerically maximized using an iterative two-
step procedure. For model 1 regression, the first step max-
imizes LL1(x|a,b,X,Y,6) to find x for any pair of a and
b values. The second step repeats the first step for different
values of a and b until the overall optimum is reached.

This procedure can easily be adapted to model 3 regres-
sion by adding σa or σb to the unknown parameters. It works
well for model 3a, where the first step has a direct solution.
However, it is slow for model 3b regression, in which finding
x requires an additional level of iteration. See Appendix D
for further details. Fortunately, in practice model 3b is rarely
or never needed for geochronology, as explained next.

5 Flipped isochron regression

For inverse isochrons, model 3b regression does not actu-
ally provide any useful information. Unlike conventional
isochrons, whose chronological information is contained in
the slope, the chronological information of inverse isochrons
is contained in their horizontal intercept. This information
can be unlocked by flipping the axes of the isochron diagram
around, inverting the isochron, and treating the D/P ratio as
the dependent variable. Applying model 3a regression to the
flipped data yields a dispersion estimate σa that can be used
to quantify the age dispersion.

The same trick can be used to estimate the slope uncer-
tainty of a conventional isochron. A pragmatic way to avoid
the slow convergence rate of model 3b regression is to invert
the isochron, flip the dependent and independent variables
around, invert the isochron a second time, and carry out a
model 3a regression on the transformed data. The resulting
σa estimate can be converted to a σb estimate:

σ̂b(conventional isochron)≈
σ̂a

â2 (flipped inverse isochron). (14)

Figure 2 applies model 3 regression to two synthetic Ar–Ar
datasets with a non-radiogenic 40Ar/36Ar ratio of 400 and an
age of 100 Ma. The dataset of Fig. 2a exhibits overdispersion
of the y intercept ([40Ar / 36Ar]0 = 400,σa = 40), whereas
the dataset of Fig. 2b is overdispersed in the x intercept (t =
100 Ma, σt = 10 Ma). In both cases, the maximum likelihood
algorithm has retrieved the correct solution from the noisy
data.

6 Anchored isochron regression

Anchored isochron regression requires just a trivial modifica-
tion of the maximum likelihood algorithm. It suffices to treat
the anchored parameter as data. For example, the slope and
intercept of a model 1 isochron can be anchored by maximiz-
ing LL1(a,x|b,X,Y,6) and LL1(b,x|a,X,Y,6), respec-
tively. Note that these calculations assume that the anchor
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Figure 2. Model 3 regression of two synthetic Ar–Ar datasets. (a) Model 3a regression through 100 randomly drawn aliquots from an
isochron with a true non-radiogenic 40Ar/39Ar ratio of 400± 40 (1σ ) and a true age of 100 Ma; (b) model 3b regression through 100
aliquots from an isochron with a true non-radiogenic 40Ar/39Ar ratio of 400 and a true age of 100± 10 Ma (1σ ). Error bars on the y and
x axis show the overdispersion at 95 % confidence.

is known exactly. This is reflected in the zero uncertainties
of the non-radiogenic component in Fig. 1b and e and of the
radiogenic components in Fig. 1c and f. Such absolute cer-
tainty is unrealistic in the noisy world of geology. Section 7
introduces two ways to formally account for uncertainty in
anchored isochron regression.

7 Accounting for anchor uncertainty

When assigning uncertainty to statistical parameters, it is im-
portant to clearly define the meaning of this uncertainty. In
the case of anchored isochron regression, the uncertainty of
the intercept or slope can carry two meanings. For exam-
ple, when the intercept of an isochron is anchored at a value
ā± σā , this can mean either of the following.

Model 1. The data are underlain by a single isochron whose
intercept is only approximately known, with a most
likely value of ā and a precision (standard error) of σā .

Model 3. The data were drawn from a family of isochron
lines whose intercepts follow a normal distribution with
mean ā and standard deviation σā .

These two different approaches can be implemented by re-
placing the log-likelihood functions of Eq. (13) with the fol-

lowing.

Model 1.
LL1(a,b,x|ā,σā,X,Y,6)=

constant+LL1(a,b,x|X,Y,6)− 1
2

(
a−ā
σā

)2

Model 3.
LL3a(b,x|ā,σā,X,Y,6)

(15)

The equivalent expressions for anchored slopes with uncer-
tainty are as follows.

Model 1.
LL1(a,b,x|b̄,σb̄,X,Y,6)=

constant+LL1(a,b,x|X,Y,6)− 1
2

(
b−b̄
σb̄

)2

Model 3.
LL3b(a,x|b̄,σb̄,X,Y,6)

(16)

Note that model 1 treats the slope and intercept as un-
knowns, so their maximum likelihood estimates generally do
not equal the anchored values ā and b̄. However, the smaller
σā and σb̄ are relative to ā and b̄, the closer that â and b̂
are to ā and b̄. In contrast, anchored model 3 regression fixes
the dispersion of the anchored parameters so that σ̂a = σā for
anchored intercepts, whereas σ̂b = σb̄ for anchored slopes.

Figure 3 applies the two approaches to the synthetic
dataset of Fig. 1 using anchors of [D/d]0 = 1± 0.05 and
[D/P ]∗ = 1± 0.05 (1σ ). As expected, models 1 and 3 pro-
duce slightly different outcomes, with model 1 resulting in
[D/d]0 and [D/P ]∗ estimates that are slightly different than
the anchored values, whereas model 3 reproduces the anchors
exactly. The model 3 fits produce more precise estimates for
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the unanchored quantities. This reflects the fact that some of
the uncertainty in the isochron is captured by the dispersion
parameter, which is absent from the model 1 fit.

Model 3 partitions the analytical and geological uncer-
tainty between the standard errors of â and b̂ on the one hand
and the dispersion parameter on the other hand. It is not easy
to visualize this partitioned uncertainty. Figure 3 uses a grey
confidence envelope to show the analytical uncertainty and
a black error bar to visualize the geological dispersion. To-
gether these two items represent the total uncertainty budget.

It is, of course, also possible to treat the dispersion param-
eter as an unknown by maximizing LL3a(b,σa,x|ā,X,Y,6)
or LL3b(a,σb,x|b̄,X,Y,6). Section 9 will give an example
of this in the context of U–Pb geochronology.

8 Pb/Pb isochrons

The 207Pb/206Pb method is based on the paired decay of two
radioactive parents P1 and P2 (238U and 235U) to two daugh-
ters D1 and D2 (206Pb and 207Pb, respectively) in the pres-
ence of a non-radiogenic sister isotope d (204Pb). This gives
rise to the following implicit age equation:

[D2/d]i − [D2/d]0

[D1/d]i − [D1/d]0
=

[
P2

P1

]
eλ2t − 1
eλ1t − 1

, (17)

where λ1 and λ2 are the decay constants of P1 and P2, re-
spectively, and [P2/P1] is constant. Equation (17) can be
recast into the generic form of Eq. (3) to form a “D/D
isochron” using the mapping of Table A1. This gives rise
to conventional (207Pb/204Pb vs. 206Pb/204Pb) and inverse
(207Pb/206Pb vs. 204Pb/206Pb) isochrons.

Unlike inverse P/D isochrons, which are characterized by
negative slopes, inverseD/D isochrons have positive slopes.
There is perfect symmetry between conventional and inverse
D/D isochrons in the sense that the intercept of a conven-
tional isochron equals the slope of an inverse isochron and
vice versa. This slightly changes and, in fact, simplifies the
procedure for anchored isochron regression.

There is no need for flipped isochron regression of Pb/Pb
data. Instead, all possible scenarios can be handled by
straightforward model 1 and model 3a regression. Isochrons
can be anchored to the non-radiogenic component in con-
ventional isochron space and to the radiogenic component in
inverse isochron space.

9 U/Pb isochrons

The U/Pb method, like the Pb/Pb method, is based on the
paired decay of 238U to 206Pb and of 235U to 207Pb. The two
chronometers can be treated separately and plotted as P/D
isochrons. These two-dimensional isochrons can be anchored
to the radiogenic and non-radiogenic composition using the

methods described in Sects. 2–7.
[

206Pb
204Pb

]
i
=

[
206Pb
204Pb

]
0
+

[
238U
204Pb

]
i

(
eλ238t − 1

)[
207Pb
204Pb

]
i
=

[
207Pb
204Pb

]
0
+

[
235U
204Pb

]
i

(
eλ235t − 1

) (18)

Alternatively, the two ingrowth equations can also be cou-
pled, forming a three-dimensional “total Pb/U isochron”.
This problem can be solved using the method of maximum
likelihood (Ludwig, 1998). There is just one important dif-
ference between this solution and the York-like algorithm of
Sect. 2. York regression is formulated in terms of a generic
intercept (a) and slope (b). In contrast, the “Ludwig” algo-
rithm is formulated in terms of the actual non-radiogenic
206Pb/204Pb (= α) and 207Pb/204Pb (=β) ratio, as well as the
age (t) of the system.

It is relatively straightforward to generalize the concept of
model 3 regression to total Pb/U isochrons when the dis-
persion is attributed to the isochron age. However, it is not
immediately clear how to do the same for the non-radiogenic
composition because this would require partitioning the dis-
persion between the α and β parameters. This paper will not
attempt to answer this question. Instead, let us conclude the
technical discussion by shifting to a far more common type
of U/Pb data.

Most published U/Pb studies do not report 204Pb because
this nuclide is rare and difficult to measure. Instead, “semito-
tal Pb/U” regression is done in Wetherill or Tera–Wasserburg
concordia space, which are akin to conventional and in-
verse isochron space, respectively. In the absence of a non-
radiogenic sister isotope of Pb, the isochron is then redefined
as a mixing line between an inherited 207Pb/206Pb ratio and
the radiogenic 206Pb/238U and 207Pb/235U ratios.

The semitotal Pb/U problem can be cast into a maximum
likelihood format by replacing Eq. (4) with{
Xi = xi + e

λ235t − 1+ εx,i
Yi = a+ bxi + εy,i,

(19)

where Xi and Yi are the measured 207Pb/235U and
206Pb/238U ratios of the ith aliquot, respectively, and xi is the
true 207Pb0/

235U ratio of the ith aliquot, whilst a = eλ238t−1
and b = [206Pb/207Pb]0[235U/238U]. Equation (19) can be
solved using the same recipe as the York reformulation of
Sects. 2–7, with the caveat that the isochron terminates on
the concordia line at the U/Pb composition corresponding to
t .

Figure 4 shows a model 3a anchored semitotal Pb/U
isochron in Tera–Wasserburg space. The true age for this
synthetic dataset is 1500 Ma. The unconstrained model 1
isochron produces an imprecise isochron age of 1491±
100 Ma, which is improved to 1504±38 Ma by anchoring to
[
207Pb/206Pb]0 = 1.1. Just like the P/D isochrons of Fig. 3,

the uncertainty budget for the U/Pb isochrons of Fig. 4 is
partitioned between the analytical and geological dispersion,
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Figure 3. Anchored isochrons for the data of Fig. 1, shown on inverse isochrons. Panels (a) and (b) anchor the non-radiogenic endmember
composition to [D/d]0 = 1± 0.05 (1σ ). Panels (c) and (d) anchor the radiogenic endmember composition to [D/P ]∗ = 1± 0.05 (1σ ).
Panels (a) and (c) use model 1 isochron regression, whereas panels (b) and (d) use model 3. Note how the estimated values for [D/d]0 and
[D/P ]∗ are exactly the same as the anchored values for model 3 but not for model 1. The vertical error bar in panel (b) and the horizontal
error bar in panel (d) represent the fixed dispersion of the vertical and horizontal intercept, respectively.

where the latter is treated as a free parameter with a maxi-
mum likelihood estimate of σ̂a = 0.053± 0.026.

10 Implementation in IsoplotR

All the algorithms presented in this paper have been imple-
mented in the free and open geochronological toolbox Iso-
plotR (Vermeesch, 2018). The ability to fit isochrons with
models 1, 2, and 3 dates back to IsoplotR’s first public re-
lease. Versions 2.1 and 5.2 added model 1 anchors to U/Pb
isochrons without and with uncertainty, respectively. An-
chored York regression and model 3 anchors with uncertainty
were added to IsoplotR 6.0. These functions can be accessed
via the GUI or from the command line.

In the GUI, anchored regression is available from the
“isochron” menu (so not from the “concordia” menu for
U/Pb data). The relevant settings can be selected from the
“options” menu and should be self-explanatory. Moving on
to the R console, use a built-in 40Ar/39Ar dataset to illustrate

the command-line functionality and start with an unanchored
inverse isochron fit using York regression.

library(IsoplotR)
attach(examples)
isochron(ArAr)

Carry out model 3a isochron regression anchored to a vari-
able initial 40Ar/36Ar ratio of 300± 5 (1σ ).

settings('iratio','Ar40Ar36',300,5)
isochron(ArAr,anchor=1,model=3,taxis=TRUE)

Here, settings(. . .) is used to change the non-
radiogenic argon composition, anchor=1 fixes the isochron
to the inherited component, model=3 tells IsoplotR to as-
sign the dispersion to the reported uncertainty of the at-
mospheric 40Ar/36Ar ratio, and taxis=TRUE changes the
x axis to a timescale (as in Fig. 2).

Finally, carry out model 3b isochron regression anchored
to a radiogenic composition that was set at 62± 1 Ma (1σ ).
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Figure 4. Model 3a semitotal Pb/U isochron for a synthetic dataset
with a true age t = 1500 Ma, anchored to 207Pb/206Pb= 1.10 with
the dispersion parameter treated as a free parameter.

isochron(ArAr,anchor=c(2,62,1),
model=3,taxis=TRUE)

The dispersion can be changed to a free parameter by
setting the third element of the anchor argument to a
non-positive value. Documentation for additional options
and settings can be accessed from the console using the
help(isochron) or ?isochron commands.

11 Conclusions

This paper builds on previous work by McIntyre et al. (1966),
Titterington and Halliday (1979), and Ludwig (2012). McIn-
tyre et al. (1966) introduced the concept of model 3 isochron
regression, attributing the excess dispersion of errorchrons to
variability of the inherited component. This approach is im-
plemented in Isoplot (Ludwig, 2012) and is referred to as
model 3a regression in this paper. Note that the McIntyre
et al. (1966) definition of model 2 regression differs from
that of Ludwig (2012). It is more akin (but not identical) to
the
√

MSWD approach of Sect. 3.
Titterington and Halliday (1979) recast the model 3 al-

gorithm of McIntyre et al. (1966) in a maximum likelihood
framework. This paper extends the maximum likelihood ap-
proach to a second type of geological scenario, in which
excess dispersion of the data around the isochron is not at-
tributed to the inherited component but to the radiogenic
component. This approach is referred to as model 3b regres-
sion.

The maximum likelihood formulation of isochron regres-
sion can also be used to anchor isochrons to either the inher-
ited or the radiogenic component and to assign geologically
meaningful uncertainty to the anchor. In reality it is possible
that some samples are affected by both mechanisms so that
different aliquots of the same sample differ in their initial
ratios as well as the timing of their isotopic closure. Unfortu-
nately, it is not possible to simultaneously capture both types
of dispersion using the algorithms of this paper.

The difference between model 1 and model 3 regression
represents two contrasting views of geological reality. The
model 1 approach assumes that the isotopic composition of
minerals represents discrete components recorded at distinct
events. In contrast, model 3 isochrons represent a “fuzzier”
reality, in which the initial composition or timing of isotopic
closure is allowed to vary within a rock. Under the latter
model, the concept of an errorchron no longer makes sense.
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Appendix A: Definitions

P a radioactive parent (e.g. 87Rb)
D the radiogenic daughter of P (e.g. 87Sr)
d a non-radiogenic sister isotope of D (e.g. 86Sr)
a, b, xi , yi the true (but unknown) values of the intercept, slope, and isotopic ratio of the ith

aliquot (out of n aliquots) from a sample
â, b̂, x̂i , ŷi the estimated values of a, b, xi , and yi , respectively
Xi , Yi the measured values of xi and yi , respectively
s[Xi], s[Yi], s[Xi,Yi] the standard errors and covariance of Xi and Yi
εx,i =Xi − xi , εy,i = Yi − yi the residuals of the data around the best-fit line
6i the 2× 2 covariance matrix of Xi and Yi
x, y, X, Y, 6 arrays and sets containing all n xi , yi , Xi , Yi , and 6i values
All uncertainties in this paper are reported as 95 % confi-

dence intervals except if noted otherwise.

Table A1. Assignment of the isotopic ratios for P/D and D/D isochrons to the generic parameters of Eq. (3).

P/D D/D

Parameter Conventional Inverse Conventional Inverse

xi [P/d]i [P/D]i [D1/d]i [d/D1]i
yi [D/d]i [d/D]i [D2/d]i [D2/D1]i
a [D/d]0 [d/D]0 [D2/d]0 [D2/D1]

∗

b [D/P ]∗ −[d/D]0/[P/D]
∗
[D2/D1]

∗
[D2/d]0

Appendix B: Data

The synthetic data in Figs. 1 and 3 were generated as follows.

1. Generate x by drawing 10 random numbers from a logit-
normal distribution where the mean and standard devia-
tion of the logits are 0 and 1/5, respectively.

2. Generate y by plugging x into Eq. (3) with a = b = 1.

3. Turn the resulting 10 pairs of {xi,yi} values into 10 trios
of {Pi,Di,di} values where di is a random number be-
tween 100 and 500.

4. Use each of the {Pi,Di,di} values obtained in the pre-
vious step as parameters for a Poisson experiment.

5. Use the Poisson values obtained in the previous step to
form 10 pairs of X and Y measurements and their (cor-
related) uncertainties.

6. Add some excess dispersion by shrinking the uncertain-
ties by 20 %.

Note that this procedure fits the definition of a model 1
isochron, even though panels (b) and (d) of Fig. 3 use the
resulting data to illustrate model 3 regression. The synthetic
data in Figs. 2 and 4 are generated using a slightly differ-
ent algorithm that simulates model 3a and 3b overdispersion.
This modified procedure uses steps 1 and 3–4 of the proce-
dure for Fig. 1 whilst replacing step 2 with a random effects
model, in which a and b are drawn from random normal dis-
tributions with standard deviations corresponding to the dis-
persion parameters σā (10 % for Fig. 2a and 5 % for Fig. 4)
and σb̄ (10 % for Fig. 2b).

Appendix C: Testing overdispersion

Whether a dataset is overdispersed with respect to the ana-
lytical uncertainties can be formally assessed using the chi-
square statistic and test. To this end, calculate the χ2 statistic
using the sum of squares term of Eq. (6).

χ2
=

n∑
i=1

1T
i 6−1

i 1i (C1)

If analytical uncertainty is the only source of dispersion in
the dataset, then χ2 is expected to follow a chi-square distri-
bution with n−2 degrees of freedom (DF= n−2, or, for an-
chored regression, DF= n−1). This is called the “null distri-
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bution”. The probability of observing a value greater than χ2

under this distribution is called the p value. A p value cutoff
of 0.05 is generally used to distinguish isochrons (p ≥ 0.05)
from errorchrons (p < 0.05). Dividing Eq. (C1) by the num-
ber of degrees of freedom produces a “reduced chi-square
statistic”, which is known to geologists as an MSWD (McIn-
tyre et al., 1966).

MSWD=
χ2

DF
(C2)

In the absence of overdispersion and for sufficiently large
samples (n > 20), the expected null distribution of the
MSWD is approximately normal with a mean of 1 and a
standard deviation

√
2/DF (Wendt and Carl, 1991). This in-

formation can be used as an alternative way to test the null
hypothesis.

Appendix D: Further details about the maximum
likelihood solution

Section 4 describes how the log-likelihood functions of
Eq. (13) can be maximized in a two-step process: (1) find the
xi values that maximize LL for any pair of a and b values,
and (2) search the space of a and b values until the overall
maximum is found. For model 1 regression, the first step has
a direct solution. Some shorthand notation for the inverse of
the covariance matrix 6i is introduced:

6−1
i ≡

[
�i1,1 �i1,2
�i2,1 �i2,2

]
, (D1)

where�1,2 =�2,1. The fitted points xi can be found by solv-
ing

∂LL1

∂xi

∣∣∣∣
x̂i

= 0, (D2)

which yields

x̂i =
Xi(�i1,1+ b�

i
1,2)+ (Yi − a)(�i2,1+ b�

i
2,2)

(�i1,1+ b�
i
1,2)+ b(�i2,1+ b�

i
2,2)

. (D3)

The same approach can be used for model 3a regression (with
∂LL3a/∂xi = 0). However, it does not work for model 3b
isochrons because ∂2LL3b/∂xi∂xj 6= 0 when i 6= j . There-
fore, the xi values are interdependent and cannot be solved
separately. Although it is possible to jointly optimize the en-
tire x vector, this takes considerably longer than model 1 and
model 3a regression. Fortunately, as explained in Sect. 5,
model 3b regression can be reformulated in terms of the
model 3a algorithm.

Code availability. IsoplotR is available from CRAN (https://
CRAN.Rproject.org/package=IsoplotR, last access: 15 July 2024)
and Zenodo (https://doi.org/10.5281/zenodo.11114310; Vermeesch
and Lloyd, 2024).

Data availability. This paper only uses synthetic data, which were
generated using the procedures outlined in Appendix B.
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