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Abstract. Down-hole fractionation (DHF), a known phe-
nomenon in static spot laser ablation, remains one of the most
significant sources of uncertainty for laser-based geochronol-
ogy. A given DHF pattern is unique to a set of conditions, in-
cluding material, inter-element analyte pair, laser conditions,
and spot geometry. Current modelling methods (simple or
multiple linear regression, spline-based regression) for DHF
do not readily lend themselves to uncertainty propagation,
nor do they allow for quantitative inter-session comparison,
let alone inter-laboratory or inter-material comparison.

In this study, we investigate the application of orthogo-
nal polynomial decomposition for quantitative modelling of
LA-ICP-MS DHF patterns. We outline the algorithm used to
compute the models, apply it to an exemplar U–Pb dataset
across a range of materials and analytical sessions, and fi-
nally provide a brief interpretation of the resulting data.

In this contribution we demonstrate the feasibility of quan-
titative modelling and comparison of DHF patterns from
multiple materials across multiple sessions. We utilise a rel-
atively new data visualisation method, uniform manifold ap-
proximation and projection (UMAP), to help visualise the
data relationships in this large dataset while comparing it to
more traditional methods of data visualisation.

The algorithm presented in this research advances our
capability to accurately model LA-ICP-MS DHF and may
facilitate reliable decoupling of the DHF correction for
non-matrix-matched materials, lead to improved uncertainty
propagation, and facilitate inter-laboratory comparison stud-
ies of DHF patterns.

The generalised nature of the algorithm means it is ap-
plicable not only to geochronology but also more broadly
within the geosciences where predictable linear (x-to-y) re-
lationships exist.

1 Introduction

LA-ICP-MS of geological materials has significantly ad-
vanced since its adoption at the end of the 20th century and is
today the technique of choice for most applications for min-
eral geochronology. Initial geochronological studies on zir-
con were only able to produce tens of individual data per
session due to technical, time, and computing limitations
(e.g. Hirata and Nesbitt, 1995). Nowadays high-precision
individual analyses on multiple minerals using a range of
geochronologic systems (e.g. U–Pb, Rb–Sr, Lu–Hf, Re–Os)
can be rapidly and accurately acquired (Chew et al., 2019;
Gehrels et al., 2008; Glorie et al., 2023; Hogmalm et al.,
2017; Kendall-Langley et al., 2020; Larson et al., 2024; Mc-
Farlane, 2016; Mohammadi et al., 2024; Roberts et al., 2020;
Simpson et al., 2021; Subarkah et al., 2021; Tamblyn et al.,
2024; Zack et al., 2011). However, to achieve accurate, high-
quality data, correction procedures need to be implemented,
including calibration to reference material(s) (RM), correc-
tions for matrix offsets, and inter-element down-hole frac-
tionation (DHF) (Agatemor and Beauchemin, 2011; Allen
and Campbell, 2012; Gilbert et al., 2017; Günther et al.,
2001; McLean et al., 2016; Ver Hoeve et al., 2018). As
DHF is a geometry-dependent spot-ablation phenomenon
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unique to each material and (inter-element) analyte ratio pair
(e.g. NIST SRM glasses, zircon, 206Pb/238U, 207Pb/235U,
87Rb/87Sr), it cannot be corrected via ICP-MS tuning (Mank
and Mason, 1999). However, DHF can be optimised to bal-
ance the overall count rate against the magnitude of DHF
by adjusting the spot geometry and fluence parameters for
analysis of a given material (Guillong and Günther, 2002;
Košler et al., 2005). Researchers have proposed several meth-
ods for minimising DHF, typically by surface rastering or
limiting acquisition times to short intervals; however, these
compromise either the spatial or temporal resolution of anal-
ysis (Horstwood et al., 2003; Paton et al., 2010). Alterna-
tively, regression modelling can be used to correct DHF dur-
ing the data reduction process either using a predetermined
empirical model or fitting a model to the observed data (e.g.
Horn et al., 2000; Paton et al., 2010). Currently, the latter
method of fitting a regression model to the observed DHF
pattern of an RM then applying that model to unknowns is
used by commercial data reduction software (e.g. LADR:
Norris and Danyushevsky, 2018; Iolite: Paton et al., 2011)
for DHF correction in LA-ICP-MS methodology. In this pro-
cess a matrix-matched RM is used (or a glass RM if no suit-
able matrix-matched material is available) and requires the
assumption that the unknowns (i.e. target samples) have the
same DHF behaviour as the RM. If the modelled RM poorly
matches the DHF of the unknown, it will introduce some
artefact (user-induced error) that may either increase the un-
certainty of the observed ratio of the unknowns if using a
time-matched signal or result in over- or underestimation of
the observed ratio if using a subset of the signal (Fig. 1).

Additionally, these modelling methods (i) do not read-
ily lend themselves to arithmetic propagation of their un-
certainties (Paton et al., 2010), (ii) require an arbitrary user
choice for the fitting method (simple or multiple linear re-
gression polynomial order, or non-linear regression), and
(iii) cannot be quantitatively compared between laborato-
ries or even intra-laboratory analytical sessions. Thus, inter-
element DHF remains one of the largest sources of uncer-
tainty for LA-ICP-MS analyses and is difficult to either qual-
itatively or quantitatively compare (Horstwood et al., 2016).

Here we present a technique to numerically quantify pro-
cesses in the geosciences which can be modelled by a linear
combination of basis functions (e.g. DHF) using the coeffi-
cients of orthogonal polynomials fit to the signals. We de-
velop upon the algorithms for quantitative modelling of rare
earth element patterns by O’Neill (2016) and Anenburg and
Williams (2022). Our modified implementation of these al-
gorithms uses input uncertainties as weights and can be more
generally applied to data where there is a predictable x-to-y
relationship. Here we demonstrate the technique’s applica-
tion for modelling DHF in a quantitative manner.

Using a LA-ICP-MS dataset (time, ratio of analytes), an
orthogonal decomposition is used to fit a polynomial to the
signal data by generalised least squares (Fig. 2). This method
of using orthogonal polynomial decomposition during model

fitting enables the quantitative comparison of DHF patterns
via their coefficients for data from different analyte ratio
pairs, for varied materials, and for inter-session (Fig. 2) and
inter-laboratory datasets. Furthermore, this fitting method al-
lows for improved computation of the uncertainty for each
coefficient (and thus overall fit) and their covariances which
can then be propagated into the final result.

In this research we highlight the utility of the algorithm
for numeric comparison of the U–Pb DHF patterns from a
range of natural and synthetic RMs used for U–Pb age date
calibration. We envisage that this algorithm could be used to
self-correct individual analyses for DHF (or as spline bases
for signals that display zonation, e.g. different age domains),
with a fall back to a known RM in the case of particularly
noisy (analytical noise) data. This would allow reliable de-
coupling of the DHF correction for non-matrix-matched ma-
terials and propagation of the uncertainty in the down-hole
model into the result, thereby improving the accuracy and
precision of LA-ICP-MS analyses.

2 Experiment

To improve our ability to assess, quantify, and compare DHF
we implement a method of orthogonal polynomial decom-
position to perform multiple linear regression (polynomial)
model fitting to time-resolved analytical data from ICP-MS
instruments. In keeping with the terminology of O’Neill
(2016) and Anenburg and Williams (2022) we use the term
lambda (λ) coefficients to denote the polynomial coefficients
derived from models using orthogonal decomposition.

Unlike regular linear regression fitting, the implementation
of orthogonal polynomial decomposition for regression mod-
elling imparts the property of independence on lower-order
polynomial coefficients from their higher-order counterparts
(Bevington and Robinson, 2003). That is to say that the first
coefficient is independent of the second- and higher-order co-
efficients, while the second coefficient is independent of the
third- and higher-order coefficients and so forth. In practice,
this means that the values of the polynomial coefficients are
stable (you can fit a first- or second-order polynomial to some
data and the value of first coefficient will not change) and
they have some physical meaning in relation to the data. In
the case of DHF data, λ0 (the first coefficient) represents the
(arithmetic) mean ratio, while λ1 and higher are the shape
parameters that represent the DHF pattern (Fig. 2). For ex-
ample, λ1 represents the linear slope (mean rate of change
in ratio), while λ2 represents the quadratic curve of the DHF
pattern (Fig. 2). The independence and physical meaning of
the lambda coefficients allows them to be used to quantita-
tively compare independent fits (e.g. single analyses, mate-
rials, analytical sessions, differing laboratories) so long as
other parameters (e.g. fluence, spot diameter/volume, laser
wavelength) are considered. Further details on the fitting al-
gorithm and mathematics behind this process are outlined be-
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Figure 1. Demonstration of the impact of using an inappropriate material to correct down-hole fractionation (DHF). The two rows are
206Pb/238U ratios for NIST SRM 610 glass (a–c) and GJ-1 zircon (d–f), collected in a single session. The columns from left to right are
not corrected for DHF (grey points, raw ratios), DHF corrected using NIST SRM 610 as the model, and DHF corrected using GJ-1 as the
model. Blue points indicate an appropriate DHF correction (e.g. GJ-1 by GJ-1), while orange points indicate an inappropriate DHF correction
(e.g. GJ-1 by NIST SRM 610). Black horizontal spans indicate the geometric mean and its asymmetric lower and upper 2 standard error for
each data set. The percent error shown is 2 standard error level of the larger geometric standard error (usually upper uncertainty). Note the
significantly larger error for the inappropriate corrections (orange points) compared to the appropriate (blue) corrections. These uncertainties
would then propagate into further processing steps to obtain accurate LA-ICP-MS ratios (e.g. calibration to a known value).

low in Sect. 2.2, detailed in Appendix A, and described in
Bevington and Robinson (2003), O’Neill (2016), and Anen-
burg and Williams (2022). The raw data ingestion and re-
quired preprocessing steps are outlined below in Sect. 2.1.

Code written to perform the data ingestion, preprocess-
ing, and fitting was written in the Julia (version 1.10, LTS)
programming language (Bezanson et al., 2017). The code
forms part of an in-development Julia package, Geochem-
istryTools.jl, that will be formally released in the future.
Should users want early access to the package or source code
for the algorithms outlined in this paper, they are available
via GitHub (see “Code and data availability”). Figures were
generated using the Makie.jl plotting library (Danisch and
Krumbiegel, 2021) using “Scientific colour maps” (Crameri
et al., 2020) implemented in ColorSchemes.jl.

2.1 Data ingestion and preprocessing

Data were imported from the raw ICP-MS CSV files; in this
case from Agilent ICP-MS instruments. The algorithm writ-
ten for this task processes the individual files (which can be a
single analysis, a specified sample, or entire session) and per-

forms several operations, outlined in Fig. 3, on user-specified
mass counts-per-second (CPS) columns (i.e. channels, ana-
lyte signals).

An automated procedure for determining gas blank
and signal windows, as well as laser fire time, and
aerosol arrival was developed to aid in rapid data
processing and quality control. This algorithm is out-
lined at https://doi.org/10.25909/27041821 (Lloyd,
2024a, Fig. S1) with examples of the automatically
determined time points and signal windows shown in
https://doi.org/10.25909/27041821 (Lloyd, 2024a, Fig. S2).

Gas blank determination uses a geometric mean adapted
for zeros (Eq. 1) as per Habib (2012):

for G≥ 0, G=
n+G++ n0G

N
=
n+

N
G+, (1)

where G is the geometric mean, N is the total count of data,
xi is the ith input value from i = 1 to i =N , G+ is the ge-
ometric mean of all xi > 0, n+ is the count of xi > 0, G0 is
the geometric mean of all xi = 0 (i.e. 0), and n0 is the count
of all xi = 0.
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Figure 2. (a) Centred, point-wise 206Pb/238U ratios for all zircon GJ-1 analyses measured in multiple analytical sessions from 2020 to 2024
that used the same laser parameters. All analyses in this subset of data were collected using a 30 µm spot diameter, 5 Hz repetition rate, and
nominal fluence of 2.0 Jcm−2. The black line is the fitted orthogonal polynomial, with grey shading indicating the 95 % confidence interval
of the fit. The shaded confidence interval is barely visible due to its small absolute range. (b) Individual orthogonal components (i.e. the result
of λj ·ϕj (x)) of the fit in the upper panel excluding λ0 (mean ratio, i.e. vertical central tendency) as this is a function of mass-spectrometer
tuning and not a result of down-hole fractionation (DHF). ϕj is the orthogonal function evaluated at xj (i.e. x0,x1,x2, . . .) for j = 1 to order
k. For this aggregated GJ-1 data, different mass-spectrometer tuning parameters and drift are accounted for by centring the data (subtraction
of geometric mean and adding a constant of 1) resulting in λ0 ≈ 1. Components λ1 and higher represent the increasing shape component
(linear slope, quadratic curvature, etc.) of the observed DHF pattern. Note in this case the magnitude of λ4 is approximately zero, and as
such, the result of λ4 is approximately a horizontal line at zero. The sum of all components forms the polynomial in the upper panel.

As previously outlined (Sect. 2) the nature of orthogonal
polynomial decomposition means that lambda coefficients
(and their uncertainties) one and higher should not change
with respect to a centred or non-centred dataset for a single
analysis. For aggregated data (session and/or sample aggre-
gation), higher-order lambda coefficients of centred and non-
centred may not be equal unless all external factors (fluence,
spot diameter, machine drift) have been controlled for. We
strongly recommend that centred datasets are used for fitting

intra- and intersession sample-aggregated datasets as the cen-
tring process will remove the influences of machine drift and
tuning that λ0 is sensitive to. Aggregation of data requires
grouping by factors known to influence DHF (see Sect. 3.1)
to ensure like-for-like data are being modelled.

Centring of the data aligns the central tendencies of each
individual analysis to≈ 1 while retaining the scale and shape
(Fig. 4) of the change in raw ratios over the time-resolved
signal, i.e. the DHF. Centring is performed by subtracting
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Figure 3. Outline of data ingestion algorithm. CPS = counts per
second of analyte (e.g. 238U).

the central tendency (i.e. geometric mean, or a user could
alternatively use the arithmetic mean, or median) from the
time-resolved ratios for each individual file (i.e. analysis) and
adding a constant value of 1.0 to the result. The addition of
the constant to centre the values around one is to prevent nu-
meric errors during weighted fits when the weights (input er-
rors) are very small (i.e. close to 0). This centring enables vi-
sual comparison (Fig. 4) and accurate numeric assessment of
DHF behaviours across samples, sessions, spot geometries,
and fluences without the need to calibrate data to a known
RM ratio for each session or accounting for machine drift
during a session.

2.2 Outline of fitting algorithm

In the following equations x denotes the independent vari-
able (e.g. time in seconds) and the dependent variable
(e.g. analyte ratio) is represented by y for observed values
or ŷ for predicted values of some function of x, i.e. f (x).
For clarity, we use ϕ to differentiate the orthogonal function
terms and λ to differentiate the coefficients of the orthogonal
polynomial from their regular counterparts (f and β, respec-
tively). Function terms and coefficients use j and l as indices
with k denoting the polynomial order. The indicator i is used

for the ith value of xi , yi , and ŷi for i = 1 to i =N (total
count of data).

Polynomials of order k (Eq. 2) can be orthogonal to each
other under some inner product (Eq. 3). The property of in-
dependence of each coefficient also enables efficient compu-
tation of the polynomial statistics (errors, variances and co-
variances, residual sum of squares, etc.) at each order. The
efficient computation is enabled because only the coefficient
matrix of the highest order (five in our case) needs to be cal-
culated rather than the entire solution for each polynomial or-
der. Once computed, subsequent calculations can use specific
subsets of the operator and coefficient matrices to determine
predictions and statistics for each polynomial order.

F (x)= β0+

k∑
j=1

[
βjfj (x)

]
(2)〈

fj (x) ,fl (x)
〉
= 0 for j 6= l (3)

8 (x)= λ0+

k∑
j=1

[
λjϕj (x)

]
(4)

In this contribution, we apply this to the DHF observed dur-
ing LA-ICP-MS using the orthogonal property in Eq. (5).∑[

ϕj (xi)ϕl (xi)
]
= 0 for j 6= l (5)

We construct a fourth-order polynomial function (Eq. 6) us-
ing the sum of a set of orthogonal polynomials (Anenburg
and Williams, 2022; Bevington and Robinson, 2003; O’Neill,
2016).

ŷ (xi)= λ0+λ1ϕ1 (xi)+λ2ϕ2 (xi)+λ3ϕ3 (xi)+λ4ϕ4 (xi) (6)

The orthogonal functions are solved for by using the methods
outlined in Anenburg and Williams (2022) which make use
of Vieta’s formula and polynomial root finding. See Anen-
burg and Williams (2022), Appendix A, or the source code
for further detail. Once the orthogonal polynomial forms are
computed, the algorithm generates the operator matrix X
and uses generalised least-squares regression (Eqs. 7 to 9)
to solve the vector, λ, and matrix, U, while utilising analyt-
ical uncertainties (ε) for weights. The vector λ contains the
polynomial coefficients λ0. . .λ4, while the matrix U contains
the variances and covariances. Scaled values of ε are used to
construct the diagonal values of the weight matrix �.

y = Xλ+ ε, E [ε|X]= 0, and Cov[ε|X]= σ 2�−1
= U (7)

λ=
(

XT�−1X
)−1

XT�−1y (8)

U=
(

XT�−1X
)−1

(9)

A graphical representation of the individual orthogonal poly-
nomial components and an example of the resulting fit is
shown in Fig. 2. Our algorithm allows the user to employ
automated outlier removal with an outlier considered to have
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Figure 4. (a) Point-wise computed 206Pb/238U ratios for each measurement of NIST SRM 610 glass in the dataset. Symbol shapes represent
spot diameter, and colour represents date of analytical session. (b) Centred, point-wise 206Pb/238U ratios for each measurement of NIST
SRM 610 glass in the dataset (same data as in panel a). Centring (by subtraction of geometric mean and adding a constant of 1) preserves
the relative positions of each data point but aligns them to a common central tendency. This preserves the shape and scale of the DHF pattern
while removing ICP-MS tuning and drift effects, thus allowing accurate comparison between measurements using differing laser parameters,
on different materials, and across ICP-MS sessions or laboratories.

a studentised residual≥ 3. The residuals used in outlier iden-
tification are computed from the orthogonal polynomial or-
der with the minimum Akaike information criteria corrected
(AICc) value (Eq. 10) (Akaike, 1974; Burnham and Ander-
son, 2002). If outlier removal is enabled, the algorithm will
iterate over the input data until no studentised residuals ≥ 3
remain in the fit or it has gone through 10 iterations. The min-
imum AICc is used to determine the “best fit” (i.e. minimum
information loss) polynomial order for each dataset.

AICc= n log
( rss
n

)
+ 2k+

2k (k+ 1)
n− k− 1

, (10)

where k is the order plus two, n is the count of data, and
rss is the residual sum of squares for the model. Several mea-

sures of fit are computed and accessible to the user via the ob-
ject created during the fitting algorithm. These measures in-
clude the Bayesian information criteria corrected (BICc), the
AICc and BICc weights, the normalised root-mean-square
error, the reduced chi-squared statistic χ2

r , the multiple cor-
relation coefficient ρ2 or R2 value, and an unbiased Olkin–
Pratt-adjusted estimator ρ2

OP of ρ2 (Karch, 2020; Olkin and
Pratt, 1958). Further details on these measures of fit can be
found in Appendix A.

An additional consideration in this algorithm is that float-
ing point computation is inherently inexact, has finite preci-
sion, and can incur round-off errors (Fernández et al., 2003).
While round-off errors are not an issue with most geochem-
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ical computations generally, due to the often small abso-
lute values and numerous sequential computations being per-
formed in this algorithm, these errors can lead to inaccuracy
in the result. To overcome these potential accuracy issues we
utilise the extended precision library MultiFloats.jl (Zhang,
2024) alongside Julia’s native extended precision operations.
We also use QR factorisation or singular value decomposi-
tion (SVD) depending on the condition number of the op-
erator matrix to solve for the λ vector and the variance–
covariance U matrix to ensure numeric stability. If, after the
final calculation, the absolute value of a coefficient is less
than the default machine rounding tolerance for the extended
precision type (Float64x4), it is rounded to zero as it is con-
sidered to be unresolvable from a value of zero.

2.3 Analysis of reference materials by LA-ICP-MS

Reference materials for apatite (401, KO, MAD, Durango,
Wilberforce), baddeleyite (BADPHE, G15874, G18650),
monazite (TS1MNZ, 222, RW1, MAdel, MtGar, Ambat),
rutile (R10, R19), titanite (Mt Painter, MKED), xenotime
(MG1, BS1), and zircon (Mud Tank, Plešovice, GJ-1, 91500,
Temora, Rak17) were analysed for U–Pb isotope ratios and
trace element concentrations using optimal methods for the
specific mineral (Bockmann et al., 2022; Fletcher et al.,
2004; Gain et al., 2019; Glorie et al., 2020; Hall et al., 2018;
Horstwood et al., 2016; Liu et al., 2011; Lloyd et al., 2022;
Payne et al., 2008; Sláma et al., 2008; Spandler et al., 2016;
Thompson et al., 2016; Wiedenbeck et al., 2004; Yang et al.,
2024). An additional monazite (Pilbara) and several poten-
tial cassiterite (in-house) RMs were also measured. Sam-
ples were analysed using a RESOlution-LR 193 nm ArF
excimer laser ablation system coupled to an Agilent 8900
ICP-MS/MS. Both instruments are housed at the Univer-
sity of Adelaide within the analytical facilities at Adelaide
Microscopy. Full metadata for LA-ICP-MS analysis can be
found in Appendix B.

Additional zircon, rutile, and baddeleyite RM data from
prior studies were added to supplement the dataset and allow
the assessment of the viability of inter-session comparisons
(Lloyd et al., 2020, 2022, 2023, 2024; van der Wolff, 2020;
Yang et al., 2024). These supplemental data were collected
using the same LA system, coupled to either an Agilent 7900
ICP-MS (prior to November 2021) or the Agilent 8900 ICP-
MS/MS in single quadrupole mode (from November 2021).
Analytical conditions for these additional data can be found
in the relevant references.

3 Results and discussion

In total, 5478 analyses (CSV files) were processed and their
DHF patterns were modelled with the orthogonal polyno-
mial decomposition outlined above (Sect. 2.2). This results
in 5478 analysis fits, 188 session fits (sample aggregated per
session), and 58 sample fits (sample aggregated across all

sessions) accounting for differences in spot geometry across
29 unique materials (Figs. 5 and 6).

Linear slopes for the sample fits (λ1) range from −5.88×
10−5 to 0.0217 s−1, quadratic curvatures (λ2) range from
−3.06×10−5 to 3.27×10−5 s−2, cubic curvatures (λ3) range
from−9.76×10−6 to 1.91×10−5 s−3, and quartic curvatures
(λ4) range from −4.23×10−6 to 3.82×10−7 s−4. Given the
small numbers and large quantity of fits, it is not feasible to
display a table with all parameters nor is it intuitive for the
reader. Instead, we provide the visual representation of λ1
plotted against λ2 and their best fit uncertainties (2 standard
error) in Fig. 5, as well as the visual polynomial fit and its
uncertainty for the sample fits in Fig. 6.

3.1 Factors affecting down-hole fractionation

The scope of this contribution is to provide a tool that can
be used for quantitative modelling of DHF and not an as-
sessment of factors that influence DHF. Nonetheless, it is
worth highlighting what the influencing factors are and what
considerations are needed for accurately using the proposed
method to model these patterns. As stated earlier, DHF is
a phenomenon observed in LA-ICP-MS (and other mass-
spectrometry methods) where the observed inter-element iso-
topic ratios change as a function of ablation depth/time in-
dependent of geological heterogeneity. This phenomenon is
known to have several contributing factors, and their inter-
actions are complex (Guillong and Günther, 2002; Günther
et al., 1997; Hergenröder, 2006a, b; Horn et al., 2000; Košler
et al., 2005; Kroslakova and Günther, 2006; Mank and Ma-
son, 1999; McLean et al., 2016; Paton et al., 2010; Sylvester
and Ghaderi, 1997; Ver Hoeve et al., 2018). It is known that
sample material, spot diameter–depth ratio/geometry, laser
wavelength, fluence, laser repetition rate, and analyte volatil-
ities all noticeably influence the observed down-hole inter-
element isotopic ratio. Thus, careful consideration of these
parameters is needed when performing any modelling of the
observed patterns. For example, it would not be sensible to
combine data from two analyses of the same material that
have different laser repetition rates and model that combined
data, as a priori knowledge dictates that we would observe
different DHF patterns over the same time interval from the
two separate analyses. As such, when aggregating data in
this current study, we ensure that only like-for-like data are
combined, e.g. same material using the same laser wave-
length with the same laser parameters (spot geometry, rep-
etition rate, fluence) within a small tolerance (e.g. nominally
2.0±0.1 Jcm−2). Future studies could assess what a suitable
tolerance is for each parameter; however, tolerances used in
the current study (e.g. ±0.1 Jcm−2) do not appear to cause
spurious results.
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Figure 5. Scatter plot of λ1 (x axis) and λ2 (y axis) for sample-
aggregated (a), session-sample-aggregated (b), and individual anal-
ysis (c) orthogonal polynomial fits. Symbol shapes represent spot
diameter, and symbol colour represents material type. Uncertainty
bars are 2 standard error. Fits with a greater positive linear slope
will plot further to the right, and fits with a greater quadratic cur-
vature will plot to higher (positive) or lower (negative) positions on
the y axis. In these simple bi-plots it can be readily observed that
distinguishing between points becomes difficult or near impossible
when many data are plotted or there is large variation in some data.

3.2 Physical interpretation of λ coefficients

Without needing RM calibration, the derived coefficients (λ1
and higher) represent numerical parameters of DHF patterns
for any given analysis (Fig. 2).

The first coefficient, λ0, will inherit the units of the y vari-
able. For this study, the value is unitless due to the y variable
being CPS

CPS but can be interpreted as the mean of y, i.e. the
mean ratio. As we are centring all data around a value of
one to remove the influence of machine calibration and drift,
λ0 has limited use in this research contribution; however, it
could be used to calculate machine drift, and the nominal cor-
rection value for known-ratio materials (ICP-MS mass-bias
correction) during data reduction. The second coefficient, λ1,
has units of s−1 and can be interpreted as the average rate of
change/overall magnitude of change of the ratio between two
analyte intensities over time. We suggest that this component
largely reflects the fractionation occurring as a result of the
change in depth-to-radius ratio during ablation. The third co-
efficient, λ2, has units of s−2 and can be interpreted as the ac-
celeration (or deceleration) in the rate of change of the ratio
over time. We propose that fractionation due to differences in
the relative volatilities of the analytes is the major control on
this component, i.e. the analyte signal intensities decaying at
different rates as the depth-to-radius ratio increases.

Higher-order terms have more complex meanings: they are
subsequent derivatives of the prior term. The fourth coef-
ficient, λ3, has units of s−3 and can be interpreted as the
rate of change in the acceleration (λ2) of the ratio rate of
change through time. This is likely reflecting the focussing of
the laser-induced plasma as the hole geometry changes and
causes the subsequent change in shape of the ablation plume
from the ablation site. It will be represented by an inflection
point in the signal (i.e. free surface expansion to increased
crater wall interaction). The fifth coefficient, λ4, has units of
s−4 and can be interpreted as the rate of change of λ3 over
time. We believe this term could be incorporating detector
effects such as electrical noise, low signal-to-background ra-
tios, and Poisson noise at low signal intensity.

From the above reasoning, we expect that a third-order
polynomial (83(x), λ1...3) should account for most of the
variation seen in ratios over time during static spot ablation
as a function of the ablated material and measured analytes.
The fifth term (fourth-order polynomial) should incorporate
the remaining contributions to the fit that are likely to be a
result of instrument-induced artefacts.

3.3 Data analysis and visualisation

The proposed algorithm can efficiently handle large datasets,
generating substantial numeric data. This presents two chal-
lenges: (1) analysing the data as it becomes a “big data” prob-
lem and (2) visualising the data in a meaningful and inter-
pretable way.
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Figure 6. Orthogonal polynomial fits of down-hole fractionation (206Pb/238U) grouped by sample material. Note that the baddeleyite has
a significantly larger y-axis scale due to the steeper linear fractionation component. Shaded areas show the 95 % confidence interval of the
individual fit. Increasing line solidity corresponds to increasing spot diameters.

There exists well-established literature for the analysis of
large and/or multidimensional datasets. For multivariate data
there is often a transformation from a higher-dimensional
space to a lower-dimensional space to enable univariate and
bivariate statistics. For example, methods such as principal
component analysis (PCA) may be used to numerically eval-
uate the multivariate datasets.

Visualisation of multidimensional and/or large datasets is
challenging. For simple 2-D data, an analyst can produce
bi-plots (x–y scatter plots) to visualise any relationships in
data. For 3-D and 4-D data, analysts can plot either ternary

or quaternary diagrams which require mathematical transfor-
mations of the data into a lower dimension (e.g. 3-D to 2-D)
that emulates the higher-order space; hence, they are increas-
ingly complex to visualise and interpret. In all cases large
datasets can lead to visual clutter (over-plotting) where the
viewer will not be able to readily distinguish between simi-
larly positioned data points.

In Fig. 5 we have plotted λ1 on the x axis and λ2 on the
y axis, with corresponding uncertainty bars (2 SE). These
plots are limited to displaying only two of the five coeffi-
cients and suffer from visual clutter where it is difficult to
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distinguish some point from another and from scaling issues
where the variation in some data is responsible for obscuring
the view of other data.

Alternatively an analyst can employ dimensional reduc-
tion visualisation methods such as PCA, multidimensional
scaling (MDS), or uniform manifold approximation and pro-
jection (UMAP) to visualise the higher-dimensional data in
a lower-dimensional space. PCA can still incur visual clut-
ter as multiple reduced components may still share the same
coordinates, and PCA may not always be able to reduce the
data to only two or three principal components that explain
the majority of variance in a dataset. Conversely, UMAP will
always be able to reduce a dataset to a specified number of
dimensions and has hyperparameters that enhance visualisa-
tion to eliminate visual clutter.

We utilise UMAP (Fig. 7) to visualise the relative relation-
ships of the higher-dimensional data in a lower-dimensional
space (McInnes et al., 2020). UMAP takes the input multi-
dimensional data (5478× 4 λ coefficients in this study) and
tries to find a common embedding space (using the manifold
assumption) to represent the local and global data topology
in a lower dimension. UMAP has several variables called hy-
perparameters which control the output of the algorithm. The
n-nearest neighbours hyperparameter is the most important
for finding the balance between the global (low n-n) and lo-
cal (high n-n) data structure. We use a value of 19 for the
n-nearest neighbours hyperparameter as the minimum num-
ber of analyses for a single material in a session is 20, so we
expect there to be 19 related points. We set the minimum dis-
tance hyperparameter to 1.0 to push the points apart to help
visualisation.

In simpler terms, UMAP works by constructing a graph
in high-dimensional space (e.g. 4-D) that is projected onto
a lower-dimensional space (e.g. 2-D) where points are con-
nected based on their closeness in higher-dimensional space.
The shape of the data clusters in UMAP is a manifestation
of the spatial relationships between higher-dimensional data
with similar attributes and is not directly interpretable in a
physical manner like traditional bi-plots or PCA (McInnes
et al., 2020).

3.3.1 Interpreting the (sample-aggregated) data fits

Oxides generally have a greater linear slope component (λ1)
compared to other materials analysed, cassiterite being an ex-
ception (Figs. 5 and 6). The glass (NIST SRM 610), cassi-
terite, and xenotime samples show the least overall DHF. Of
note with the glass (NIST SRM 610) is we can clearly see the
impact of spot diameter (thus geometry) on DHF. With de-
creasing spot diameter, the overall magnitude (linear slope)
of DHF is increased (Fig. 6), but it also exacerbates the com-
plex shape parameters (quadratic and cubic curvatures, etc.).

There are two distinct groupings (accounting for differ-
ent spot diameters) for baddeleyite, with one group being the
samples from Phalaborwa and the other group being the Kov-

dor sample (Fig. 6). The cause of this stark disparity in bad-
deleyite DHF is unknown, but the Ti concentration is 9–14
times higher in the Phalaborwa samples than in the Kovdor
samples. The obvious outliers in the apatite, cassiterite, and
monazite panels of Fig. 6 are the Durango and Wilberforce
apatite samples, CstT4370 cassiterite, and the Pilbara mon-
azite sample. For the Pilbara monazite, some analyses show
considerable variation in their Pb and U concentration (prox-
ied by count rate; see the “Code and data availability” section
for signal plots available at figshare). Excluding these anal-
yses from the sample/session aggregated fit for the Pilbara
monazite will reduce the polynomial confidence interval and
would improve the quality of the fit. However, these data are
still analytically relevant and indicate that the Pilbara mon-
azite may not be suitable to be an RM due to the variable
ratio of Pb and U. For the Durango apatite, the flat DHF
fit and larger uncertainty are due to low Pb counts, and for
Wilberforce, the steeper linear DHF component and larger
uncertainty are due to the inclusion of several points from
some analyses that are highly leveraging the fit, even with
automated outlier removal being applied. For cassiterite, the
relatively flat fits and outlier (CstT4370) are generally due to
low Pb and/or U counts and greater scatter in the underly-
ing data. The discrepancies and/or larger uncertainties in the
lambda coefficients for materials of the same type provide a
way to numerically check for outliers in RM data, prior to
further data reduction, rather than needing a user to review
all the data graphically. A user should still review their data
via graphical means as well to check for spurious results.

3.3.2 Application of UMAP as a data visualisation aid

For this study, a UMAP diagram (Fig. 7) helps to visu-
alise the relative similarities between the λ coefficients for
the 5478 analyses. If there are relationships in the data,
we expect them to correlate with the individual materials
(e.g. NIST SRM 610 glass, GJ-1 zircon, Plešovice zircon),
the type of material (e.g. glass, zircon, xenotime), laser pa-
rameters, or a combination of these factors and thus plot in
clusters on a UMAP diagram. The resulting map (Fig. 7)
clearly differentiates the various materials better than the
simple bi-plot (Fig. 5c), which suffers from over-plotting,
obscuring any similarities/trends. The UMAP algorithm was
not provided prior knowledge about the material, only the λ
coefficients. Panels (a) and (b) of Fig. 7 are strongly con-
trolled by the mean ratio (λ1) as the UMAP algorithm was
provided with lambda values from non-centred fits to aid the
reader in understanding the general principle of these dia-
grams. Panels (c) and (d) of Fig. 7 are more useful in visualis-
ing the relationships of the shape parameters within the DHF
models as the effects of mass bias and drift are removed by
providing the algorithm with the lambda values from centred
fits.

For small, simple datasets, a simple bi-plot may suffice,
but in larger datasets, and especially an inter-laboratory com-
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Figure 7. (a) Uniform manifold approximation and project (UMAP) of λ coefficients 0 to 4 for all analysis data (non-centred) in the study.
(b) Subset of (a) only including zircon analyses. (c, d) UMAP of λ coefficients 1 to 4 for centred analysis data in the study with (d) being
the zircon data subset of (c). In a practical sense, the closer or more clustered the points are to each other, the more similar they are. Axes are
omitted, as x–y coordinates are a normalised distance metric value with no physical meaning. This method of data visualisation is to help an
end user understand the relative similarities within large datasets. Panels (a) and (b) are strongly controlled by the λ0 component, while (c)
and (d) are reflecting the shape parameters λ1...4 of different materials.

parison where there is likely to be several hundreds of thou-
sands to millions of individual data points, a method such as
UMAP should be employed to visualise the relationships of
the data.

In Fig. 7, it is apparent that baddeleyite (pale blue-green
markers in the upper panels) DHF is different to all other ma-
terials analysed in this study as the points are forming their
own clusters (particularly Fig. 7c). The deviation by badde-

leyite is also reflected in Fig. 5 where baddeleyite analyses
are plotting to the far right of each subplot, indicating a much
stronger linear slope fractionation component. What is also
noticeable is that there is a large diversity in the DHF patterns
of zircon (Fig. 7b and d), which in part is due to analytical
noise as the individual points represent a single analysis and
the fits have greater uncertainty as they are more suscepti-
ble to that noise. Nevertheless, in general 91500 is behaving
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Figure 8. (a) Orthogonal polynomial fitting of down-hole fractionation for zircon data in this study. The visualised polynomials represent
the best-order fit for the aggregated data of a given sample at a single spot diameter, e.g. GJ-1 at 30 µm, GJ-1 at 19 µm. Shaded areas show
the 95 % confidence interval of the individual fit. The inset graph (b) shows the λ1 and λ2 coefficients and their 2 standard error uncertainty
for each of the session-based fits for the seven zircons analysed. Fits with a greater linear slope plot further to the right, and fits with a greater
negative quadratic curvature (i.e. the slope flattens at a faster rate) will plot toward the bottom.

most differently from all other zircons at a given spot diame-
ter (Fig. 8), and Plešovice is behaving most like NIST SRM
610 of all the zircons (Fig. 7c and d). We do not suggest that
NIST SRM 610 glass is a suitable alternative to correct DHF
for zircon (as seen in Figs. 6 and 1), rather that there is signif-
icant variation in the DHF of zircon standards, and therefore
careful consideration should be given to applying appropri-
ate zircon standards for analytical sessions depending on the
unknown zircons to be analysed and the time period used
for signal integration (Guillong and Günther, 2002; Hergen-
röder, 2006a; Košler et al., 2005; Paton et al., 2010).

We can see that spot geometry has a significant impact on
DHF (Fig. 6, glass and zircon panels; Figs. 7 and 8), which is
a known phenomenon (Horn et al., 2000; Mank and Mason,

1999; Paton et al., 2010). However, all zircons except 91500
have remarkably similar DHF patterns at 29 µm (and 30 µm)
(Fig. 8). The linear slope component (λ1) of the DHF pattern
appears to be relatively constant between laser sessions for
a given zircon and spot diameter, while the quadratic com-
ponent varies (Fig. 8b) but has greater uncertainty associated
with it. The exact mechanism as to why 91500 shows greater
DHF than the other analysed zircons is unknown and not the
focus of this paper; however, prior studies have investigated
the potential causes of differing DHF patterns in zircon and
glass (Košler et al., 2005), and it is possible that radiation
damage plays a role (Allen and Campbell, 2012; Marillo-
Sialer et al., 2014; Solari et al., 2015; Thompson et al., 2018).
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3.4 Applications

The algorithm defined in this paper offers a way to numeri-
cally quantify processes in geoscience that can be modelled
with a linear combination of basis functions, building on the
work of O’Neill (2016) and Anenburg and Williams (2022)
with a more generalised approach. The generalised nature of
this algorithm allows it to be used for orthogonal polynomial
fitting, up to fourth order, of any data where it is sensible;
i.e. there exists a polynomial of order k(0...4) that can model
the input data. In this contribution we use it to numerically
quantify DHF patterns of varied materials during LA-ICP-
MS and demonstrate UMAP as a visualisation technique to
help understand the structure of the data.

We envisage that this algorithm could be implemented
in data reduction software to self-correct the DHF pattern
of well-behaved materials (i.e. fitting a single geochemical
zone) or as splines to geologically meaningful zonation, with
a fallback to a known homogeneous material where the anal-
ysis signal is complex (e.g. due to complex zonation or in-
clusions). In the latter case, the user would need to select
an appropriate material, and it would likely result in some-
what inaccurate correction in any case, thus impacting the
accuracy of the final result (Fig. 1). Self-correction would re-
quire modelling the individual analysis signal and using the
orthogonal model to then correct the data for DHF observed
in that analysis.

Alternatively the coefficients of the orthogonal models
could be used to determine which RM DHF pattern best suits
the unknown material DHF pattern. The quantification of the
DHF pattern enables numeric assessment of fits to unknowns
against fits of knowns to find the most similar material with
respect to DHF and of the appropriate model order. For ex-
ample, the AICc is minimised for the fourth-order polyno-
mial for NIST SRM 610 and the third-order polynomial for
most zircon RMs, and we can see this reflected visually in
Figs. 2, 4, 6, and 8. Using the measures of fit provides users
with a way to choose an appropriate model that accurately
reflects the uncertainty and scatter while minimising over-
fitting and the introduction of artefact errors. Additionally,
the quantification done by this algorithm provides a way for
laboratories to quantitatively compare the DHF behaviour of
their RMs and analytical setup against other laboratories.

4 Conclusions

This contribution generalises the orthogonal polynomial de-
composition algorithms of O’Neill (2016) and Anenburg and
Williams (2022) to allow for modelling of processes in geo-
science that can be represented by a linear combination of
basis functions (predictable x-to-y relationships) beyond rare
earth element (REE) patterns while also using input uncer-
tainties as weights for the models. Being written in the Ju-
lia programming language enables fast computation of many
thousands of input files from data ingestion to model output.

We demonstrate quantitative modelling of DHF patterns
observed during static spot LA-ICP-MS using the developed
algorithm by applying it to an exemplar dataset of U–Pb
RMs and guide the reader through data visualisation and in-
terpretation of the derived coefficients. The algorithm pro-
vides the ability to quantitatively compare DHF for the same
RMs across laboratories, differences between RMs, and dif-
ferences between analytical setups.

Furthermore, this algorithm could be implemented into
data reduction programmes to numerically assess the sim-
ilarities and fit qualities of DHF correction, ensuring more
accurate corrections are made. It is possible that the algo-
rithm could be used to self-correct the DHF pattern of a sin-
gle analysis by first modelling it and then using that model
to correct the pattern so long as the assumption that the sig-
nal (or portion of) reflects a single, geologically meaningful
zone holds. This allows a relaxation of the assumption that
the DHF pattern of an unknown is the same as a specified
RM by decoupling the correction from that material which
can lead to improvements in accuracy and/or precision of the
final result. More conservatively or in cases where the as-
sumption of a single geologically meaningful zone does not
hold, models of the individual analyses can be used to quan-
titatively choose the most similar RM to use as a DHF cor-
rection material.

Appendix A: Algorithmic mathematics

LA-ICP-MS count data are strictly positive integers and
follow a (discrete) Poisson distribution at low count level
(e.g. gas blank), although they eventually approximate a nor-
mal distribution at high count rate as implied by the central
limit theorem (Bevington and Robinson, 2003). Data from
a mass spectrometer used for geochronology and/or elemen-
tal analysis are generally output in counts-per-second (CPS),
not counts, and violate the integer requirement of a discrete
probability distribution. This combined with the less intuitive
and asymmetric scale parameters of geometric means has led
to the use of normal statistics (e.g. arithmetic means) for ra-
tio computations. The use of normal statistics for gas blank
measurements generally leads to overestimation (arithmetic
mean) or underestimation (median if lots of 0 counts) and
to a violation of the equality A/B = (B/A)−1. This latter
violation is commonly seen in U–Pb geochronology, where
206Pb/238U 6=

(238U/206Pb
)−1. Given that elemental count

data and elemental ratios are compositional data and are
strictly positive real values (i.e. positively skewed) which of-
ten follow a log-normal distribution, a geometric mean is a
more appropriate measure of the central tendency of the data.
In our algorithm we use the geometric mean to compute the
gas blank value. While geometric means are often used to ad-
dress the problems above, we use a modified geometric mean
to incorporate valid zero values which a standard geomet-
ric mean cannot. We will first review the standard geometric
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mean before detailing the modified version. The geometric
mean is defined for a set of positive real numbers as Eq. (A1)
(Habib, 2012; Feng et al., 2017):

G=
N

√√√√ N∏
i=1
xi, (A1)

where G is the geometric mean, N is the total count of data,
and xi is the ith input value from i = 1 to i =N . Alterna-
tively, it can be calculated by the arithmetic mean of the log-
arithm of the values (Eq. A2) and then raising the result to e
(Eq. A3) (Habib, 2012; Kirkwood, 1979; Feng et al., 2017).

logG=
1
N

N∑
i=1

logxi (A2)

G= elog(G) (A3)

As computing the product of an arbitrarily large series
of numbers can lead to overflow errors (Fernández et al.,
2003; Polhill et al., 2006) and therefore inaccurate results,
most geometric mean algorithms implement the second form
where the arithmetic mean is calculated from the logarithm-
transformed data and raised to e. The logarithmic transfor-
mation requires that all xi > 0. Additionally, as this is a mul-
tiplicative mean, when any xi = 0, G= 0.

To overcome these limitations and obtain a more accurate
estimate of the mean gas blank, we implement a geometric
mean that accounts for zeros (Eq. A4). This equation is ef-
fectively a weighted arithmetic mean of the geometric mean
of the values> 0, and the geometric mean of the zeros, i.e. 0,
with the weights equal to the number of values in each cate-
gory (Habib, 2012):

for G≥ 0, G=
n+G++ n0G0

N
=
n+

N
G+, (A4)

whereG+ is the geometric mean of all xi > 0, n+ is the count
of xi > 0,G0 is the geometric mean of all xi = 0 (i.e. 0), and
n0 is the count of all xi = 0. While this form of the geometric
mean has its critics (de la Cruz and Kreft, 2018), we believe
it provides a more accurate estimate of the true gas blank
which should lie somewhere between 0 and the arithmetic
mean which will bias the result to values > 0, and it avoids
the issue of small constants being added to the data causing
major changes in the geometric mean (Feng et al., 2017).

Although they cannot handle values of zero, we implement
a geometric variance (Eq. A5), geometric standard deviation
(Eq. A6), and standard error of the geometric mean (Eq. A7)
(Kirkwood, 1979; de Carvalho, 2016):

for x > 0, σ 2
G = e

σ 2
logx , (A5)

for x > 0, σG = eσ (logx), (A6)

for x > 0, SEG = eSElogx , (A7)

where σ 2
logx , σlogx , and SElogx are, respectively, the variance,

standard deviation, and standard error of the mean of the log-
arithms of xi > 0. The σ (logx) can also be interpreted as the

average magnitude of the relative deviation from the geomet-
ric mean and SElogx (Chatfield et al., 2025). In geometric
statistics, the measures of variance, standard deviation, and
standard errors are scale parameters. The corresponding un-
certainty range ofG for these statistics is asymmetric and de-
noted by (G× u;G÷ u), where u is the corresponding statis-
tic (e.g. σ 2, σ , SE).

A1 Orthogonal polynomial decomposition

We use orthogonal polynomial decomposition to fit a polyno-
mial to analyte ratio data where the coefficients have physi-
cal meaning in relation to those data. This decomposition en-
ables quantification of the shape parameters of a down-hole
fractionation pattern. Integral to this process is the calcula-
tion of the orthogonal polynomials (Eq. A8) to be used to fit
the final model.

ŷ (xi)= λ0+λ1ϕ1 (xi)+λ2ϕ2 (xi)+λ3ϕ3 (xi)+λ4ϕ4 (xi) (A8)

Our implementation can fit up to a fourth-order polynomial
and requires solving the orthogonal property of Eq. (A9) for
each orthogonal function, ϕ (x).

∑[
ϕj (xi)ϕk (xi)

]
= 0 for j 6= k (A9)

The functions ϕ1...4 are as follows.

ϕ1 = xi −β

ϕ2 = (xi − γ1) (xi − γ2)
ϕ3 = (xi − δ1) (xi − δ2) (xi − δ3)
ϕ4 = (xi − ε1) (xi − ε2) (xi − ε3) (xi − ε4)

Here β, γn, δn, and εn are predetermined constants calculated
prior to fitting the final model. The solution to β is simply the
arithmetic mean of the x values (Eq. A10).

N∑
i=1

(xi −β)= 0, leading to
1
N

N∑
i=1

(xi)= β (A10)

The solutions to γ1...2, δ1...3, ε1...4 require solving systems of
equations with increasing complexity as follows, with a line
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break between polynomial orders.∑
(xi − γ1) (xi − γ2)= 0∑
xi (xi − γ1) (xi − γ2)= 0

∑
(xi − δ1) (xi − δ2) (xi − δ3)= 0∑
xi (xi − δ1) (xi − δ2) (xi − δ3)= 0∑
xi

2 (xi − δ1) (xi − δ2) (xi − δ3)= 0

∑
(xi − ε1) (xi − ε2) (xi − ε3) (xi − ε4)= 0∑
xi (xi − ε1) (xi − ε2) (xi − ε3) (xi − ε4)= 0∑
xi

2 (xi − ε1) (xi − ε2) (xi − ε3) (xi − ε4)= 0∑
xi

3 (xi − ε1) (xi − ε2) (xi − ε3) (xi − ε4)= 0

This system of equations can be solved for numerically us-
ing an optimisation algorithm, or as stated in Anenburg and
Williams (2022) we can utilise Vieta’s formulas to rearrange
the complex system of equations to achieve an analytical so-
lution. The application of Vieta’s formula allows the conver-
sion of the above complex systems to a simple polynomial
whose real roots are the γ1...2, δ1...3, and ε1...4 values. Defin-
ing γ1+γ2 = a and γ1γ2 = b and through simplification, we
obtain the matrix form of the following problem.[
−
∑
xi N

−
∑
xi

2 ∑
xi

][
a

b

]
=

[
−
∑
xi

2

−
∑
xi

3

]
Once solved, a and b are the coefficients used in the quadratic
polynomial (Eq. A11) whose real roots are the two parame-
ters γ1 and γ2.

γ 2
− aγ + b = 0 (A11)

Following the same process, δ1...3 can be solved using
Eqs. (A12) and (A13), while ε1...4 can be solved using
Eqs. (A14) and (A15).−∑xi

2 ∑
xi −N

−
∑
xi

3 ∑
xi

2
−
∑
xi

−
∑
xi

4 ∑
xi

3
−
∑
xi

2

[ab
c

]
=

−∑xi
3

−
∑
xi

4

−
∑
xi

5

 (A12)

δ3
− aδ2

+ bδ− c = 0 (A13)
−
∑
xi

3 ∑
xi

2
−
∑
xi N

−
∑
xi

4 ∑
xi

3
−
∑
xi

2 ∑
xi

−
∑
xi

5 ∑
xi

4
−
∑
xi

3 ∑
xi

2

−
∑
xi

6 ∑
xi

5
−
∑
xi

4 ∑
xi

3


abc
d

=

−
∑
xi

4

−
∑
xi

5

−
∑
xi

6

−
∑
xi

7


(A14)

ε4
− aε3

+ bε2
− cε+ d = 0 (A15)

To account for errors in y (i.e. analyte ratios) we use gen-
eralised least squares (Eq. A16) to fit the model. The errors
in y are used as weights for the generalised least-squares al-
gorithm. As we have not yet implemented input covariances,

our model is the specialised case of generalised least squares
known as weighted least squares.

Let y = Xλ+ ε, E [ε|X] ,

and Cov[ε|X]= σ 2�= U,

then λ=
(

XT�−1X
)−1

XT�−1y

and U=
(

XT�−1X
)−1

(A16)

To generate the orthogonal nature of the fit, the design ma-
trix, X, uses the ϕ1...4 functions from above and is as follows.

1 ϕ1 (x1) ϕ2 (x1) ϕ3 (x1) ϕ4 (x1)
1 ϕ1 (xi) ϕ2 (xi) ϕ3 (xi) ϕ4 (xi)
...

...
...

...
...

1 ϕ1 (xn) ϕ2 (xn) ϕ3 (xn) ϕ4 (xn)


Let the individual weights, ωi , be the absolute error of yi ,
then the weight matrix � is as follows.
ω2

1
ω2
i

. . .

ω2
n


The system can then be solved for the vector of coefficients,
λ, using Eq. (A16).

For true generalised least squares, the non-diagonal ele-
ments of � would be the covariances. Future improvements
of the algorithm will implement covariance terms.

In the following equations, yi is the ith value of the ob-
served dependent variable (e.g. analyte ratio), ŷi is ith value
of the predicted dependent variable, n is the total number of
values, and k is the polynomial order. To assess the qual-
ity of fitted models and to assist with choosing an optimal
model, we implemented several measures of fit. Standard
measures of fit calculated are the residual sum of squares (rss,
Eq. A17),

rssk =

(
n∑
i=1

(
yi − ŷik

))T

�−1

(
n∑
i=1

(
yi − ŷik

))
, (A17)

the mean-square error or reduced chi-squared value in multi-
ple regression (mse or χ2

r , Eq. A18),

χ2
rk
=msek =

rss
n− k+ 1

, (A18)

the root-mean-square error (rmse, Eq. A19),

rmsek =
√

msek, (A19)

the normalised root-mean-square error (nrmse, Eq. A20),

nrmsek =
rmsek

maxy−miny
, (A20)
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and the multiple regression coefficient (ρ2 or R2, Eq. A21),

ρ2
= 1

rssk[
y− ȳ

]T
�
[
y− ȳ

] . (A21)

Additionally, we implement two measures based on Bayesian
reasoning and information theory. The first of these is
the corrected Bayesian (or Schwarz) information criterion
(BICc, Eq. A22) and corresponding BICc weights (BICcW,
Eq. A23) (Burnham and Anderson, 2002; Schwarz, 1978).

BICck = n log
( rss
n

)
+ (k+ 2) log(n)+ log(2π )+ n (A22)

BICcWk =
exp(−0.5BICck −min[BICc])∑max(k)

0 exp(−0.5BICck −min[BICc])
(A23)

The second is the corrected Akaike information criterion
(AICc, Eq. A24) and corresponding AICc weights (AICcW,
Eq. A25) (Akaike, 1974; Burnham and Anderson, 2002).

AICck = n log
( rss
n

)
+ 2(k+ 2)+

2(k+ 2)([k+ 2]+ 1)
n− (k+ 2)− 1

(A24)

AICcWk =
exp(−0.5AICck −min[AICc])∑max(k)

0 exp(−0.5AICck −min[AICc])
(A25)

Finally, we implement an Olkin–Pratt-adjusted multiple cor-
relation coefficient (ρ̂2

OP, Eq. A26) which is the optimal un-
biased estimator of ρ2 (Karch, 2020; Olkin and Pratt, 1958).

ρ̂2
OP

(
ρ2
)
= 1−

n− 3
n− (k+ 1)− 1

(
1− ρ2

)
· 2F1

(
1,1;

n− (k+ 1)− 1
2

;1− ρ2
)

(A26)

The Olkin–Pratt-adjusted multiple correlation coefficient re-
quires the computation of the Gauss hypergeometric func-
tion, which is computationally non-trivial; however, Karch
(2020) outlines the process to do this, and this is imple-
mented as Eq. (A27) using the Taylor series expansion
(Eq. A28) of the Gauss hypergeometric function (Pearson
et al., 2017).

2F1 (a,b;c;z)=



0 if z= 0
c−1
c−2 if z= 1∑
∞

j=0
(a)j (b)j

(c)j

1
j !
zj︸ ︷︷ ︸

Tj

if 0< z < 1 (A27)

For the case, 0< z < 1, the Taylor series is truncated either
when the ratio of the value for the next term in the series and
the current sum of the series are less than or equal to the ma-
chine epsilon value for a Float64 type or when the number of
iterations (and thus terms) reaches 1000 (Eq. A28). This will
effectively truncate the series when the machine cannot re-

solve the difference between the change in successive terms.

Let T0 = 1, S0 = 1, and j = 1, then for 1< j < 1000

and
Tj+1

Sj
> ε

Tj+1 = Tj

[ (a+j )(b+j )
(c+j )z

(j + 1)

]
and Sj =

j<1000∑
j=1

S0+ Tj+1.

(A28)

A2 Outlier detection

We implement automated outlier removal based on the stu-
dentised residual. An outlier is considered to have a studen-
tised residual ≥ 3 from the model with the polynomial order
(k) that minimises the AICc. This outlier removal process
is computationally intensive as it requires the calculation of
leverages hii which are the diagonal values of the projec-
tion matrix. The individual leverages are calculated using
Eq. (A29).

hii =
∑

Xi,1...k
[
U1...k,1...kXT

1...k,1...n�
−1
]

(A29)

From the non-studentised residuals (Eq. A30) and the mean
square error (mse, Eq. A18), the studentised residuals are cal-
culated using Eq. (A31).

ri = yi − ŷi (A30)

si =
√

mse(1−hii) (A31)

If the user chooses this automated outlier removal, the algo-
rithm will loop until either (a) no studentised residuals are
≥ 3 or (b) the loop has performed 10 iterations.
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Appendix B: Laser conditions

Table B1. LA-ICP-MS parameters.

Laboratory and sample preparation

Laboratory name Adelaide Microscopy
Sample type/mineral Apatite, baddeleyite, cassiterite, glass, monazite, rutile, titanite, xenotime, zircon
Sample preparation All new materials were mounted in 25 mm diameter round epoxy mounts then polished.

Existing materials were in 25 mm diameter round epoxy mounts

Laser ablation system

Make, model, type RESOlution-LR ArF excimer
Ablation cell and volume Laurin Technic S155 laser
Laser wavelength (nm) 193 nm
Pulse width (ns) 20 ns
Fluence (Jcm−2) Material-dependent – see Table B2 below
Repetition rate (Hz) 5 Hz
Ablation duration (s) 30 and 40 (session dependent)
Spot diameter (µm) Material-dependent – see Table B2 below
Sampling mode/pattern Static spot
Ablation gas He, 1.0 Lmin−1

Carrier gas Ar, 1.0 Lmin−1

ICP-MS instrument

Make, model, type Agilent 8900x – no reaction gas mode
RF power (W) 1500
Torch depth (mm) 4–4.5
Masses measured Mg24, Al27, Si29, P31, Ca43, Ti49, Fe57, Y89, Zr90, Nb93, Sn118, Ba137, La139, Ce140,

Pr141, Nd146, Sm147, Eu153, Gd157, Tb159, Dy163, Ho165, Er166, Tm169, Yb172, Lu175,
Hf178, Hg202, Pb204, Pb206, Pb207, Pb208, Th232, U235, U238

Data processing

Gas blank 30 s (25 s of signal used)
Other information Data processing to compute gas blank, raw ratios, and uncertainties was done using the

algorithms outlined in this publication.
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Table B2. Summary of laser conditions and materials analysed in each session.

Session date Material Spot diameter Repetition rate Nominal fluence Measured fluence Ablation time
(yyyy-mm-dd) (µm) (Hz) (J cm−2) (J cm−2) (seconds)

2020-02-24 zircon 29 5 2 30
2020-02-24 glass 29 5 3.5 30
2020-02-24 glass 51 5 3.5 30
2020-02-26 zircon 29 5 2 30
2020-02-26 glass 29 5 3.5 30
2020-02-26 glass 51 5 3.5 30
2020-05-06 zircon 19 5 2 40
2020-05-06 glass 19 5 3.5 40
2020-05-06 glass 51 5 3.5 40
2020-05-08 glass 43 5 3.5 40
2020-05-11 zircon 29 5 2 40
2020-05-11 glass 29 5 3.5 40
2020-05-11 glass 51 5 3.5 40
2021-03-30 zircon 29 5 2 30
2021-03-30 glass 43 5 3.5 30
2021-03-31 zircon 30 5 2 40
2021-03-31 glass 43 5 3.5 40
2021-05-06 zircon 30 5 2 40
2021-05-06 glass 43 5 3.5 40
2021-09-06 zircon 30 5 2 30
2021-09-06 glass 43 5 3.5 30
2021-09-06 monazite 20 5 2 30
2022-01-19 baddeleyite 20 5 2 30
2022-01-19 zircon 20 5 2 30
2022-01-19 glass 43 5 3.5 30
2022-01-19 apatite 30 5 3.5 30
2022-02-01 monazite 13 5 2 1.9 30
2022-02-01 xenotime 13 5 2 1.9 30
2022-02-01 glass 43 5 3.5 3.6 30
2022-04-01 glass 43 5 3.5 3.4 30
2022-04-21 apatite 30 5 3.5 3.4 30
2022-04-21 zircon 30 5 2 2 30
2022-04-21 glass 43 5 3.5 3.4 30
2022-05-31 glass 43 5 5 5.2 30
2022-05-31 monazite 13 5 2 1.9 30
2022-05-31 xenotime 13 5 2 1.9 30
2022-06-20 zircon 30 5 2 2.1 30
2022-06-20 glass 43 5 3.5 3.6 30
2022-06-20 xenotime 13 5 2 2.1 30
2022-06-29 glass 43 5 3.5 3.4 30
2022-06-29 xenotime 13 5 2 1.9 30
2022-07-08 glass 43 5 3.5 3.6 40
2022-07-08 rutile 43 5 5 5.2 40
2022-08-30 monazite 20 5 2 2 30
2022-08-30 zircon 20 5 2 2 30
2022-10-10 glass 43 5 3.5 3.4 30
2022-10-10 zircon 30 5 2 1.9 30
2022-10-11 glass 30 5 3.5 3.4 30
2022-10-11 zircon 43 5 2 1.9 30
2022-12-09 glass 43 5 3.5 3.5 40
2022-12-09 rutile 43 5 5 4.9 40
2023-02-20 apatite 30 5 3.5 3.5 30
2023-02-20 glass 30 5 3.5 3.5 30
2023-02-20 zircon 30 5 2 1.9 30
2023-03-22 monazite 13 5 2 1.8 30
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Table B2. Continued.

Session date Material Spot diameter Repetition rate Nominal fluence Measured fluence Ablation time
(yyyy-mm-dd) (µm) (Hz) (J cm−2) (J cm−2) (seconds)

2023-03-22 xenotime 13 5 2 1.8 30
2023-04-21 glass 43 5 3.5 3.5 30
2023-04-21 apatite 43 5 3.5 3.5 30
2023-04-21 zircon 30 5 2 2 30
2023-05-09 glass 43 5 3.5 3.5 40
2023-05-23 glass 43 5 3.5 3.6 40
2023-05-29 glass 43 5 3.5 3.4 30
2023-05-29 monazite 13 5 2 2.1 30
2023-06-30 glass 30 5 3.5 3.4 30
2023-06-30 apatite 30 5 3.5 3.4 30
2023-07-11 glass 43 5 3.5 3.5 40
2023-07-11 zircon 20 5 2 1.9 40
2023-11-24 apatite 30 5 3.5 3.5 30
2023-11-24 baddeleyite 30 5 2 2 30
2023-11-24 monazite 20 5 2 2 30
2023-11-24 rutile 43 5 5 4.9 30
2023-11-24 titanite 43 5 5 4.9 30
2023-11-24 xenotime 20 5 2 2 30
2023-11-24 zircon 30 5 2 2 30
2023-11-24 glass 30 5 3.5 3.5 30
2024-04-29 apatite 30 5 3.5 3.5 40
2024-04-29 baddeleyite 30 5 2 2.1 40
2024-04-29 cassiterite 43 5 5 5.1 40
2024-04-29 monazite 20 5 2 2.1 40
2024-04-29 rutile 43 5 5 5.1 40
2024-04-29 titanite 43 5 5 5.1 40
2024-04-29 xenotime 20 5 2 2.1 40
2024-04-29 zircon 30 5 2 2.1 40
2024-04-29 glass 30 5 3.5 3.5 40

Code and data availability. The Julia package which
implements the above algorithms is in early devel-
opment; however it is available to all via GitHub
at github.com/jarredclloyd/GeochemistryTools.jl (DOI:
https://doi.org/10.5281/zenodo.16624256, Lloyd, 2025). Raw
and derived data used in this study are freely available from
figshare at https://doi.org/10.25909/26778298, (Lloyd and Gilbert,
2024). Code used to compile the raw data, fit the data, and
generate the figures in this paper is freely available from figshare at
https://doi.org/10.25909/26779255.v3 (Lloyd, 2024b).

Supplementary Figs. S01 and S02 detailing the automatic signal
time algorithm employed in this paper and example data it was
tested on are available at https://doi.org/10.25909/27041821
(Lloyd, 2024a). Additional figures showing the individ-
ual analysis signals are also available from figshare at
https://doi.org/10.25909/26778592.v1 (Lloyd, 2024c). A plot
exists for each sample for each session, with the arbitrary colours
of each plot representing individual analyses.
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