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Abstract. Radiocarbon may serve as a powerful dating
tool in palaeoceanography, but its accuracy is limited by
the need to calibrate radiocarbon dates to calendar ages. A
key problem is that marine radiocarbon dates must be cor-
rected for past offsets from either the contemporary atmo-
sphere (i.e. “reservoir age” offsets) or a modelled estimate
of the global average surface ocean (i.e. delta-R offsets).
This presents a challenge because the spatial distribution of
reservoir ages and delta-R offsets can vary significantly, par-
ticularly over periods of major marine hydrographic and/or
carbon cycle change such as the last deglaciation. Modern
reservoir age and delta-R estimates therefore have limited
applicability. While forward modelling of past R-age vari-
ability has been proposed as a means of resolving this prob-
lem, this requires accurate a priori knowledge of past global
radiocarbon budget closure (i.e. production, and cycling),
which we currently lack. In this context, the construction
of empirical regional marine calibration curves could pro-
vide a way forward. However, the spatial reach of such cal-
ibrations and their robustness subject to (uncertain) tempo-
ral changes in climate and ocean circulation would need to
be tested. Here, we use unsupervised machine learning tech-
niques to define distinct regions of the surface ocean that ex-
hibit coherent behaviour in terms of their radiocarbon age
offsets from the contemporary atmosphere (R ages), regard-
less of the causes of R-age variability. We apply multiple
algorithms (k-means, k-medoids, and hierarchical cluster-
ing) to outputs from two different numerical models span-
ning a range of climate states, forcings, and timescales of
adjustment. Comparisons between the cluster assignments
across model runs confirm some robust regional patterns that

likely stem from constraints imposed by large-scale ocean
and atmospheric physics. At the coarsest scale, regions of
coherent R-age variability correspond to the major ocean
basins. By further dividing basin-scale shape-based clusters
into amplitude-based subclusters, we recover regional asso-
ciations, such as increased high-latitude R ages, or the prop-
agation of R-age anomalies from regions of deep mixing in
the Southern Ocean to upwelling sites in the eastern equato-
rial Pacific, which cohere with known modern oceanographic
processes. We show that the medoids (i.e. the most repre-
sentative locations) for these regional sub-clusters provide
significantly better approximations of simulated local R-age
variability than constant offsets from the global surface av-
erage. This remains true when cluster assignments obtained
from one model simulation are applied to simulated R-age
time series from another. Further, model-based clusters are
found to be broadly consistent with existing reservoir age re-
constructions that span the last ∼ 30 kyr. We therefore pro-
pose that machine learning provides a promising approach to
the problem of defining regions for which empirical marine
radiocarbon calibration curves may eventually be generated.

1 Introduction

Radiocarbon was initially developed primarily as a dating
tool (Libby, 1955); however, the conditions under which ra-
diocarbon can be used to provide accurate calendar age dates
turn out to be quite restricted. Due to past changes in the pro-
duction rate of radiocarbon in the atmosphere, the total in-
ventory of radiocarbon has changed over time. Furthermore,
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changes in the global carbon cycle have also caused changes
in the distribution of radiocarbon amongst the various Earth
system carbon reservoirs. Both of these factors have caused
the radiocarbon concentrations of the various Earth system
carbon reservoirs to change over time. The conversion of a
radiocarbon measurement into a calendar age estimate re-
quires knowledge of both the radiocarbon decay rate, or half-
life, and the initial radiocarbon concentration of the fossil
entity. Therefore, radiocarbon ages must be “calibrated” to
calendar ages using a reservoir-specific calibration curve that
lists calendar ages and corresponding radiocarbon ages, de-
rived from that reservoir’s history of radiocarbon concen-
tration change. Currently, the atmosphere is the only Earth
system reservoir for which we possess a robust observation-
based calibration curve (Reimer et al., 2020; Hogg et al.,
2020). Even in the case of the relatively well-mixed atmo-
sphere, subtle differences in the evolving radiocarbon con-
centrations of the Northern Hemisphere and Southern Hemi-
sphere atmosphere require the use of hemisphere-specific
calibration curves (Reimer et al., 2020; Hogg et al., 2020).

The calibration of marine radiocarbon dates presents fur-
ther challenges (Skinner and Bard, 2022). On the one hand,
this is because the processes responsible for the exchange of
radiocarbon between the ocean and atmosphere (where ra-
diocarbon is produced) and the processes responsible for the
redistribution of radiocarbon throughout the ocean are rela-
tively slow. This results in spatially heterogeneous patterns of
radiocarbon concentration throughout the ocean, including in
the “surface” ocean (upper few 100 m). Figure 1a shows the
distribution of “background” (bomb-corrected) radiocarbon
in the surface ocean (Key et al., 2004), expressed in terms of
radiocarbon age offsets between the ocean at a given loca-
tion and the mean atmosphere (i.e. “reservoir age” or R-age
offsets). The patterns of radiocarbon concentration that are
visible in Fig. 1a are directly related to the oceanographic
phenomena that control the ocean–atmosphere exchange of
radiocarbon and its transport through the ocean (Key et al.,
2004; Koeve et al., 2015).

From a calibration perspective, the problem that arises
from this spatial heterogeneity is that the radiocarbon con-
centration at a given location cannot necessarily be esti-
mated from, e.g. the mean surface ocean radiocarbon con-
centration (or the mean offset from the atmosphere, R age).
One way to address this problem has been to apply a con-
stant location-specific correction, referred to as a “delta-R”
correction (i.e. dR(j ), for location j ) (Reimer and Reimer,
2001; Stuiver et al., 1986). Such delta-R corrections repre-
sent the difference between the local R age a location j and
time t (i.e. Rage(t, j )) and the mean surface ocean R age at
time t (i.e. Rage(t)):

Rage(t, j )= Rage(t)+ dR(j ). (1)

Figure 1. Radiocarbon reservoir age (R-age) offsets and their po-
tential variability. (a) Modern background (bomb-corrected) R ages
averaged over the upper 300 m, based on the GLODAP dataset (Key
et al., 2004). (b) Example of maximum changes in delta-R values
(i.e. deviations between local R ages and the global mean R age)
associated with ocean circulation changes simulated by the UVic
Earth system model of intermediate complexity (Menviel et al.,
2015); see Table 1.

A marine radiocarbon date from location j and time t

(14Co(t, j )) might therefore be expressed as follows:

14Co(t, j )= 14Catm (t)+Rage(t, j )

=
14Catm (t)+Rage(t)+ dR(j ), (2)

or, equivalently, in terms of the mean surface ocean radiocar-
bon age (14Csfo (t)):

14Co(t, j )= 14Csfo (t)+ dR(j ). (3)

Therefore, assuming an invariant spatial distribution of
R ages (hence an invariant ocean state), one approach has
been to apply a constant location-specific delta-R correction
(usually based on modern pre-Atomic Age estimates) to mea-
sured radiocarbon dates and calibrate these corrected dates
using a mean surface ocean calibration curve, such as Ma-
rine20 (Heaton et al., 2020). The latter has been derived from
the atmospheric calibration curve by modelling the ocean’s
response to evolving atmospheric radiocarbon concentrations
(Heaton et al., 2020). One major drawback of this approach
is that it requires assumptions (or faith in forward modelled
outcomes) regarding past changes in key environmental pa-
rameters (sea ice distribution or seasonality, ocean circula-
tion, global carbon cycling, etc.) that are actually the focus
of intense debate and ongoing research efforts.
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While the estimation of an appropriate mean surface ocean
radiocarbon history (e.g. Marine20) presents significant chal-
lenges in itself, a further difficulty arises from the fact that
local deviations from the global mean R age (i.e. delta-R
values) need not remain constant. Thus, a more accurate de-
scription of surface R ages is

Rage(t, j )= Rage (t)+ dR(t, j ). (4)

This additional challenge was already identified when the
use of delta-R corrections was first proposed (Stuiver et al.,
1986), at which time it was emphasized that their use was
likely only justified over the last ∼ 9000 years when the
global carbon cycle and ocean state were thought to have
remained “more or less” constant. Indeed, it is now appar-
ent that local R-age values have changed on the order of
100 % over the last ∼ 20000 years at some surface ocean
locations, and more importantly such changes have followed
different trajectories depending on their location (Skinner et
al., 2019). Furthermore, as illustrated in Fig. 1b, Earth system
modelling results indicate that significant and spatially het-
erogeneous changes in delta-R values are expected to have
occurred as a result of past ocean circulation perturbations
(Menviel et al., 2015).

In order to circumvent these non-trivial and persistent
challenges for marine radiocarbon dating, one approach
would be to directly estimate past surface ocean radiocar-
bon variability and thus reconstruct marine calibration curves
for key locations in the surface ocean (Skinner et al., 2019).
This would circumvent the need to make assumptions re-
garding past ocean states and therefore substantially “liber-
ate” radiocarbon as a carbon cycle tracer as well as a dating
tool. Already, the identification of regionally coherent pat-
terns of R-age variability across the last deglaciation sug-
gests that the construction of regional calibrations could be
successful (Skinner et al., 2019). However, several questions
arise in this context: how would “regions” of coherent radio-
carbon variability be defined; how robust and stable would
such regions be, subject to major climate or ocean circula-
tion change; and what gain in calibration accuracy (if any)
would be possible through their use? This study aims to ad-
dress these questions. More specifically, we investigate the
potential for regional marine radiocarbon calibrations using
unsupervised machine learning techniques to define distinct
regions of coherent R-age variability in the surface ocean.
We apply our analysis to a suite of numerical model outputs
representing a range of different climate and ocean circula-
tion states and compare our model-based results with cur-
rently available marine R-age reconstructions. Note that our
goal is not to simulate past R-age variability, as has been
proposed previously (Alves et al., 2019; Heaton et al., 2023).
Instead, we assess the regional coherence of R-age variabil-
ity using a diverse set of physically plausibleR-age scenarios
drawn from different numerical models and spanning a range
of different drivers and timescales of variability. We aim to

determine if there is robust regional coherence in R-age vari-
ability regardless of how and whyR ages have changed. Only
if such robust regional coherence exists would it be possible
to generate observationally constrained regional calibration
curves and apply them to a reasonably well-defined area of
the globe.

2 Methods

We apply unsupervised machine learning (ML) techniques to
outputs from two different Earth System models (Sect. 2.1,
Table 1). Our aim is to identify surface ocean locations that
exhibit similar R-age variability in terms of both their sig-
nal (or “shape”) and their amplitude. We make use of three
different techniques for clustering (k-means, k-medoids, and
hierarchical clustering) in addition to a suite of methods
for assessing their robustness. These are described below in
Sect. 2.2.

2.1 Model outputs

In order to explore regional associations in R-age variability,
we make use of outputs from two different numerical models:
CM2MC and UVic (Table 1). For the CM2Mc simulations,
we use annual cycles drawn from an equilibrium interglacial-
like state and from an equilibrium glacial-like state (Gal-
braith and De Lavergne, 2019). The UVic outputs consist
of annual averages (at 100-year resolution) from two sets of
transient simulations performed under “mid-glacial” bound-
ary conditions equivalent to Marine Isotope Stage (MIS) 3
(Menviel et al., 2015). One of these simulations (U-Tr) in-
volved variable buoyancy forcing applied to the North At-
lantic, resulting in changes in the strength of the Atlantic
meridional overturning circulation (AMOC). A second set of
UVic simulations (U-TrS) also involved variable buoyancy
forcing applied to the Indian and Pacific sectors of the South-
ern Ocean, as well as the eastern equatorial Pacific (EEP),
resulting in additional changes in the strength of deep con-
vection near Antarctica and in the northern Pacific (Menviel
et al., 2015). The UVic simulations consist of two consec-
utive runs for each of the U-Tr and U-TrS simulations. The
start of the second run was initialized far from equilibrium
for radiocarbon and therefore includes a global spike in ma-
rine radiocarbon activity. This has been retained in our analy-
ses to permit an assessment of our ability to identify regional
clusters both with and without the occurrence of a large back-
ground global anomaly, such as would be produced by the a
large geomagnetic excursion (Heaton et al., 2021).

The dissolved inorganic carbon (DIC) and the dissolved
inorganic radiocarbon (DI14C) are used to compute surface
ocean 114C:

114C=
(

DI14C
DIC

− 1
)
× 1000. (5)
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Table 1. Summary of model outputs used.

Model Description Runs used Time interval Grid resolution
(long× lat)

CM2Mc.v2 Coupled ocean–atmosphere–
ice biogeochemistry general
circulation model, forced by
CO2, orbital configuration, and
ice sheet size (Galbraith and De
Lavergne, 2019).

– Glacial-like equilibrium
state

– Interglacial or pre-
industrial-like equilib-
rium state

1 year (12 time steps, 1
month each)

120× 80

UVic Earth sys-
tem model v2.9
(Menviel et al.,
2015).

Transient simulations of MIS3
millennial-scale climate vari-
ability, with freshwater forcing
periodically applied to the
North Atlantic region to sim-
ulate Dansgaard–Oeschger
events.

– U-Tr (UVic transient)

– U-TrS (additional tran-
sient experiment impos-
ing a salt flux in the
Southern Ocean and the
eastern equatorial Pacific
to correct for model limi-
tations in representing the
hydrological cycle)

154 time steps (100
years each) spanning
the interval from ∼ 50
to ∼ 34 ka

100× 100

R-age offsets are then calculated, taking into account the at-
mospheric 114Catm:

Rage =−8267× ln
[(
114Cocean

1000
+ 1

)
/

(
114Catm

1000
+ 1

)]
. (6)

Here we use the “true” mean lifetime of radiocar-
bon (8267 years) based on the “Cambridge half-life” of
5730 years (Godwin, 1962). However, we note that if a
direct quantitative comparison with measurements was to
be performed, then the conventional “Libby half-life” of
5648 years should be used instead. The atmospheric114C in
the CM2Mc runs is held constant at 0 ‰, while in the UVic
runs it is held at 393 ‰.

2.2 Unsupervised machine learning

2.2.1 K -means

The k-means algorithm (see Ahmed et al., 2020, for a recent
review) divides data into a number k of clusters, defining the
partitions such that each data point is as close as possible to
the mean of its assigned cluster. For our purposes, the R-age
time series of each ocean location on the model grid consti-
tutes one data point for k-means, letting us map out which
grid points are assigned to which cluster. We feed no prior
geographical information to the algorithm; therefore, regions
delineated by the algorithm are based on the similarity of
their R-age histories alone.

2.2.2 K -medoids

The k-medoids algorithm is similar to k-means, but instead
of converging on abstract cluster centroids it identifies clus-
ter medoids, i.e. actual data points that best represent each

cluster. K-medoids is more robust to noise and outliers in
the data (Arora et al., 2016); furthermore, working with con-
crete data points as cluster centres, we can pinpoint their lo-
cations on the model grid. In the implementation we used,
k-medoids was slower than k-means, so although most of
the results and discussion sections focus on k-medoids and
hierarchical clustering, much of the exploratory analysis in-
volved k-means.

2.2.3 Selecting k for k-means and k-medoids

The main drawback of both k-means and k-medoids is that
they require a priori knowledge of the number of clusters,
k, to divide data into. We employ four methods (Table 2) to
evaluate clustering performance as a function of the number
of clusters over the range 2≤ k ≤ 10. The Caliński–Harabasz
(CH) index and the silhouette score penalize different as-
pects of cluster shape: CH generally increases with k be-
cause it favours splitting the data into many small clusters
to minimize intra-cluster distances; the silhouette score gen-
erally decreases with k because it favours a few large, well-
separated clusters.

2.2.4 Time series normalization and subclusters

We run k-means and k-medoids clustering on both unnor-
malized (“raw”) and normalized time series. In the first case,
clustering captures differences in both the amplitudes and
shapes of the time series. In the latter case, only shape in-
formation is considered.

Because clustering on normalized time series disregards
amplitude information, we perform a first round of cluster-
ing using normalized data to identify time series that share
the same patterns of variability, regardless of amplitude. A
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Table 2. Methods to pinpoint the optimal number of clusters.

Method name Description Reference

The elbow/knee method This heuristic technique considers as optimal the number of
clusters for which the sum of squared errors (distances, SSE)
between cluster members and their respective cluster centres is
no longer significantly reduced by increasing k (i.e. we have
“diminishing returns” in error reduction as k increases).

Satopaa et al. (2011)

Caliński–Harabasz index This technique captures intra-cluster cohesion and inter-cluster
separation.

Caliński and Harabasz (1974)

Davies–Bouldin index Davies and Bouldin (1979)

Silhouette score Rousseeuw (1987)

second round of clustering, using unnormalized data, is then
performed on each of these “shape-based” clusters. This al-
lows us to identify amplitude-based “subclusters” within the
shape-based clusters. The “optimal” number of subclusters
within each cluster is chosen at runtime using the elbow
method (see Sect. 2.2, Table 2).

2.2.5 Hierarchical clustering

Hierarchical clustering tells us how closely related data
points are to each other, like phylogenetic trees. This re-
quires the definition of an appropriate relatedness metric
(or conversely, a distance metric). Using the Pearson cor-
relation coefficient between the R-age histories of sites A
and B in the ocean (ρAB), we may define a distance met-
ric, d =

√
1− ρAB. This distance metric provides a measure

of the similarity of two time series: d = 0 when ρAB = 1
(the distance between perfectly correlated time series is zero)
and d = 1 when ρAB = 0 (uncorrelated time series are farther
apart). The square root ensures that the triangle inequality is
obeyed (Solo, 2019), avoiding misleading results (for exam-
ple, when we fail to enforce the triangle inequality, we may
obtain results where time series A is similar to B, B is similar
to C, but A and C are dissimilar).

Given a matrix of distances between data points, there ex-
ist numerous methods to form a hierarchy or dendrogram
(Fig. 2). We opt for the Ward method, which outperforms
other common linkage methods where clusters overlap (Ran-
driamihamison et al., 2019), as expected for our data. The
resulting dendrogram illustrates cluster relatedness and has
the advantage (over k-means and k-medoids) of not requiring
prior information on the number of clusters. The dendrogram
can be split (“flattened”) into an arbitrary number of clusters
by cutting the tree at any height.

2.2.6 Cluster analysis

The numerical cluster labels generated by the clustering al-
gorithms are assigned randomly, hampering comparison be-
tween applications. To bypass this limitation, we (1) re-order

cluster labels such that clusters with higher mean R ages are
assigned smaller numbers and (2) define a re-labelling rou-
tine that takes in two sets of clustering results and attempts to
permute the labels to maximize geographic overlap in cluster
assignment between the two maps. Cluster maps with differ-
ent grid sizes are re-gridded using a nearest-neighbour algo-
rithm, and invalid data points (e.g. re-gridded onto land) are
dropped from the analysis. As discussed below in Sect. 3,
a one-to-one matching between the two sets of labels is not
always possible.

Given a set of subclusters, we investigate to what extent
the R-age time series belonging to each subcluster are de-
scribed (1) by the subcluster medoid, (2) by the “parent”
shape-based cluster medoid, and (3) by the running mean
R age of the surface ocean. We take the difference between
each of these three “benchmark” R-age time series and the
subcluster member time series at each point in time, obtain-
ing a distribution of R-age anomalies for each of the three
cases. We compare the three anomaly distributions graph-
ically as density plots and numerically in terms of their
means.

3 Results

3.1 Equilibrium annual cycle for interglacial- and
glacial-like states

Figure 3 summarizes the k-means and k-medoids clustering
performance for different numbers of clusters (k), between
k = 2 and k = 10. The clustering is applied to one annual
cycle of unnormalized (raw) data from an interglacial-like
climate state (solid lines in Fig. 3) and a glacial-like cli-
mate state (dashed lines in Fig. 3) simulated by the CM2Mc
model (Galbraith and De Lavergne, 2019). Note that the
Davies–Bouldin index has been multiplied by −1 to match
the Caliński–Harabasz index and the silhouette score, such
that lower values indicate diminishing explanatory power.
For k-means, the four methods suggest k = 4 as a particularly
suitable number of clusters; it is pinpointed by the “elbow
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Figure 2. Illustration of the basic operation of the hierarchical clustering algorithm on synthetic data defined along two component axes.
Note how points that plot closer together in panel (b) are recovered as more closely related in the dendrogram in panel (a).

Figure 3. Clustering performance of k-means (left) and k-medoids (right) on unnormalized data as a function of the number of clusters over
the range 2≤K ≤ 10 for the CM2Mc runs using unnormalized data (solid line for interglacial data, dotted line for glacial data). Vertical
lines mark the elbow points. Note how for the interglacial case the elbow method and all three scores recover k = 4 as a peak in clustering
performance with k-means and k = 6 with k-medoids.
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Figure 4. Clustering results using k-medoids on unnormalized data from the CM2Mc interglacial run, using k = 4.

method” (vertical solid line, top-left panel) and rises above
the background trends in the silhouette score, the CH index
(slightly), and the DB index. A similar result is obtained for
the glacial-like climate state using k-means (Fig. 3, left-hand
plots, dashed lines). There is less agreement among the meth-
ods using k-medoids for the interglacial-like climate state
(Fig. 3, right hand plots, solid lines), with an elbow apparent
at k = 4, peaks in silhouette scores, and the CH index and DB
index at k = 6. When applied to raw data from the glacial-
like climate state, k-medoids also yield an elbow at k = 4
and a strong peak in the CH index (Fig. 3 left-hand plots,
dashed lines). Overall, for both k-means and k-medoids, no
clear optimum value for k emerges for k > 2 when using nor-
malized data (Fig. 3), and this remains true when applied to
normalized data (not shown).

In this context, where we are interested in the eventual
construction of regional radiocarbon calibration curves, an
optimal value of k will be the minimum value that provides
a sufficient degree of explanatory power. Here, explanatory
power reflects the degree to which the cluster centroid or
medoid is able to represent the R-age history at a given lo-
cation with sufficient accuracy and precision. Encouragingly,
Fig. 3 suggests that for two very different equilibrium climate
states the bulk of R-age variability can be captured with a
relatively small number of clusters, e.g. k = 4, and with little
sensitivity to clustering method (e.g. k-means or k-medoids).

Figure 4 shows the clustering results for k-medoids ap-
plied to unnormalized CM2Mc interglacial data, using k = 4.
The cluster map in Fig. 4a illustrates the ocean regions cor-
responding to each cluster (landmasses in white), Fig. 4b

shows all theR-age time series colour coded by cluster mem-
bership, and Fig. 4c shows time series associated with each
cluster along with their respective centroids. Cluster no. 1
forms a longitudinal band in the Southern Ocean, featuring
the highest mean R-ages and the strongest annual variation
in R-age. Cluster nos. 2 and 3 cover a lower-latitude band
within the Southern Ocean but also outcrop in the eastern
equatorial Pacific (EEP) Ocean, the eastern central Atlantic
Ocean, the North Atlantic Ocean, the northern Pacific Ocean,
and the northern Indian Ocean. The rest of the ocean is as-
signed to cluster no. 4, which dominates the tropical and sub-
tropical gyre regions and exhibits the lowest R-ages and least
variability over the annual cycle. Increasing the number of
clusters to k = 9 further subdivides the ocean (Fig. S1) but
with only a modest gain in explanatory power, producing the
same broad patterns as for k = 4.

Clustering on normalized data to extract clusters based on
time series shape alone (without amplitude information) pro-
duces highly geographically disconnected clusters for both
k-means and k-medoids when k > 2 (not shown). Neverthe-
less, a north–south divide is apparent in the clustering re-
sults for normalized data using k = 4, reflecting an annual
signal that is dominated by high-latitude seasonal convec-
tion and ocean–atmosphere gas exchange (also apparent in
the centroid time series shown in Fig. 4c). The emergence of
this north–south divide is further illustrated by hierarchical
clustering on Pearson distances, which is also less sensitive
to time series amplitude and recovers similar regions to the
shape-based clustering (Fig. 5). The resulting dendrogram
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Figure 5. Hierarchical clustering results for the CM2Mc interglacial run based on Pearson distances between the R-age time series at each
location. Panels (c) and (d) show the same cluster dendrogram but sliced at two different heights (cophenetic distances) to produce four and
two clusters on the left and right, respectively. Panels (a) and (b) show the resulting cluster geographies, with landmasses in grey.

confirms that the north–south divide emerges at the highest
branching level (Fig. 5, right panels).

Applying k-medoids to the glacial-like climate state sim-
ulated by CM2Mc, again using k = 4, yields very similar
(though not identical) results. This is shown in Fig. 6, which
compares the clusters obtained for the glacial and interglacial
states simulated using CM2Mc, demonstrating ∼ 80 % over-
lap. The similarity of the clusters obtained for the two simu-
lations suggests minor differences in the overall impact of the
annual cycle on the distribution of R-ages between two con-
trasting climate states. However, it is notable that the regions
of non-overlap tend to occur at the margins of the clusters,
suggesting an inherent ambiguity at the junctures of cluster
regions (hatched areas in Fig. 6).

3.2 Transient freshwater hosing experiments

Figure 7 illustrates k-medoids clustering metrics for raw and
normalized data (mean annual, in 100-year time steps) from
the U-Tr and U-TrS simulations, which involved transient
buoyancy forcing applied in the North Atlantic, as well as the
Southern Ocean and EEP, against a mid-glacial background
climate state equivalent to Marine Isotope Stage (MIS) 3
(Menviel et al., 2015) (see Table 1). Similar to the CM2Mc
results, optimal values of k for the UVic outputs appear to
lie at 4, 8, or 9. For comparison with the CM2Mc clustering
results on unnormalized data, we choose to cluster the U-Tr
and U-TrS data using k = 4.

The U-Tr clustering results using k-medoids on normal-
ized data (k = 4) are shown in Fig. 8. Broadly similar re-
sults are obtained when using k-means instead (not shown).
The regional clusters that emerge from the U-Tr data broadly
correspond to the major ocean basins (Fig. 8a). The Arctic
Ocean (cluster no. 2) shows strong R-age variability, the At-
lantic Ocean (no. 3) has smaller R-age peaks, the R-age time
series of the Southern Ocean (no. 1) are rather flat compared
to the others, and the Indo-Pacific cluster (no. 4) features
broader and less accentuated maxima (Fig. 8c). Again, in-
creasing the number of clusters to k = 8 results in further
splitting of the ocean basins (e.g. isolating the North Atlantic
and the southern half of the Pacific) but with broadly the
same basin-wide divisions as for k = 4 (Fig. S2).

To explore the possibility of identifying sub-regions of
similar amplitude variability, within each shape-based clus-
ter, we perform a second round of clustering on unnormal-
ized data from within each of the four shape-based clusters
shown in Fig. 8. The results are shown in Fig. 9, demon-
strating a decrease in the amplitude of R-age variability with
decreasing latitude in the Southern Ocean, the Arctic Ocean,
and the North Atlantic, despite distinct patterns of variabil-
ity in each of these regions. Similarly, there is a decrease in
R-age amplitude away from some ocean margins, e.g. in the
EEP Ocean, the eastern central Atlantic Ocean, the northern
Pacific Ocean, and the northern Indian Ocean.

Like with the CM2Mc data, hierarchical clustering of the
U-Tr data based on Pearson correlations (Fig. 10, left side)
produces similar geographic patterns to k-medoids cluster-
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Figure 6. Comparison of clustering results between the two CM2Mc runs (a: interglacial; b: glacial) using k-medoids on unnormalized data.
The colour-coded Venn diagrams quantify overlap between the two maps. For example, cluster no. 3 (green) is assigned substantially more
area in the interglacial run on the left, while cluster no. 4 (yellow) covers roughly the same geographic region in both runs.

Figure 7. Clustering performance of k-medoids on unnormalized (left) and normalized (right) data as a function of the number of clusters
over the range 2≤K ≤ 10 for the UVic runs (solid line: U-Tr data; dotted line: U-TrS data). Vertical lines mark the elbow points.
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Figure 8. Clustering results using k-medoids on UVic (U-Tr run) normalized data. The layout is the same as for Fig. 4. Note how normal-
ization produces clusters of similarly shaped R-age histories, regardless of their amplitudes.

Figure 9. Clustering results using k-medoids on UVic (U-Tr run) data in two stages, whereby the shape-based clusters from Fig. 8 are
further subdivided by re-applying k-medoids to unnormalized data. The left plot shows R-age time series grouped by cluster nos. 1–4, with
sub-clusters identified by shading and sub-cluster medoids shown by heavy green lines. (e) Map of R-age clusters (identified by colours) and
sub-clusters (identified by shades of each colour). Note how the subclusters are distinguished by their mean R-ages.
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ing on normalized data. The Arctic Ocean is most closely
related to the North Atlantic on the dendrogram. Meanwhile,
the central Atlantic is more related to the Southern Ocean
than to the North Atlantic, marking a north–south divide high
up on the dendrogram highlighted in Fig. 10 (right side). The
northern Pacific stands out from the rest of the Pacific, but
overall the Pacific appears to be more closely related to the
central Atlantic and Southern Ocean than to the Arctic and
North Atlantic.

A comparison of results obtained for normalized data from
U-Tr (North Atlantic hosing) and U-TrS (North Atlantic hos-
ing with Southern Ocean buoyancy forcing) indicates clus-
ter overlap ∼ 95 % (Fig. S3), with differences primarily oc-
curring along the northern margin of the Southern Ocean.
The difference between the two UVic simulations is smaller
than the difference between the two CM2Mc simulations.
Most significantly, a comparison of clusters obtained using
k-medoids applied to unnormalized data from the U-Tr sim-
ulation (transient annual averages) and the glacial CM2Mc
simulation (equilibrium annual cycle) yields an overlap of
∼ 70 % (Fig. 11). Here the main difference arises from the
identification of a region of distinct annual variability in the
sub-polar Southern Ocean in the glacial CM2Mc simulation,
which is not present in the transient U-Tr simulation. Over-
all, the regional clusters that are obtained in the three differ-
ent sets of model runs exhibit a good degree of coherence,
and it is particularly encouraging that similar regional clus-
ters are obtained for model runs with completely different
boundary conditions and timescales of variability (Fig. 11).
This would suggest that the regional clustering ofR-age vari-
ability may be broadly independent of how and why R-ages
have changed, and therefore the regional clusters would ap-
ply to a wide range of possible R-age scenarios (including
those realized in the past).

4 Discussion

The broad similarity of the clustering results obtained across
the suite of equilibrium and transient simulations (Figs. 6, 11
and S3) suggests that the regional R-age associations arise
to a large extent from fundamental aspects of global ocean
and climate dynamics. For example, the hemispheric parti-
tioning in normalized annual cycle data from both glacial
and interglacial climate states clearly reflects the dominant
influence of the annual cycle. Similarly, the regional clusters
obtained in unnormalized annual cycle data (Fig. 4) and es-
pecially in transient annual average data (Fig. 8) appear to
reflect provinces of distinct hydrographic variability that are
defined by fundamental oceanographic characteristics such
as the presence, absence, and variability of sea ice, deep mix-
ing, or upwelling. Such features are typically geographically
“locked”, despite being varying in time in their intensity and
expression. It was an appreciation of such regional specificity
in the mechanisms that control R-age variability that pro-

vided an initial justification for using constant corrections to
the global mean R-age (i.e. delta-R values) as an approxi-
mation of past local R-age variability (Stuiver et al., 1986).
R-ages in regions with extensive sea ice cover, deep mix-
ing, or upwelling will always be offset to higher values as
compared to the global mean. In the U-Tr and U-TrS simula-
tions, the Arctic and Antarctic R-age clusters broadly coin-
cide with regions of similarly coherent sea ice variability (not
shown), though the overlap is not perfect, suggesting that a
more complex array of processes controls the regionalism in
R-age variability. The clustering results for the CM2M2 sim-
ulations suggest that regional seasonality (in sea ice, mixed-
layer depth, etc.) may play a contributing role. Here, our pri-
mary interest is in the viability of the clustering approach
when applied to realistic (i.e. modelled) R-age variability,
rather than the precise reasons for the variability itself. Nev-
ertheless, some regional associations appear not to have any
plausible physical link at all, e.g. the grouping of the Arctic
and sub-Antarctic in Fig. 4. Although the regional calibra-
tion curves for these two regions might look very similar, it
seems sensible to suggest that any given regional calibration
curve should probably only be applied to a single geographi-
cally contiguous area. In any event, a detailed analysis of the
controls on regional R-age variability in model simulations
that aim specifically to reproduce R-age reconstructions rep-
resents an important target for future work, which we do not
address in this study. Here clustering may also yield useful
insights.

In addition to stable “regionality” of R-age behaviour, the
use of delta-R values over long spans of time further re-
quires that regional R-ages follow the same temporal trends
as the global mean. As noted when the delta-R approach
to marine radiocarbon calibration was formulated (Stuiver
et al., 1986) and as illustrated by the U-Tr and U-TrS sim-
ulations (e.g. Figs. 8 and 9), such global coherence cannot
necessarily be expected when the ocean–climate system un-
dergoes significant change (see also Fig. 1b). Changes in
sea ice cover, mixed-layer depth, upwelling strength, etc.,
will change the difference between a local R-age and the
global mean (i.e. delta-R). Therefore, a key question for ra-
diocarbon calibration is whether regional clusters (and sub-
clusters) as identified here can provide more accurate esti-
mates of past R-age variability at a given location than is
provided by, e.g. the global mean (± a constant correction,
delta-R).

Here, this question can be answered for the model out-
puts by comparing the magnitude, and in particular the vari-
ance, of offsets between localR-ages and (1) the global mean
R-age, (2) the associated (shape-based) cluster centroid, and
(3) the (amplitude-based) sub-cluster centroid. The variance
in these offsets is important because it reflects the degree to
which a constant correction, e.g. applied to a global average
calibration curve (a delta-R value), would be wrong on aver-
age. Figure 12 illustrates the spatial distributions for each of
these offsets and their variance based on the U-Tr outputs. In
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Figure 10. Hierarchical clustering results for the UVic U-Tr run. Panels (c) and (d) show the same cluster dendrogram but sliced at two
different heights (cophenetic distances) to produce seven and two clusters on the left and right, respectively. Panels (a) and (b) show the
resulting cluster geographies, with landmasses in grey.

Figure 11. Comparison of clustering results between the UVic U-Tr run (a) and the CM2Mc glacial run (b) using k-medoids on unnormalized
data. The colour-coded Venn diagrams quantify overlap between the two maps. Part of the mismatch is attributable to differences in coastal
boundaries and model resolutions (here UVic results are re-gridded to permit comparison to CM2Mc).
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Figure 12. The variance (a) and mean (b) of the distribution of R-age offsets in the UVic U-Tr data when computed relative to three different
references: the running mean of the global surface ocean, analogous to, e.g. Marine20 (column 1); the medoid of the shape-based cluster to
which the subcluster belongs (column 2); and the subcluster’s own medoid (column 3). The decreasing magnitudes from left to right suggest
an increase in the accuracy with which the calibration captures R-age histories in each subcluster, with sub-cluster medoids providing the
greatest accuracy. This suggests that regional calibrations, e.g. for cluster or sub-cluster regions, could provide more accurate calibrations
than constant delta-R values applied to a global mean estimate such as Marine20.

Fig. 12, the largest R-age offsets and the greatest variance in
R-age offsets occur when referencing to the global mean sur-
face R-age (305± 208 14Cyrs). The smallest magnitude and
variance occur when referencing to the centroid of the rel-
evant amplitude-based sub-cluster (54± 29 14Cyrs), and an
intermediate gain in accuracy is achieved when referencing
to the centroid of the wider shape-based cluster (189± 93
14Cyrs). Encouragingly, a similar stepwise improvement in
accuracy is found when shape-based clusters or amplitude-
based sub-clusters from the U-Tr simulation are used to as-
sess R-age offsets in the glacial CM2Mc simulation (e.g. av-

erage offsets of 259±227 14Cyrs for the global mean versus
79± 36 14Cyrs for sub-cluster centroids; Fig. S4).

The above discussion would suggest that radiocarbon cal-
ibrations performed using a regional calibration curve, par-
ticularly one derived at an appropriate sub-cluster centroid
location, could be more accurate than calibrations performed
using a global mean calibration curve in conjunction with a
constant delta-R value. By way of illustration, an R-age (or
delta-R) uncertainty of 200 (versus 30) 14C yrs would re-
sult in a calibrated age uncertainty of ∼ 540 (versus ∼ 170)
when calibrating a radiocarbon date of 20000± 150 14C
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Figure 13. Tentative hierarchical clustering of available R-age reconstructions spanning the last deglaciation (Skinner et al., 2023) compared
with grouping of proxy observations according to location and corresponding model-based clusters. (a)R-age time series locations and proxy-
based cluster membership (coloured circles) superposed on a map of model-derived shape-based hierarchical clusters (numbered 1 to 4) for
the U-TrS simulation: filled green circles indicate proxy observation cluster 1; filled blue circles indicate proxy observation cluster 2; and
red and blue outlines indicate low- and high-amplitude sub-cluster membership, respectively. Two clusters and sub-clusters were employed
for the proxy-based clustering due to the sparsity of available time series. (b–e) Greenland NGRIP and Antarctic EPICA Dome C (EDC)
ice core temperature proxy records (the heavy black line is the three-point running mean) compared with R-age data grouped according
to model-based clusters (four shape-based clusters and two amplitude-based sub-clusters). Dashed lines indicate R-age data (binned and
interpolated; see text), and thick solid lines indicate means of the time series that belong to each model-based sub-cluster. Direct clustering
of the proxy observations is shown to be broadly consistent with the model-based clustering.

years. Similarly, a delta-R error or bias of up to ∼ 1000
14C years, as is observed at high southern latitudes in the
UVic simulations (Fig. 1b), would result in a calibrated age
error or bias of ∼ 1000 years. Notably, the above analysis
likely underestimates the uncertainty associated with using a
global mean calibration curve and constant delta-R value in
practice, since it assumes perfect knowledge of the evolving
global mean R-age (i.e. a global mean radiocarbon calibra-
tion). As noted above, our best estimate of the mean ocean
R-age history is currently based on modelling and there-
fore assumptions regarding past ocean circulation and cli-
mate change (Heaton et al., 2020).

While our analysis provides an illustration of the viabil-
ity and the utility of defining regions for which local cali-
brations might be constructed, it only does so theoretically
using model outputs. However, the fact that regional clus-
ters can successfully be identified in model outputs is in it-
self consistent with the observation of distinct regional pat-
terns in R-age reconstructions, e.g. from the northeastern At-
lantic, Iberian Margin, South Atlantic, and Southern Ocean
(Skinner et al., 2019). The further observation of similar but
lower-amplitude R-age trends on the Iberian Margin versus

the northern northeastern Atlantic and in the South Atlantic
versus the Southern Ocean also resonates with the sub-cluster
results obtained from the U-Tr and U-TrS outputs, as does
the observation of an apparent link between the high south-
ern latitudes and the eastern equatorial Pacific (De La Fuente
et al., 2015) (Fig. 11).

The regional patterns picked out by clustering of model
outputs are further confirmed by a tentative hierarchical clus-
tering performed on 23 available shallow sub-surface R-
age reconstructions from < 500 m water depth (or < 1000 m
in the Southern Ocean). For this analysis, time series were
selected that include at least six data points from the 5–
21 ka BP interval, which were binned and interpolated onto
500-year intervals. Using normalized data and k = 2 (given
the lack of data from, e.g. the Arctic, Indian, or northern Pa-
cific oceans), hierarchical clustering of the proxy data iden-
tifies a dominant signal in the North Atlantic (Fig. 13, blue
circles) that is distinct from the primary signal observed in
the Southern Ocean and Pacific Ocean (Fig. 13, green cir-
cles). Amplitude-based sub-clusters from within these re-
gional shape-based clusters (again with k = 2) generally also
manage to isolate higher-amplitude, high-latitude, and east-
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ern equatorial upwelling signals (Fig. 13, blue-outlined cir-
cles) from lower-amplitude low-latitude signals (Fig. 13,
red-outlined circles). These proxy observation-based clus-
ters (Fig. 13b–e) are generally consistent with the model-
based hierarchical clusters (U-TrS, four clusters, and two
sub-clusters) that correspond to the proxy time series loca-
tions (filled circles in Fig. 13a).

Thus, the model-based clustering correctly predicts
higher-amplitude signals in the eastern equatorial upwelling
region, the Southern Ocean, and the high-latitude North At-
lantic. Furthermore, when grouping the R-age data using
either direct hierarchical clustering or model-based cluster
membership, the dominant signals that emerge appear to
track Greenland and Antarctic temperature variability, as ob-
served for example by Skinner et al. (2019). Although the
similarities between proxy observation- and model-based re-
gional clustering are encouraging, it should be noted that the
clustering of proxy data is not especially robust and is highly
sensitive to data selection and parameter selection (e.g. k,
minimum time series length). A far larger number of better-
resolved surface reservoir age data, spanning a greater geo-
graphical range, will be needed to improve upon the highly
tentative data-based regional clusters shown in Fig. 13. Nev-
ertheless, the results are encouraging and suggest that the
generation of regional marine radiocarbon calibration curves
for the high-latitude and mid-latitude northeastern Atlantic
(i.e. Iberian Margin) is already a viable prospect.

5 Conclusions

K-means, k-medoids, and hierarchical clustering reveal dis-
tinct regions of coherent R-age behaviour in the surface
ocean, subject to a range of perturbations, from seasonal to
millennial timescales. In this context, the optimal value of
k (the number of clusters) is difficult to define robustly a
priori and appears to depend on the method and the input
data selected. The regional clusters that are obtained, across
the range of modelled oceanographic perturbations investi-
gated, tend to cohere in a broadly consistent manner with
specific geographic domains, which in turn appear to reflect
fundamental oceanographic and/or seasonal controls on rel-
evant processes such as sea ice variability, upwelling, and
mass divergence. Clustering thus confirms geographic con-
trols on the variability in R-ages and their offset from the
global mean surface ocean R-age (Stuiver et al., 1986). At
larger spatial scales, clustering reveals broadly basin-scale
associations in the “character” (shape) of R-age variability.
These large-scale shape-based clusters may be further sub-
divided into regional amplitude-based sub-clusters. Compar-
isons within and between different model simulations, dif-
ferent timescales, and different models indicate that cali-
bration curves constructed at appropriate locations, repre-
sentative of the regional sub-cluster medoids or centroids,
would yield significantly more accurate calibrated radiocar-

bon dates than provided by the standard approach that as-
sumes constant delta-R values. Furthermore, a tentative ap-
plication of these methods to existing R-age data identifies
similar regional associations as compared to the numerical
model outputs. Substantially more and better-resolved R-age
reconstructions covering more of the worlds’ ocean basins
will be needed before robust regional radiocarbon calibra-
tions can be fully tested and applied. Nevertheless, based on
our results, machine learning appears to be a promising ap-
proach to the problem of defining regional marine radiocar-
bon calibration curves. The generation of such observation-
based regional calibration curves (along with well-defined
regions of applicability) would represent an alternative and
complementary approach to that already proposed for ma-
rine radiocarbon age calibration at high latitudes based on
forward modelling (Alves et al., 2019; Heaton et al., 2023).
One advantage of the approach advocated here is that it does
not require explicit modelling of past R-age variability and
therefore does not assume a priori knowledge of past ocean
circulation, sea ice, carbon cycling, etc. While the paucity
of existing R-age reconstructions currently restricts our abil-
ity to deploy regional marine radiocarbon calibrations across
the globe, the mid- and high-latitude sectors of the northeast-
ern Atlantic emerge as the most promising regions for initial
progress in this regard.
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