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Figure S1: U concentration (ppm) of test zircon used in this study. LCT-A-Lava Creek Tuff Unit A
zircon, OG-1-Owens Gully Diorite zircon.



Xe* PFIB Microsampling of GZ7 Zircon — SEM View
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Figure S2: (A) Cathodoluminescence (CL) texture and in situ U concentration of the microsampled GZ7 zircon
reference material. (B) Eleven microsamples of GZ7 zircon machined using Xe* PFIB. (C—H) Scanning electron

microscope view of the step-by-step microsampling procedure. Angles next to arrows refer to angles of the
PFIB objective with respect to zircon surface at different machining steps. (H) Sides labelled a, b and ¢
correspond to those in Figure 6B and C in the main text.
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Figure S3: (A—H) Plasma focused ion beam (PFIB) view of the step-by-step zircon microsampling. Yellow
rectangles represent PFIB machining patterns. Angles next to arrows refer to angles of the PFIB objective with
respect to zircon surface at different machining steps. (H) Sides labelled a, b and ¢ correspond to those in

Figure 6B and C in the main text.




Femtosecond Laser Microsampling of GZ7 Zircon — SEM View
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Figure S4: (A) Initial trench opening and (B) undercut during femtosecond laser zircon microsampling.



Xe* lon Beam Irradiation Experiments — Fera3 PFIB
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Figure S5: (A—G) Xe* irradiation experiments at different voltages (30-3 kV) on Fera3 PFIB and (H-K)
preparation of TEM lamellae from the irradiated sites. LMIS-liquid metal ion source.




Xe*/Ar* lon Beam Irradiation Experiments — Helios 5 Laser Hydra UX
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Figure S6: Xe*/Ar* irradiation experiments at different voltages (30-5 kV) on Hydra PFIB.

(A) Cathodoluminescence texture of the Mud Tank zircon used for the irradiation experiments. (B) PFIB column
geometry during ion machining. (C—N) Sites on Mud Tank zircon irradiated at different ion beam voltages.




Fs Laser Edge Irradiation Experiment — Helios 5 Laser Hydra UX
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Figure S7: Femtosecond laser (515 nm wavelength) irradiation experiment on an exposed edge of a Mud Tank
zircon. (A) Cathodoluminescence (CL) texture of the irradiated Mud Tank zircon. (B) Surface halo and lack of
debris after femtosecond laser machining. (C and D) Curtained surface topography of a laser crater wall.

(E) View of the sample chamber showing the main elements. For normal incidence laser irradiation, a pre-tilted
holder (60 °) is used to orient the zircon surface at a 90 ° angle with respect to the laser objective (not shown).
(F-I) Selected steps of the preparation of a TEM lamella from the irradiated edge. LMIS-liquid metal ion source.



TEM Lamella from a PFIB Zircon Microsample — Ga* LMIS FIB
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Figure S8: TEM lamella preparation from a Xe* PFIB-machined Mud Tank microsample. Marked microsample
edges in A—C correlate with those in Figure 6B and C in the main text. LMIS-liquid metal ion source.




Xe* Irradiation Damage — Fera3 PFIB
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Xe* Irradiation Damage — Fera3 PFIB
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Xe* Irradiation Damage — Fera3 PFIB
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Figure S9: TEM images and EDS element maps of zircon damaged by
Xe* irradiation at different voltages (30-3 kV) on Fera3 PFIB. The
damaged zone is nanometers-thick, porous and amorphous, and exhibits

a rippled surface for high voltage (30 kV and 15 kV) conditions. Element
maps show implantation of Xe* in continuous layers within the damaged
zone and local mobility of Zr, Si and O. Ga element map (l) shows no
implantation of Ga* ions into zircon during TEM lamella preparation.
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Xe" Irradiation Damage — Helios 5 Laser Hydra UX
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Xe* Irradiation Damage — Helios 5 Laser Hydra UX
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Figure S10: TEM images and EDS element maps of zircon damaged by Xe* irradiation at different voltages
(30-5 kV) on Hydra PFIB. Electron diffraction (EDP) and fast Fourier transformation (FFT) patterns show a

dominantly crystalline state of the analyzed TEM lamella from the irradiated zircon.



Ar* Irradiation Damage — Helios 5 Laser Hydra UX
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Ar* Irradiation Damage — Helios 5 Laser Hydra UX

E' G'|
D'
F'|
50 nm 10 nm 50 nm EDP 10 nm* 10 nm
H’' Si
10 nm
" K' M
10 nm 10 nm 10 nm 10 nm 10 nm

Figure S11: TEM images and EDS element maps of zircon damaged by Ar* irradiation at different voltages
(30-5 kV) on Hydra PFIB. Electron diffraction (EDP) patterns show a dominantly crystalline state of the

analyzed TEM lamella from the irradiated zircon.



Fs Laser Irradiation Damage — Helios 5 Laser Hydra UX
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Fs Laser Irradiation Damage — Helios 5 Laser Hydra UX
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Figure S12: Damage in zircon induced by femtosecond laser machining (515 nm wavelength). TEM images
and EDS element maps show a chaotic texture and mobility of Zr and Si in the topmost part immediately

exposed to the laser beam. Whole TEM lamella (~2 um) of laser-irradiated zircon is damaged and exhibits
globular structures.




A Lava Creek Tuff Unit A (LCT-A) zircon

B OG-1 (Owens Gully Diorite) zircon
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Figure S13: Cathodoluminescence (CL) texture of the Lava Creek Tuff Unit A (LCT-A) and Owen Gully Diorite
(OG-1) zircon used in the experiments on the impact of coatings on U-Pb systematics.
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Fig. S14: (A) U, mass correction for PFIB-machined Mud Tank microsamples and non-irradiated
shards required to force concordance at 711 Ma (reference age given by large pieces). The correction
assumes a %U/**U of U, , of 137.8185 * 0.045 of magmatic zircon (Hiess et al., 2012).
(B) Mass of U (pg) measured in total procedural blanks (TPBs) and in reagents blanks (including the
loading blank) prepared with both ET535 and ET2535 tracer solutions. The reagent blanks were pre-
pared from 30 drops of 6N HCI and 24 drops of H,O (representative of amounts used to elute

Pb and U during chemistry), spiked with one drop of ET535 tracer solution, and dried down with one
drop of H,PO, acid in beakers used for samples.





