Geochronology, 7, 583–589, 2025 https://doi.org/10.5194/gchron-7-583-2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

Short communication: Estimating radiocarbon reservoir effects in Bolivian Amazon freshwater lakes

Asier García-Escárzaga^{1,2,3}, Umberto Lombardo^{1,2}, Patricia M. Bello-Alonso⁴, José M. Capriles⁵, André Colonese^{1,2}, Kate Dudgeon², Carlos D. Simões⁶, and Ricardo Fernandes^{7,8,9}

Campus As Lagoas, Ourense, Spain

Universidade do Algarve, Faro, Portugal

Correspondence: Asier García-Escárzaga (asier.garcia@ubu.es) and Ricardo Fernandes (fernandes@gea.mpg.de)

Received: 25 April 2025 – Discussion started: 14 May 2025

Revised: 17 October 2025 – Accepted: 24 October 2025 – Published: 24 November 2025

Abstract. The Llanos de Moxos, in the Bolivian Amazon, preserves a remarkable archaeological record, featuring thousands of forest islands. These anthropogenic sites emerged as a result of activities of the earliest inhabitants of Amazonia during the Early and Middle Holocene. Excavations conducted to date on the forest islands have revealed that many assemblages contain a high number of ancient freshwater snail remains. In these shell middens, the most represented mollusc taxon, and in most cases the sole one, is *Pomacea* spp., a genus that inhabits inland shallow lakes and wetlands. Although human burials and faunal remains are typically recovered from these sites, their collagen is often not preserved or is of poor quality, and shell carbonates from Pomacea shells, along with carbonised plant remains, are often used for ¹⁴C measurements. However, it remains undetermined if these measurements are subject to radiocarbon reservoir effect (RRE). To determine if a freshwater RRE could affect the age estimations of Amazonian archaeological and other paleoecological deposits, we collected modern coeval Pomacea shells and tree leaves from four locations across the Llanos de Moxos area for AMS radiocarbon dat-

ing. The radiocarbon results combined with the environmental history of Llanos de Moxos during the Holocene, do not reveal any significant RREs, and support the continued use of freshwater molluscs as viable material for radiocarbon dating in the region.

1 Introduction

Although archaeological research on the earliest human occupations in South America had traditionally prioritised coastal environments (Armesto et al., 2010; Bueno et al., 2013), recent studies have increasingly provided evidence that these populations expanded into the central regions of the continent during the Early Holocene (Lombardo et al., 2013, 2020). Archaeological research conducted in the Llanos de Moxos, a seasonally inundated tropical savannah in the Bolivian Amazon (Fig. 1A–B), has revealed that pre-Columbian communities formed artificial mounds known as forest islands since the Early Holocene (Lombardo et al., 2013). These were small forested earthen mounds for which

¹Department of Prehistory, Universitat Autònoma de Barcelona, Bellaterra, Spain

²Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain

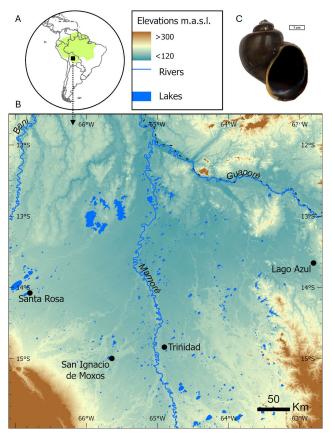
³Laboratory of Human Evolution – IsoTOPIK Lab, Department of History, Geography and Communication, Faculty of Humanities and Communication, University of Burgos, Spain

⁴Universidade de Vigo, Grupo de Estudos de Arqueoloxía, Antigüidade e Territorio (GEAAT),

⁵Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, State College, USA

⁶Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB),

⁷Max Planck Institute of Geoantropology, Department of Archaeology, Jena, Germany


⁸Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Warsaw, Poland

⁹Princeton University, Climate Change and History Research Initiative, Princeton, USA

¹⁴C radiocarbon dates constrain human occupation from approximately 11 to 2 ka cal BP (Capriles et al., 2019; Lombardo et al., 2020). Some of these forest islands are composed of shell midden stratigraphic deposits, although not exclusively, and contain a heterogeneous assemblage of archaeological remains (Capriles et al., 2019). Among them, the most common are mollusc shells of the *Pomacea* genus (Perry, 1810) (Fig. 1C). These were collected by past Amazon populations from freshwater bodies (shallow lakes and wetlands) unrelated to carbonate dissolution processes which occurred in shell middens. Human burials are also frequently found in these sites, along with animal bones and ceramic remains, which are helpful particularly for building relative chronologies. Other evidence, such as wood charcoal or carbonised seeds, may also be encountered at the forest islands, but can be rare in many depositional contexts (Capriles, 2023; Capriles et al., 2019; Lombardo et al., 2013).

The poor preservation of bone collagen (Capriles et al., 2019), along with challenges in dating bioapatite in tropical environments including the difficulties of removing contaminants and diagenesis involving isotopic exchange of dissolved carbon from shells (Cherkinsky, 2009; Fernandes et al., 2013b; Inomata et al., 2022; Zazzo and Saliège, 2011), complicates the radiocarbon dating of bones. Moreover, extensive archaeological excavations are resource-intensive, and much of the available dating evidence comes from coring and auger soil sampling. This methodological limitation significantly restricts the availability of suitable datable materials, except for Pomacea remains, which are abundant, particularly easy to identify and are relatively well preserved. This frequently makes the shells the most viable option for radiocarbon dating of human activities in southwestern Amazonia and other tropical settings (Lombardo et al., 2013). However, as observed in marine mollusc shells, freshwater specimens may yield radiocarbon ages older than those from coeval terrestrial organic materials (Alves et al., 2025; Culleton, 2006; Fernandes et al., 2012, 2013a; Geyh et al., 1997; Inomata et al., 2022; Philippsen, 2013). This ¹⁴C offset results from the presence of ¹⁴C depleted carbon in water when compared to the contemporaneous atmosphere. This carbon is assimilated by molluscs and incorporated into their shell carbonate structure (Fernandes and Dreves, 2017). Such radiocarbon reservoir effects (RRE) in lacustrine systems, also known as freshwater reservoir effects (FRE), are driven by multiple factors. Of particular relevance in our study, is the influx of water enriched with dissolved ancient carbonates (also knowns as hard-water), transported to lakes via groundwater and runoff (Yu et al., 2007) and carbon contributions from old organic matter (Fernandes et al., 2012, 2013a). Therefore, determining the magnitude of RREs across time is crucial for the accurate calibration of radiocarbon dates from subfossil shells.

Llanos de Moxos is a noncalcareous region and the river catchment basin in the Andes drains almost exclusively through siliciclastic rock (Gómez Tapias et al., 2019). This has led to a widespread practice of radiocarbon dating lake

Figure 1. (**A**) Location of the study area in South America. (**B**) Llanos de Moxos in the Bolivian Amazon and the four lakes from which samples were collected. (**C**) A modern specimen of the freshwater *Pomacea* genus from Lago Azul. Maps were created by UL using ArcGIS software, and the photograph of the *Pomacea* shell was taken by AGE.

sediments palaeosols and shells from the Bolivian Amazon without RRE corrections (Carson et al., 2014; Lombardo et al., 2013, 2018; Whitney et al., 2014). However, RREs may originate also from oxidation of old organic matter (Fernandes et al., 2012, 2013a, 2016). Thus, testing for an absence of freshwater RREs in the Bolivian Amazon remains necessary. Here, we report nine accelerator mass spectrometry (AMS) radiocarbon dates from *in vivo* collections of *Pomacea* shells and coeval terrestrial plant samples from four different locations across the Llanos de Moxos area.

2 Materials and methods

The freshwater golden apple snail genus *Pomacea* (Fig. 1C) is native to South America and has rapidly spread worldwide (Céspedes et al., 2024; Hayes et al., 2008; Seuffert and Martín, 2024). Apple snails of the *Pomacea* genus are part of the *Ampullariidae* family, which includes the largest freshwater snails, reaching up to 17 cm in length (Azmi et al., 2022). Previous research on this genus showed

that it has high growth rates, which are primarily dependent on temperature and mollusc ontogeny (Seuffert and Martín, 2013; Sutton et al., 2017). *Pomacea* specimens are primarily macrophytophagous, thus preferring floating or submersed plants over emergent ones, although some species, such as *P. canaliculata* also feed on animal matter (Estebenet and Martín, 2002).

In this study, modern *Pomacea* spp. specimens were collected alive from four freshwater continental systems located across the Llanos de Moxos region (Fig. 1B) in 2023 and 2024. In both years, collections took place in October, coinciding with the lowest water level during the dry season. The molluscs were immediately sacrificed to prevent additional calcium carbonate deposition. This was done by immersion in boiling water for up to three minutes, which facilitated the removal of the edible portion of the mollusc. We obtained a sample from the shell edge (or lip), which represents the most recent shell growth, in order to analyse the carbonate deposited during the last few weeks or months prior to collection. The shell periostracum was manually removed using a dental microdrill equipped with a 1 mm tungsten bit. Additionally, tree leaves of terrestrial trees, which are replaced in less than one year, were collected near where molluscs were collected and at the same time. This allows for a comparison of coeval ¹⁴C values for the atmosphere and precipitated shell carbonate.

A total of five mollusc shells and four tree leaves were subject to sample pre-treatment, combustion, and graphitization at the CIRAM laboratory (Martillac, France) while AMS measurements were carried out at BARNAS mass spectrometry (Vilnius, Lithuania). To remove surface contamination, mollusc shells were treated with hydrochloric acid (HCl, 1 M) at room temperature. Plant leaves were placed in HCl (1 M) at 80 °C for one hour and then treated with sodium hydroxide (NaOH, 0.1 M) at room temperature for 10 min. Subsequently, they were placed again in HCl (1 M) at 80 °C to remove absorbed atmospheric CO₂. Following chemical pre-treatments, both shell and leaf samples (weights ranging from 3.5 to 15.4 mg) were combusted at 920 °C using an elemental analyser (EA) (Elementar, Vario ISOTOPE Select) at the CIRAM laboratory. Samples were weighed into tin capsules and combusted in the EA using oxygen mixed with helium carrier gas (O₂ dosing time: 100 s). The carbonates were combusted following a similar procedure, but these were ground into powder before being weighed into tin capsules and subject to a longer combustion time (O2 dosing time: 120 s). The CO₂ emerging from the EA was split with ca. 90 % of this captured by a zeolite trap in an Automated Graphitization Equipment (AGE) (IonPlus AG, AGE 3) and underwent catalytic conversion into graphite, using the hydrogen reduction method based on Vogel et al. (1984).

Radiocarbon content of both shell and leaf samples was measured using a 50 kV accelerator mass spectrometer Low-Energy Accelerator (LEA, IonPlus AG) at the BARNAS laboratory. Corrections for isotopic fractionation were applied

following Stuiver and Polach (1977), based on the comparison of ¹³C/¹²C and ¹⁴C/¹²C AMS measurements. The analytical precision of the Fraction Modern (F¹⁴C), which expresses ¹⁴C concentration normalised to the standard ¹⁴C atmospheric level in 1950 (Reimer et al., 2004) is reported here at 1σ . Measurements of stable carbon isotope ratios for leaf and shell samples were carried out at the CIRAM laboratory using ca. 10% of the EA produced CO2 (see previous paragraph) which flowed into a coupled isotope ratio mass spectrometry (IRMS) (Elementar, isoprime precisION). Raw isotope data were normalised against international standards (caffein USGS61 [δ^{13} C = $-35.05 \pm 0.04\%$ VPDB, Schimmelmann et al., 2016] and glucose BCR-657 $[\delta^{13}C = -10.76 \pm 0.04\% \text{ VPDB}, European Commis$ sion certificate EUR 20064 EN]) and δ^{13} C results expressed in per mil (%) relative to the VPDB (Vienna Pee Dee Belemnite) standard.

3 Results and discussion

The radiocarbon activity of modern Pomacea shells, collected in vivo from four lakes, ranged from 1.0001 ± 0.0037 to 1.0303 ± 0.0036 F¹⁴C, while the terrestrial leaves from neighbouring locations ranged from 1.0018 ± 0.0037 to $1.0155 \pm 0.0036 \text{ F}^{14}\text{C}$ (Table 1). Significant differences in F¹⁴C values for terrestrial plant samples collected in 2023 and 2024 partly reflect the decline in atmospheric ¹⁴C levels following nuclear weapons testing during the 1950s–1960s (Hua et al., 2022). No statistically significant differences were observed between the F¹⁴C values obtained from coeval lacustrine and terrestrial samples, except for mollusc LA.1 (Table 1). This specimen exhibited a radiocarbon activity higher than that the reference terrestrial leaf LA.2 and shell LA.3 retrieved from the same lake. The F¹⁴C values for LA.2 and LA.3 were not statistically different (Table 1). The reason for the discrepancy observed for LA.1 is presently indetermined. Although the results could arise statistically (F¹⁴C values for LA.1 and LA.2 overlap at a 3σ range) we cannot fully exclude local variations in ¹⁴C carbon sources available to the two molluscs or ¹⁴C differences arising from differences in mollusc carbon metabolism. The higher δ^{13} C value in LA.3, when compared to LA.1, may be related to a higher incorporation of carbon sourced from organic matter by LA.1 (mollusc shell LA.1 also showed the lowest δ^{13} C value of all shell samples) (Fernandes and Dreves, 2017). In this case, carbon from older organic matter present at the lake would have to have a higher F14C value than inorganic carbon resulting from the incorporation of a bomb signal.

Our results are overall consistent with the hypothesis that no significant RRE is expected for modern freshwater *Pomacea* shells within the Bolivian Amazon. However, we must also consider potential temporal variations in RRE values, as a result of climate change, hydrological dynamics, and human impacts (Geyh et al., 1997; Philippsen, 2013). Varia-

Collection site	Collection date	ID Code	Lab Code	Material	F ¹⁴ C	χ 2 test results df = 1 (5 %, 3.8)	δ ¹³ C (‰) (by IRMS)
Trinidad	October 2023	CHU.100 CHU.101	CIRAM-8348 CIRAM-8349	Shell Tree leaf	1.0154 ± 0.0036 1.0108 ± 0.0035	T = 0.8	-7.8 -32.4
Lago Azul	October 2023	LA.1 LA.3 LA.2	CIRAM-10931 CIRAM-13341 CIRAM-10932	Shell Shell Tree leaf	1.0303 ± 0.0036 1.0137 ± 0.0035 1.0155 ± 0.0036	T = 8.5 $T = 0.1$	-17.5 -14.6 -30.2
San Ignacio	October 2024	SI.1 SI.2	CIRAM-12310 CIRAM-12311	Shell Tree leaf	1.0001 ± 0.0037 1.0004 ± 0.0034	T = 0.0	-14.9 -29.6
Santa Rosa de Yacuma	October 2024	SRO.100 SRO.101	CIRAM-12312	Shell Tree leaf	1.0024 ± 0.0034 1.0018 ± 0.0035	T = 0.0	-14.1 -32.4

Table 1. Radiocarbon and stable isotope results for modern mollusc and plant samples measured using AMS and IRMS, respectively. Chisquare tests compare mollusc radiocarbon results with paired plant samples.

tions in lake sediment sodium bicarbonate have been linked to evaporation rates (Geyh et al., 1997). However, the absence of carbonate sources in investigated lakes and climatic stability observed for Llanos de Moxos via palaeoecological records likely exclude climate as a potential source for RRE temporal variations (Brugger et al., 2016; Mayle et al., 2000). RREs may also reflect geothermal activity (Ascough et al., 2010), which has not been reported for Llanos de Moxos. Fluvial dynamics in Llanos de Moxos did change significantly during the Holocene, particularly between 4 ka and 2 ka cal BP, when heightened river activity is recorded (Lombardo et al., 2018). Nevertheless, the Bolivian lowlands and their river catchment areas, with the exception of a carbonate outcrop in the region of Torotoro (Apaéstegui et al., 2018) within the catchment of the Rio Grande river, are mostly devoid of limestone rocks. This allows us to suggest that changes in hydrological dynamics are unlikely to have impacted temporal variations in RRE values for most of the Llanos de Moxos. As for the Rio Grande river, it deposits its sediments in the Santa Cruz region, where its discharge is significantly reduced as water flows underground (Lombardo, 2016). Rio Grande feeds into the Mamoré river, south of the Llanos de Moxos. However, until approximately 4000 years ago, the Rio Grande flowed northward, depositing a large sedimentary lobe in southern Llanos de Moxos and likely contributed significantly to sediments that now cover the northeastern part of the region (Lombardo, 2014; Lombardo et al., 2012). Although the carbonate section of the Rio Grande catchment is extremely small compared with noncarbonate rocks, we cannot fully exclude a negligible RRE value in shells dating older than 4000 years in the eastern part of the Llanos de Moxos.

Humans have impacted the landscapes within our study region to some extent and could have, in theory, locally influenced RRE values. Different studies show that pre-Columbian populations actively managed their surroundings; modifying hydrological conditions to retain water longer into the dry season or drain water more effectively during the

wet season (Lombardo et al., 2025), increasing fire activity (Brugger et al., 2016; Duncan et al., 2021), and constructing geometric earthworks (Carson et al., 2014), among others landscape modifications. However, these human activities primarily took place during the Late Holocene (Erickson, 2000; de Souza et al., 2018; Whitney et al., 2013), following the formation of forest island shell middens, suggesting that their impact during the Early and Middle Holocene, if any, was minimal. Regarding the Late Holocene, these pre-Columbian earthworks influenced the runoff of rain waters. either by speeding up the drainage or via water retention, on clayish and impermeable soils, with little to no exchange with underground water, as attested by the oxidative patterns of the subsoil (Lombardo et al., 2015). We therefore exclude a notable impact of pre-Columbian human activities on RREs.

In conclusion, while our sample size is still relatively modest, our radiocarbon results, together with an assessment of the stability of the conditions impacting RRE values, are consistent with the hypothesis that there is an absence of significant freshwater RREs in the Llanos de Moxos area. This adds support for the reliability of existing radiocarbon chronologies based on ¹⁴C measurements from *Pomacea* shells and incentivises wider use of freshwater molluscs in future radiocarbon dating projects. Nevertheless, evaluating potential reservoir effects using archaeological indicators should still be considered in further studies, for example by analysing paired shell carbonates and carbonised plant remains, or other materials of well-constrained chronological age (e.g., Alves et al., 2025). We also note that our results are based on modern mollusc shells. Ancient shells deposited in soils could be subject to diagenetic processes that may produce erroneous radiocarbon results. Thus, radiocarbon dating of ancient mollusc shells requires the application of appropriate pre-screening protocols to assess shell preservation and of pre-treatment protocols to remove contaminant carbon (Douka et al., 2010).

Data availability. All data can be found in the Table 1.

Author contributions. AGE and UL designed the experiment. AGE, UL, KD, and CDS collected the samples radiocarbon dated in this experiment. PMBA and AC provided scientific support. RF verified the results, experiments, and other research outputs. AGE prepared the manuscript with contributions from UL, JMC, and RF. All co-authors have reviewed and edited the final version of the manuscript.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.

Acknowledgements. We would like to thank Maicol Apomaita for collecting the modern mollusc shells used for radiocarbon dating in this research and to Juan Pablo Llapiz for his invaluable support during our stay at Lago Azul. Finally, we also thank the anonymous reviewers and editor for their insightful comments and constructive suggestions, which significantly improved the quality and clarity of this manuscript.

Financial support. This research was carried out as part of the I+D+i project code PID2022-138350OA-I00, which has been funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. This work was also supported by the ERC Consolidator project DEMODRIVERS funded by the European Research Council (ERC) (ID: 101043738; https://doi.org/10.3030/101043738). During the development of this research AGE was funded by European Commission through a Marie Skłodowska Curie Action Fellowship (NEARCOAST, https://doi.org/10.3030/101064225) and he is currently funded by MICIU/AEI/10.13039/501100011033 and by ESF+ through a Ramón y Cajal Fellowship (RYC2023-044279-I). PBA is currently supported by Post-Doc Xunta de Galicia Grant (ID: ED481B-2022/079). This work also contributes to the ICTA-UAB "María de Maeztu" Programme for Units of Excellence of the Spanish Ministry of Science, Innovation and Universities (CEX2024-001506-M) and to the EarlyFoods project, which has received funding from the Agència de Gestió d'Ajuts Universitaris i de Recerca de Catalunya (SGR-Cat-2021, 00527).

The article processing charges for this open-access publication were covered by the Max Planck Society. **Review statement.** This paper was edited by Irka Hajdas and reviewed by two anonymous referees.

References

- Alves, E. Q., Guédron, S., Delaere, C., Boudin, M., Chevalier, A., van den Brande, T., Ligovich, G., Souza, R., Eeckhout, P., and Macario, K.: Updated multi-method estimates of Lake Titicaca's radiocarbon reservoir offset, Quaternary Sci. Rev., 366, 109463, https://doi.org/10.1016/j.quascirev.2025.109463, 2025.
- Apaéstegui, J., Cruz, F. W., Vuille, M., Fohlmeister, J., Espinoza, J. C., Sifeddine, A., Strikis, N., Guyot, J. L., Ventura, R., Cheng, H., and Edwards, R. L.: Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ¹⁸O) records for the last 1400 years, Earth Planet. Sc. Lett., 494, 124–134, https://doi.org/10.1016/j.epsl.2018.04.048, 2018.
- Armesto, J. J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R., Abarzúa, A. M., and Marquet, P. A.: From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years, Land Use Policy, 27, 148–160, https://doi.org/10.1016/j.landusepol.2009.07.006, 2010.
- Ascough, P. L., Cook, G. T., Church, M. J., Dunbar, E., Einarsson, Á., McGovern, T. H., Dugmore, A. J., Perdikaris, S., Hastie, H., Friðriksson, A., and Gestsdóttir, H.: Temporal and spatial variations in freshwater ¹⁴C reservoir effects: Lake Mývatn, northern Iceland, Radiocarbon, 52, 1098–1112, https://doi.org/10.1017/s003382220004618x, 2010.
- Azmi, W. A., Khoo, S. C., Ng, L. C., Baharuddin, N., Aziz, A. A., and Ma, N. L.: The current trend in biological control approaches in the mitigation of golden apple snail Pomacea spp, Biol. Control, 175, 105060, https://doi.org/10.1016/j.biocontrol.2022.105060, 2022.
- Brugger, S. O., Gobet, E., van Leeuwen, J. F. N., Ledru, M.-P., Colombaroli, D., van der Knaap, W. O., Lombardo, U., Escobar-Torrez, K., Finsinger, W., Rodrigues, L., Giesche, A., Zarate, M., Veit, H., and Tinner, W.: Long-term manenvironment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics, Quaternary Sci. Rev., 132, 114–128, https://doi.org/10.1016/j.quascirev.2015.11.001, 2016.
- Bueno, L., Dias, A. S., and Steele, J.: The Late Pleistocene/Early Holocene archaeological record in Brazil: A geo-referenced database, Quat. Int., 301, 74–93, https://doi.org/10.1016/j.quaint.2013.03.042, 2013.
- Capriles, J. M.: The Bolivian radiocarbon database: A countrywide compilation of radiocarbon dates, J. Open Archaeol. Data, 11, https://doi.org/10.5334/joad.104, 2023.
- Capriles, J. M., Lombardo, U., Maley, B., Zuna, C., Veit, H., and Kennett, D. J.: Persistent Early to Middle Holocene tropical foraging in southwestern Amazonia, Sci. Adv., 5, eaav5449, https://doi.org/10.1126/sciadv.aav5449, 2019.
- Carson, J. F., Whitney, B. S., Mayle, F. E., Iriarte, J., Prümers, H., Soto, J. D., and Watling, J.: Environmental impact of geometric earthwork construction in pre-Columbian Amazonia, P. Natl. Acad. Sci. USA, 111, 10497–10502, https://doi.org/10.1073/pnas.1321770111, 2014.
- Céspedes, V., Bernardo-Madrid, R., Picazo, F., Vilà, M., Rubio, C., García, M., Sanz, I., and Gallardo, B.: Massive de-

- cline of invasive apple snail populations after blue crab invasion in the Ebro River, Spain, Biol. Invasions, 26, 2387–2395, https://doi.org/10.1007/s10530-024-03334-1, 2024.
- Cherkinsky, A.: Can we get a good radiocarbon age from "bad bone"? Determining the reliability of radiocarbon age from bioapatite, Radiocarbon, 51, 647–655, https://doi.org/10.1017/s0033822200055995, 2009.
- Culleton, B. J.: Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California, J. Archaeol. Sci., 33, 1331–1339, https://doi.org/10.1016/j.jas.2006.01.013, 2006.
- de Souza, J. G., Schaan, D. P., Robinson, M., Barbosa, A. D., Aragão, L. E. O. C., Marimon, B. H., Jr, Marimon, B. S., da Silva, I. B., Khan, S. S., Nakahara, F. R., and Iriarte, J.: Pre-Columbian earth-builders settled along the entire southern rim of the Amazon, Nat. Commun., 9, 1125, https://doi.org/10.1038/s41467-018-03510-7, 2018.
- Douka, K., Higham, T. G. F., and Hedges, R. E. M.: Radiocarbon dating of shell carbonates: old problems and new solution, Munibe Suplemento, 31, 18–27, 2010.
- Duncan, N. A., Loughlin, N. J. D., Walker, J. H., Hocking, E. P., and Whitney, B. S.: Pre-Columbian fire management and control of climate-driven floodwaters over 3,500 years in southwestern Amazonia, P. Natl. Acad. Sci. USA, 118, e2022206118, https://doi.org/10.1073/pnas.2022206118, 2021.
- Erickson, C. L.: An artificial landscape-scale fishery in the Bolivian Amazon, Nature, 408, 190–193, https://doi.org/10.1038/35041555, 2000.
- Estebenet, A. L. and Martín, P. R.: Pomacea canaliculata (Gastropoda: Ampullariidae): life-history traits and their plasticity, Biocell, 26, 83–89, 2002.
- Fernandes, R. and Dreves, A.: Bivalves and radiocarbon, in: Molluscs in Archaeology: Methods, Approaches and Applications, edited by: Allen, M. J., Oxbow Books, Oxford, 364–380, ISBN 978-1-78570-608-0, ISBN 978-1-78570-609-7, 2017.
- Fernandes, R., Bergemann, S., Hartz, S., Grootes, P. M., Nadeau, M.-J., Melzner, F., Rakowski, A., and Hüls, M.: Mussels with meat: Bivalve tissue-shell radiocarbon age differences and archaeological implications, Radiocarbon, 54, 953–965, https://doi.org/10.1017/s0033822200047597, 2012.
- Fernandes, R., Dreves, A., Nadeau, M.-J., and Grootes, P. M.: A freshwater lake saga: Carbon routing within the aquatic food web of Lake Schwerin, Radiocarbon, 55, 1102–1113, https://doi.org/10.1017/s0033822200048013, 2013a.
- Fernandes, R., Hüls, M., Nadeau, M.-J., Grootes, P. M., Garbe-Schönberg, C.-D., Hollund, H. I., Lotnyk, A., and Kienle, L.: Assessing screening criteria for the radiocarbon dating of bone mineral, Nucl. Instrum. Methods Phys. Res. B, 294, 226–232, https://doi.org/10.1016/j.nimb.2012.03.032, 2013b.
- Fernandes, R., Rinne, C., Nadeau, M.-J., and Grootes, P.: Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany, Environ. Archaeol., 21, 285–294, https://doi.org/10.1179/1749631414y.0000000034, 2016.
- Geyh, M. A., Schotterer, U., and Grosjean, M.: Temporal changes of the ¹⁴C reservoir effect in lakes, Radiocarbon, 40, 921–931, https://doi.org/10.1017/s0033822200018890, 1997.
- Gómez Tapias, J., Montes Ramírez, N. E., and Schobbenhaus, C.: Geological Map of South America 2019. Scale 1:5000000,

- Commission for the Geological Map of the World (CGMW), Colombian Geological Survey, and Geological Survey of Brazil, Paris, https://doi.org/10.32685/10.143.2019.929, 2019.
- Hayes, K. A., Joshi, R. C., Thiengo, S. C., and Cowie, R. H.: Out of South America: multiple origins of nonnative apple snails in Asia, Divers. Distrib., 14, 701–712, https://doi.org/10.1111/j.1472-4642.2008.00483.x, 2008.
- Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B., Palmer, J. G., and Turney, C. S. M.: Atmospheric radiocarbon for the period 1950–2019, Radiocarbon, 64, 723–745, https://doi.org/10.1017/rdc.2021.95, 2022.
- Inomata, T., Sharpe, A., Palomo, J. M., Pinzón, F., Nasu, H., Triadan, D., Culleton, B. J., and Kennett, D. J.: Radiocarbon dates of burials from Ceibal and other Pasión Maya sites, Guatemala, and the examination of freshwater reservoir effect through diet reconstruction, J. Archaeol. Sci. Rep., 44, 103506, https://doi.org/10.1016/j.jasrep.2022.103506, 2022.
- Lombardo, U.: Neotectonics, flooding patterns and landscape evolution in southern Amazonia, Earth Surf. Dynam., 2, 493–511, https://doi.org/10.5194/esurf-2-493-2014, 2014.
- Lombardo, U.: Alluvial plain dynamics in the southern Amazonian foreland basin, Earth Syst. Dynam., 7, 453–467, https://doi.org/10.5194/esd-7-453-2016, 2016.
- Lombardo, U., May, J.-H., and Veit, H.: Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin, Holocene, 22, 1035–1045, https://doi.org/10.1177/0959683612437872, 2012.
- Lombardo, U., Szabo, K., Capriles, J. M., May, J.-H., Amelung, W., Hutterer, R., Lehndorff, E., Plotzki, A., and Veit, H.: Early and middle holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens, PLoS One, 8, e72746, https://doi.org/10.1371/journal.pone.0072746, 2013.
- Lombardo, U., Denier, S., and Veit, H.: Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon, SOIL, 1, 65–81, https://doi.org/10.5194/soil-1-65-2015, 2015.
- Lombardo, U., Rodrigues, L., and Veit, H.: Alluvial plain dynamics and human occupation in SW Amazonia during the Holocene: A paleosol-based reconstruction, Quaternary Sci. Rev., 180, 30–41, https://doi.org/10.1016/j.quascirev.2017.11.026, 2018.
- Lombardo, U., Iriarte, J., Hilbert, L., Ruiz-Pérez, J., Capriles, J. M., and Veit, H.: Early Holocene crop cultivation and landscape modification in Amazonia, Nature, 581, 190–193, https://doi.org/10.1038/s41586-020-2162-7, 2020.
- Lombardo, U., Hilbert, L., Bentley, M., Bronk Ramsey, C., Dudgeon, K., Gaitan-Roca, A., Iriarte, J., Mejía Ramón, A. G., Quezada, S., Raczka, M., Watling, J. G., Neves, E., and Mayle, F.: Maize monoculture supported pre-Columbian urbanism in southwestern Amazonia, Nature, 639, 119–123, https://doi.org/10.1038/s41586-024-08473-y, 2025.
- Mayle, F. E., Burbridge, R., and Killeen, T. J.: Millennial-scale dynamics of southern Amazonian rain forests, Science, 290, 2291–2294, https://doi.org/10.1126/science.290.5500.2291, 2000.
- Philippsen, B.: The freshwater reservoir effect in radiocarbon dating, Herit. Sci., 1, 24, https://doi.org/10.1186/2050-7445-1-24, 2013.

- Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and calibration of post-bomb ¹⁴C data, Radiocarbon, 46, 1299–1304, https://doi.org/10.1017/s0033822200033154, 2004.
- Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., Kemp, H. F., Toman, B., Ackermann, A., Assonov, S., Aerts-Bijma, A. T., Brejcha, R., Chikaraishi, Y., Darwish, T., Elsner, M., Gehre, M., Geilmann, H., Gröning, M., Hélie, J.-F., Herrero-Martín, S., Meijer, H. A. J., Sauer, P. E., Sessions, A. L., and Werner, R. A.: Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: Caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils, Anal. Chem., 88, 4294–4302, https://doi.org/10.1021/acs.analchem.5b04392, 2016.
- Seuffert, M. E. and Martín, P. R.: Juvenile growth and survival of the apple snail *Pomacea canaliculata* (Caenogastropoda: Ampullariidae) reared at different constant temperatures, Springerplus, 2, 312, https://doi.org/10.1186/2193-1801-2-312, 2013.
- Seuffert, M. E. and Martín, P. R.: Global distribution of the invasive apple snail Pomacea canaliculata: analyzing possible shifts in climatic niche between native and invaded ranges and future spread, Aquat. Sci., 86, https://doi.org/10.1007/s00027-023-01036-9, 2024.
- Stuiver, M. and Polach, H. A.: Discussion reporting of ¹⁴C data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/s0033822200003672, 1977.

- Sutton, K. L., Zhao, L., and Carter, J.: The estimation of growth dynamics for Pomacea maculata from hatchling to adult, Ecosphere, 8, e01840, https://doi.org/10.1002/ecs2.1840, 2017.
- Vogel, J. S., Southon, J. R., Nelson, D. E., and Brown, T. A.: Performance of catalytically condensed carbon for use in accelerator mass spectrometry, Nucl. Instrum. Methods Phys. Res. B, 5, 289–293, https://doi.org/10.1016/0168-583x(84)90529-9, 1984.
- Whitney, B. S., Dickau, R., Mayle, F. E., Soto, J. D., and Iriarte, J.: Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the *Llanos de Moxos*, lowland Bolivia, Quat. Res., 80, 207–217, https://doi.org/10.1016/j.yqres.2013.06.005, 2013.
- Whitney, B. S., Dickau, R., Mayle, F. E., Walker, J. H., Soto, J. D., and Iriarte, J.: Pre-Columbian raised-field agriculture and land use in the Bolivian Amazon, Holocene, 24, 231–241, https://doi.org/10.1177/0959683613517401, 2014.
- Yu, S.-Y., Shen, J., and Colman, S. M.: Modeling the radiocarbon reservoir effect in lacustrine systems, Radiocarbon, 49, 1241– 1254, https://doi.org/10.1017/s0033822200043150, 2007.
- Zazzo, A. and Saliège, J.-F.: Radiocarbon dating of biological apatites: A review, Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 52–61, https://doi.org/10.1016/j.palaeo.2010.12.004, 2011.