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I am grateful to Dr. Ickert for his review, which is one of the most careful and detailed ones that I have
ever received. The text raises a number of pertinent points, which I will address in the revised manuscript.
Following the format of the review, I will first give a general response to the most important points, and this
will be followed by a detailed response to the specific comments.

1. Clarity and organisation

Ludwig (1998)’s “Treatment of concordant U/Pb ages” is one of my favourite papers of all time,
because it is concise yet provides sufficient mathematical detail to verify the derivations and translate
the algorithm into computer code. It was my aim to give my manuscript those same two qualities.
However it appears that I have taken the concision too far in some places, whilst providing too much
mathematical detail elsewhere. I will expand some of the descriptive text and move some of the
mathematical detail to an appendix.

2. Example data

The reviewer points out that the reanalysis of Gibson et al. (2016)’s monazite U-Pb data is “at odds
with the published results” due to a combination of true age heterogeneity and initial 230Th/238U-
disequilibrium. The example data used in the manuscript was taken from one specific low-Y monazite
crystal (grain #10) in one specific sample (BHE-01). The reported 208Pb/232Th-ages ages within
this particular grain are fairly uniform, with a weighted mean of 19.9±0.2 Ma. This is significantly
older than the U-Th-Pb isochron age (17.8±0.3 Ma). It is unlikely that the difference is due to initial
230Th/238U-disequilibrium, because correcting for this would move the age into the wrong direction.
Repeating the 208Pb/232Th-age calculations of Gibson et al. (2016) shows that these authors did not
apply a common Pb correction to their data. So I have good reasons to believe that the U-Th-Pb
isochron age is in fact more accurate than the published values.

The reviewer is correct that the common Pb intercepts are too high. These estimates are imprecise, and
the high MSWD reflects the difficulty of the U-Th-Pb isochron algorithm to fit both the U and Th data.
So I will follow Dr. Ickert’s suggestion and replace this example with two new ones: a carbonate dataset
of Parrish et al. (2018) and an allanite dataset of Janots and Rubatto (2014). The carbonate dataset
is an example of a low Th/U setting in which the 208Pb-based common Pb correction is more precise
than a conventional 207Pb/206Pb-based commond Pb correction (Figure 1). The allanite dataset is an
example of a high Th/U setting in which the 208Pb/232Th method offers greater precision than the
U-Pb method. The Janots and Rubatto (2014) study used SIMS and so it is also possible to compare
a 204Pb-based common Pb correction with the new 208Pb method. The comparison is favourable to
the new U-Th-Pb isochron algorithm (Figure 2).

3. Novelty

Dr. Ickert writes that the isochron method presented in my manuscript “is only a slight modification
of [Ludwig’s] ‘SemiTotal-Pb/U isochron’ approach.” and that the “advantage in forcing both Th-Pb
and U-Pb concordance in constraining the Pbc/U [...] isn’t obvious to [him] from this manuscript.”
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Figure 1: a) SemiTotal-Pb/U isochron (207Pb-based common Pb correction) for Parrish et al. (2018)’ chalk
data; b) Total-Pb/U-Th isochron (208Pb-based common Pb correction) shown in 208Pb◦/

206Pb – 238U/206Pb
space. Colours indicate the Th/U-ratio. All uncertainties are shown at 1σ.

First, the new algorithm is not based on Ludwig (1998)’s SemiTotal-Pb/U isochron method, but on
his Total-Pb/U method. Second, the two new datasets will better illustrate the power of including
Th-Pb in the isochron analysis. In the case of low-Th/U carbonate data, I will cite the relevant section
of Parrish et al. (2018):

“This approach allows common 206Pb to be quantified more robustly than methods using
either 204Pb or 207Pb because the 208Pbc can be determined more precisely than using 204Pb,
207Pb or a combination of the two. In samples with low Th/U ratio this approach has two
major advantages: (1) uncertainties of individual analyses are smaller, resulting in less scat-
ter and improved uncertainty of isochron arrays; (2) it allows more reliable calculation of
single spot ages and their weighted means. For most analyses, the uncertainties in mea-
surement and consequent estimation of common Pb are smaller for 208Pb/206Pb than for
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Figure 2: a) SemiTotal-Pb/U isochron (207Pb-based common Pb correction) for Janots and Rubatto (2014)’s
allanite data; b) Conventional Pb/Th-isochron (204Pb-based common Pb correction); c) and d) Total-
Pb/U-Th isochron (208Pb-based common Pb correction) shown in 208Pb◦/

206Pb – 238U/206Pb space (c)
and 206Pb◦/

208Pb – 232Th/208Pb space (d). Colours indicate the Th/U-ratio. All uncertainties are shown
at 1σ.

207Pb/206Pb. In all cases in this study, for spots with >60% radiogenic Pb, both regres-
sion ages agree within uncertainty. In all samples the ages and uncertainties of [U-Th-Pb
isochron] regressions and weighted means of 208Pb-corrected single spot ages agree within
uncertainty, and both generally have smaller uncertainties and less regression scatter than
analogous 207Pb-corrected methods.”

For high-Th/U phosphate data, most of the geochronological power lies in the 208Pb/232Th clock. This
chronometer lacks the equivalent of the U-Pb clock’s 207Pb/206Pb-based common-Pb correction. In
the absence of 204Pb, the newly developed U-Th-Pb isochron is the only way to account for common
Pb. I will add these details to the paper.
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4. References

The original manuscript did not cite existing common Pb correction schemes proposed by Andersen
(2002), Horstwood et al. (2003), Chew et al. (2014) among others. I will add these references to the
revised manuscript, whilst highlighting their underlying assumptions and limitations. More specifi-
cally, the method of Andersen (2002) assumes that U-Th-Pb discordance “can be accounted for by a
combination of lead loss at a defined time, and the presence of common lead of known composition”.
This is clearly not the case for the carbonate and allanite data discussed in the revised manuscript;
the 204Pb-based approach of Horstwood et al. (2003) is complicated in the presence of 204Hg and is
imprecise due to the low abundance of 204Pb (see Figure 2.b); and the limitations of 207Pb-based
methods as discussed by Chew et al. (2014) have already been explained in the quote by Parrish et al.
(2018) given above.

Response to the detailed comments

The reviewer was puzzled why

“the Pbc compositions (0.3685; 2.56; 11.71) and ages (17.71 Ma) appear in [Section 2] with no
context.”

The optimal common Pb composition and age could be obtained by trial and error, until the samples
plot along a line in Pb/Pb–U/Pb space. To clarify this point, I will add some truly random guesses for the
concordia age to the plot. See Figure 3 of this response letter. Please note that this new figure uses the
Janots and Rubatto (2014) data instead of the Gibson et al. (2016) data from the original manuscript.
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Figure 3: U-Th-Pb data for allanite sample MF482 of Janots and Rubatto (2014) shown on a 208Pb◦/
206Pb

– 238U/206Pb isochron plot. Green ellipses represent the raw data. Red, light and dark blue ellipses show
the same measurements with 5, 23 and 40 Ma worth of radiogenic 208Pb removed, respectively. The misfit of
the radiogenic 208Pb-corrected data around the best fit line is expressed as weighted square of mean deviates
(mswd, McIntyre et al., 1966) values. The y-intercept yields the common Pb isotopic composition. Error
ellipses are shown at 1σ.

“the covariance matrix is introduced in equation 11, but not identified until just above equation 18
in the next column.”
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Equation 11 contains five different parameters, which are defined in terms of other parameters. Explaining
the meaning of all these parameters takes space. I will address this issue by moving lines 110-120 to an
Appendix.

“The omegas in equation 11 are never identified.”

Here I simply followed Ludwig (1998): the omegas are defined implicitly in terms of the inverted covariance
matrix.

“If the author just wants to write out derivations of equations, they should be in an appendix. 12,
13 and 14 should also be written out with the original variable names (206Pb/238U, 207Pb/235U
etc.) and the significance of these equations explained to a reader.”

It is not easy to fit the original variables in GChron’s two-column format. But what I can do is follow
Ludwig (1998) and define the variables before instead of after using them. Equations 18-20, 32-41 and 46-55
will be moved to an appendix.

“there is nothing special about using 208Pb as the index isotope”

208Pb was chosen as an index isotope so as to replace 204Pb in Ludwig (1998)’s Total-Pb/U algorithm.
This is different from the alternative formulations proposed by the reviewer, which refer to the SemiTotal-
Pb/U algorithm. It is true that the Total-Pb/U regression problem can be redefined in terms of Tera-
Wasserburg variables instead of the current Wetherill variables. But the solution is easier and cleaner in
Wetherill space.

“Line 5: 232/208 is not as often considered because there are few isotope dilution measurements
of 232Th (because they are harder to make by TIMS, and few labs want to do mixed TIMS-
MC-ICPMS analyses), because zircon is by far the most well used U-Th-Pb chronometer (where
Th-Pb provides little additional information), and because Th/U fractionation occurs in actinide
rich minerals (like allanite), complicating the systematics. The lack of statistical tools is very
much a second order reason to not jointly consider all the decay schemes.”

208Pb and 232Th are easy to measure by LA-ICP-MS, which has become by far the most widely used
analytical technique for U-Th-Pb geochronology. Zircon is indeed the most widely used mineral phase for
U-Pb geochronology, but in recent years there has been a rapid rise in the number of studies that use
other mineral phases such as apatite, allanite, rutile, and carbonates. Two examples of such studies will be
included in the revised manuscript, showcasing the gains in accuracy and precision that can be made with
the U-Th-Pb isochron method. The effects of Th/U fraction can quite easily be quantified by comparing the
Th/U ratio of the dated mineral with that of the whole rock (Schärer, 1984). This correction has already
been implemented in IsoplotR.

“It is possible to accurately measure 204Pb in ICPMS measurements but becomes increasingly
difficult with decreasing amounts of Pbc. So Pbc-rich minerals don’t necessarily suffer from this
problem (and these are the minerals for which this correction is most important).”

Speaking from experience, I am unable to accurately measure 204Pb using my quadrupole LA-ICP-MS
instrument at UCL, even with gold filters. The blank is more than 90% of the signal. For young and
U,Th-poor samples, it is difficult enough to measure the radiogenic Pb, let alone the common 204Pb.

“The point about dwell time is not particularly important. Removing one isotope from a run
table doesn’t provide a huge improvement in on-peak time from a practical perspective (it’s a
square root problem)”
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In the case of Janots and Rubatto (2014)’s allanite study, there is 38 times more 208Pbc than 204Pb
(Figure 2.b). So for the same dwell time, the 208Pbc measurement would be more than six times more
precise than the 204Pb measurement. Conversely, the same precision can be achieved for 208Pbc in one sixth
of the time as 204Pb. Conclusion: the square root problem is important.

“Section 6: This is a very important contribution and it’s unfortunate that it is buried in a small
section of a paper on a different topic. It’s far too short to do it any justice and I hope that this
receives a much more robust treatment elsewhere in the literature.”

By moving much of the mathematical detail to an appendix, Section 6 will gain prominence. My solu-
tion to the problem of asymmetic confidence intervals will be further explored in a forthcoming paper on
disequilibrium corrections that I will co-author with Dr. Noah McLean and others later this year.

“Section 7: This is just a constrained Pbc regression, and it would be useful to refer to the
literature where this has been done before.”

I will add another reference to Chew et al. (2014) here.

“What would be useful, and I urge the author to do this, is to demonstrate a specific advantage
of this technique (or any of those described herein) over a conventional interpretation. Show both
interpretations back-to-back so we can see the advantage.”

See Figures 1 and 2 of this response letter, which will be added to the revised manuscript.

“8. Does the title clearly reflect the contents of the paper? No, it is very general”

The title of Ludwig (1998) is also very general (“On the treatment of concordant uranium-lead ages”).
But I will follow the reviewer’s suggestion and change the title to: “Unifying the U–Pb and Th–Pb methods:
joint isochron regression and common lead correction”.
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I would like to thank Dr. Samperton for his positive review. It contains mostly minor suggestions
apart from one comment, which prompted me to confront a bigger issue that I had avoided in the original
manuscript.

Page 1, Lines 3-4: “The 206Pb/238U and 207Pb/235U decay systems are routinely combined to
improve accuracy”. May be more appropriate to have something along the lines of “...are routinely
combined to improve the assessment of accuracy”?

It is true that, in many geological applications, the 238Pb–206Pb and 235Pb–207Pb clocks are simply
plotted together to assess concordance, after which a simple weighted mean 206Pb/238U age is calculated.
However, Ludwig (1998) showed that the clocks can also be combined to estimate a hybrid (concordia or
isochron) age, which in theory is more accurate than either the 206Pb/238U or 207Pb/235U age. The aim of
the U-Th-Pb isochron paper is to explore this application further but including the 208Pb/232Th clock as
well. So in this case I maintain that “improving acccuracy” is a more appropriate term than “improving the
assessment of accuracy”.

Page 1, Lines 28-31: “Nevertheless, it manages to fit the data very well. The method should
work even better for low-Th phases such as carbonates.” These sentences are far too subjective
and informal, please rewrite.

I will add two new datasets to the paper, including a carbonate example (Parrish et al., 2018) and an
allanite example (Janots and Rubatto, 2014). By comparing conventional common-Pb corrections for these
data with the new Total-Pb/U-Th algorithm, the improvement in precision and accuracy will be much clearer
to the reader. See Figures 1 and 2 of this response letter for further details.

Technically, the proportions are a function of the Th/U-ratio, age, AND the 238U/235U ratio.
Here and later in the manuscript the author assumes the mean terrestrial zircon 238U/235U value
(137.818, without uncertainty) of Hiess et al. (2012). While for many (most?) applications of the
algorithm this assumption is possibly acceptable, insofar as broadening the general applicability
of this approach I think it is worth stating this point explicitly.

The reviewer is correct that the 238U/235U ratio affects the 207Pb/206Pb ratio. However as long as all
the analyses are cogenetic (which is a requirement for isochron regression), departure of the 238U/235U ratio
from the Hiess et al. (2012) values actually does not hurt the accuracy of the isochron age. This is because, in
Equation 12 of the original manuscript, 238U/235U is multiplied with the common-Pb ratio β. So as long as
238U/235U and β do not vary between aliquots, an overestimation of one translates into an underestimation
of the other without affecting t.

So the uncertainty of the 238U/235U ratio (U in Equation 12) only matters for the error propagation of
β. It is not easy to address this issue with the maximum likelihood formulation of the original manuscript,
in which U occurs in a product with γ. If the uncertainty of U is to be propagated, it is no longer possible to
reformulate the sum of squares S in terms of the Th/Pb misfit parameter M (Equation 23). Similarly, the
analytical uncertainty of the measured 232Th/238U ratio (W in Equations 12-14) is also difficult to propagate.

The solution to both of these problems is straightforward in theory, but complicated in practice. Recalling
the general equation for the sum-of-squares (Equation 11 of the original manuscript):

S = ∆T
(

JTΣJ
)−1

∆

we can replace Equations 12 (for J) and 13 (for Σ) with

1
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respectively. Unfortunately, taking matrix derivatives of S is extremely difficult to do by hand for this gener-
alised formulation. In well behaved cases, R’s optimisation function manages to calculate them numerically.
But the numerical stability of these solutions is much poorer than that of the original algorithm.

An additional advantage of the new formulation is its ability to accommodate a second type of overdisper-
sion model. Section 5 of the original manuscript parameterised the overdispersion in terms of the concordia
intercept age. With the generalised formulation of the maximum likelihood problem, it is also possible to
attribute the excess dispersion to the common Pb composition. In this case we replace Equation 44 of the
original manuscript with the following alternative:

Jω =





−UWγ

−Wγ

0n×n





Again, the numerical stability of this formulation is not as good as that of the original algorithm. If I find
a way to increase this stability, then I will use the new algorithm. Otherwise I will stick with the original
version and be more clear about its limitations.

throughout the manuscript a quantitative blank correction is not addressed, which is fine, but if
so a statement should be made here that the equations as currently formulated assume a trivial
Pb blank component.

I will add a line to clarify that the data are assumed to have been blank corrected.

Couldn’t you pull a representative carbonates dataset to demonstrate this point explicitly? I’d
be interested to see this.

A carbonate example will be added to the revised manuscript. See Figure 1 of this response letter.

You mention in passing that data are “overdispersed if... MSWD ≫1”. However, I think it worth
stating a more general point about the acceptable MSWD range as a function of the number of
degrees of freedom (i.e., data points), a la Wendt and Carl (1991). I think it worth citing Wendt
and Carl (1991) here, as well as presenting a general formula for the range/uncertainty on the
MSWD itself, beyond stating the oversimplification that data are overdispersed when MSWD1.
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I will add a reference to Wendt and Carl (1991). However it is also important not to overly rely on MSWDs
and p-values. It is possible for a precise dataset with an MSWD value of 100 to be more valuable than an
imprecise dataset with an MSWD of 1. What matters is not so much whether a dataset is overdispersed or
not, but rather how dispersed it is. This key point is addressed in Section 5 of the paper.

You should cite R for those not in the know

I will add the requested citation.
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U-Th-Pb discordia
✿✿✿✿✿✿✿✿✿✿✿✿✿

Unifying
✿✿✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

U–Pb
✿✿✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

Th–Pb
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

methods:
✿✿✿✿✿✿✿

joint

✿✿✿✿✿✿✿✿✿✿✿✿✿

isochron regression
✿✿✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿

lead
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

correction

Pieter Vermeesch

London Geochronology Centre, Department of Earth Sciences, University College London, United Kingdom

Correspondence: Pieter Vermeesch (p.vermeesch@ucl.ac.uk)

Abstract. The actinide elements U and Th undergo radioactive decay to three isotopes of Pb, forming the basis of three

coupled geochronometers. The 206Pb/238U and 207Pb/235U decay systems are routinely combined to improve accuracy. Joint

consideration with the 208Pb/232Th decay system is less common. This paper aims to change this. Co-measured 208Pb/232Th is

particularly useful for discordant samples containing variable amounts of non-radiogenic (‘common’) Pb.

The paper presents a maximum likelihood algorithm for joint isochron regression of the 206Pb/238Pb, 207Pb/235Pb, and5

208Pb/232Th chronometers. Given a set of cogenetic samples, the algorithm
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿✿

‘Total-Pb/U–Th
✿✿✿✿✿✿✿✿✿

algorithm’
✿

estimates the com-

mon Pb composition and concordia intercept age. U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb data can be visualised on a conventional Wetherill or

Tera-Wasserburg concordia diagram, or on a 208Pb/232Th vs. 206Pb/238U plot. Alternatively, the results of the new discordia

regression algorithm can also be visualised as a 208Pbc/206Pb vs. 238U/206Pb or 208Pbc/207Pb vs. 238U/207Pb isochron, where

208Pbc represents the common 208Pb component.
✿✿

In
✿✿

its
✿✿✿✿✿

most
✿✿✿✿✿✿✿

general
✿✿✿✿✿

form,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿

accounts
✿✿✿

for
✿✿✿✿

the10

✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿✿

all
✿✿✿✿✿✿✿

isotopic
✿✿✿✿✿

ratios
✿✿✿✿✿✿✿✿

involved,
✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

232Th/238U-ratio,
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿✿

associated

✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

decay
✿✿✿✿✿✿✿✿

constants
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

238U/235U-ratio.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

stability
✿✿

is
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿✿

improved
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dependency
✿✿✿

on

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

232Th/238U-ratio
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

is
✿✿✿✿✿✿✿✿

dropped.

For detrital minerals, it is generally not safe to assume a shared common Pb composition and concordia intercept age. In

this case the U-Th-Pb discordia
✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿

regression method must be modified by tying it to a terrestrial lead evolution15

model. Thus also detrital common Pb correction can be formulated in a maximum likelihood sense.

The new method was applied to a published monazite dataset with a
✿✿✿✿

three
✿✿✿✿✿✿✿✿

published
✿✿✿✿✿✿✿✿

datasets,
✿✿✿✿✿✿✿✿

including
✿✿✿

low
✿

Th/U-ratio of

∼10, resulting in a significant radiogenic 208Pb component. Therefore the case study represents a ‘worst case scenario’ for the

new algorithm. Nevertheless, it manages to fit the data very well. The method should work even better in low-Th phases such

as carbonates. The degree to which the dispersion of the data around the isochron line matches the analytical uncertainties20

can be assessed using the mean square of the weighted deviates (MSWD) statistic. A modified four parameter version of

the regression algorithm quantifies this overdispersion , providing potentially valuable geological insight into the processes

that control isotopic closure
✿✿

U
✿✿✿✿✿✿✿✿✿

carbonates,
✿✿✿✿

high
✿✿✿✿✿

Th/U
✿✿✿✿✿✿✿

allanites
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

overdispersed
✿✿✿✿✿✿✿✿✿

monazites.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

carbonate
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿✿✿✿

illustrates

✿✿✿

how
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿

achieves
✿✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿

precise
✿✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿

than
✿

a
✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿✿✿

207Pb-based
✿✿✿✿✿✿✿✿✿

approach.

✿✿✿

The
✿✿✿✿✿✿✿

allanite
✿✿✿✿✿✿

sample
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿

gain
✿✿✿

in
✿✿✿✿

both
✿✿✿✿✿✿✿✿

precision
✿✿✿

and
✿✿✿✿✿✿✿✿

accuracy
✿✿✿✿

that
✿

is
✿✿✿✿✿

made
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿

Th–Pb
✿✿✿✿✿✿

decay
✿✿✿✿✿✿

system
✿✿

is25

✿✿✿✿✿

jointly
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

U–Pb
✿✿✿✿✿✿✿

system.
✿✿✿✿✿✿

Finally
✿✿✿

the
✿✿✿✿✿✿✿✿

monazite
✿✿✿✿✿✿✿

example
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

illustrate
✿✿✿✿

how
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿✿✿

regression

✿✿✿✿✿✿✿✿

algorithm
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

modified
✿✿

to
✿✿✿✿✿✿

include
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿✿✿✿✿✿✿✿

parameter.
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All the parameters in the discordia regression method (including the age and the overdispersion parameter) are strictly

positive quantities that exhibit skewed error distributions near zero. This skewness can be accounted for using the profile log-

likelihood method, or by recasting the regression algorithm in terms of logarithmic quantities. Both approaches yield realistic30

asymmetric confidence intervals for the model parameters. The new algorithm is flexible enough that it can accommodate

disequilibrium corrections and inter-sample error correlations when these are provided by the user. All the methods presented

in this paper have been added to the IsoplotR software package. This will hopefully encourage geochronologists to take full

advantage of the entire U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb
✿

decay system.

1 Introduction35

The lead content of uranium-bearing minerals comprises two components:

1. Non-radiogenic (a.k.a. initial or ‘common’) Pb is inherited from the environment during crystallisation. It contains all of

lead’s four stable isotopes (204Pb, 206Pb, 207Pb and 208Pb) in fixed proportions for a given sample.

2. Radiogenic Pb is added to the common Pb after crystallisation due to the decay of U and Th. It contains only three

isotopes (206Pb, 207Pb and 208Pb), which occur in variable proportions as a function of the Th/U-ratio and age.40

Denoting the measured and non-radiogenic components with subscripts ‘m’ and ‘c’ respectively, and assuming initial secular

equilibrium, we can write:

204Pbm = 204Pbc (1)

206Pbm = 206Pbc +
238Um

(

eλ38t − 1
)

(2)

207Pbm = 207Pbc +
235Um

(

eλ35t − 1
)

(3)45

208Pbm = 208Pbc +
232Thm

(

eλ32t − 1
)

(4)

where λ38, λ35 and λ32 are the decay constants of 238U, 235U and 232Th, respectively, and t is the time elapsed since isotopic

closure. In order to accurately estimate t, the common Pb composition is needed. One way to account for common Pb is to

normalise all the measurements to 204Pb. For example, using the 238U – 206Pb decay scheme:

[

206Pb
204Pb

]

m

=

[

206Pb
204Pb

]

c

+

[

238U
204Pb

]

m

(

eλ38t − 1
)

(5)50

Applying Equation 5 to multiple cogenetic aliquots of the same sample defines an isochron with slope
(

eλ38t − 1
)

and intercept
[

206Pb/204Pb
]

c
. Alternatively, and equivalently, an ‘inverse’ isochron line can be defined as:

[

204Pb
206Pb

]

m

=

[

204Pb
206Pb

]

c

{

1−

[

238U
206Pb

]

m

(

eλ38t − 1
)

}

(6)

In this case, the isochron is a line whose y-intercept defines the common 204Pb/206Pb-ratio, and the x-intercept determines the

radiogenic 238U/206Pb-ratio.55
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The isochron concept can easily be applied to the 235U – 207Pb system, by replacing 206Pb with 207Pb, 238Pb with 235Pb

and λ38 with λ35 in Equations 5 and 6. The accuracy and precision of the calculation can be further improved by solving the

206Pb/238U and 207Pb/235U isochron equations simultaneously and requiring t to be the same in both systems. The resulting

three-dimensional constrained isochron is known as a ‘Total-Pb/U isochron’ and represents the pinnacle of statistical rigour in

U-Pb geochronology (Ludwig, 1998).
✿✿✿✿✿✿✿✿✿✿✿✿

(Ludwig, 1998)
✿

.60

In igneous samples, the conventional total Pb
✿✿✿✿✿✿✿

Total-Pb/U isochron requires isotopic data for two or more cogenetic aliquots.

In the simplest case, a two-point isochron can be formed by analysing the U-Pb composition of the U-bearing phase of interest

along with a cogenetic mineral devoid of U (e.g, feldspar). In detrital samples, the common Pb intercept of the isochron

can be anchored to some nominal value, or to a terrestrial lead evolution model (e.g., Stacey and Kramers, 1975). Thus, the

204Pb-based total U-Pb isochron method is beneficial to nearly all applications of the U-Pb method.65

Unfortunately, 204Pb-based common Pb correction is not always practical. First, not all mass spectrometers are able to

measure 204Pb with sufficient precision and accuracy. In
✿✿✿✿

some
✿

ICP-MS instruments, the presence of an isobaric interference

with 204Hg precludes accurate 204Pb measurements. And second, because 204Pb is by far the least abundant of lead’s four

naturally occurring isotopes, it requires the longest dwell times. For single collector instruments, this degrades
✿✿✿✿✿✿✿

reduces the

precision of the other isotopesto the point where the analytical cost of measuring
✿

.70

✿✿

To
✿✿✿✿✿✿✿✿

overcome
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

problems,
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿

schemes
✿✿✿✿

have
✿✿✿✿✿

been
✿✿✿✿✿✿✿

proposed
✿✿✿✿

that
✿✿✿

use
✿✿✿✿✿

207Pb
✿✿

or
✿✿✿✿✿

208Pb
✿✿✿✿✿✿

instead

✿✿

of
✿✿✿✿✿

204Pb.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

‘SemiTotal-Pb/U
✿✿✿✿✿✿✿✿

isochron’
✿✿✿✿✿✿✿

method
✿✿

is
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

regression
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

206Pb–207Pb–238U-data
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tera-Wasserburg

✿✿✿✿

space
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ludwig, 1998; Williams, 1998; Chew et al., 2011).
✿✿

It
✿✿✿✿✿✿✿

assumes
✿✿✿✿

that
✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿

samples
✿✿✿

are
✿✿✿✿✿✿✿✿

cogenetic
✿✿✿✿

and
✿✿✿✿

form
✿

a
✿✿✿✿✿✿

simple
✿✿✿✿

two

✿✿✿✿✿✿✿✿✿

component
✿✿✿✿✿✿

mixture
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

common
✿✿

Pb
✿✿✿✿

and
✿✿✿✿✿✿✿✿

radiogenic
✿✿✿

Pb.
✿✿✿✿

The
✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿✿

then
✿✿✿✿✿

marks
✿✿✿

the
✿✿✿✿✿✿✿

intercept
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

207Pb/206Pb-axis,

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

radiogenic
✿✿

Pb
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

intersection
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

isochron
✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿✿✿✿

concordia
✿✿✿✿

line.
✿✿✿

The
204may outweigh its benefits.

✿✿

207
Pb

✿✿✿✿✿

-based75

✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿

only
✿✿✿✿✿

works
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿

of
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿✿

concordance
✿✿

is
✿✿✿✿✿

valid,
✿✿

if
✿✿✿✿

207Pb
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿

with
✿✿✿✿✿✿✿✿

sufficient

✿✿✿✿✿✿✿✿

precision,
✿✿✿

and
✿✿

if
✿✿✿✿

there
✿✿

is
✿✿✿✿✿✿✿

enough
✿✿✿✿✿

spread
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

Pb/U-ratios
✿✿

to
✿✿✿✿✿✿✿

produce
✿✿

a
✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿

robust
✿✿✿✿✿✿✿✿

isochron.

One way to overcome both problems is to use
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Andersen (2002)
✿✿✿✿✿✿✿✿✿

introduced
✿

a
✿✿✿✿✿✿✿✿✿✿

208Pb-based
✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿

scheme
✿✿✿✿

that

✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

require
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿✿

concordance.
✿✿✿

His
✿✿✿✿✿✿✿

method
✿✿✿✿✿✿✿

assumes
✿✿✿

that
✿✿✿✿✿✿✿✿

U–Th–Pb
✿✿✿✿✿✿✿✿✿✿

discordance
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

accounted
✿✿

for
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of

✿✿✿

lead
✿✿✿✿

loss
✿✿

at
✿

a
✿✿✿✿✿✿

defined
✿✿✿✿✿

time,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿✿✿✿✿✿

common
✿✿✿

lead
✿✿

of
✿✿✿✿✿✿

known
✿✿✿✿✿✿✿✿✿✿✿

composition.
✿✿✿✿✿✿✿

However
✿✿

in
✿✿✿✿✿

most
✿✿✿✿

cases
✿✿✿✿✿✿

neither
✿✿✿

the
✿✿✿✿✿✿

timing
✿✿

of80

✿✿✿

lead
✿✿✿✿

loss,
✿✿✿

nor
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

composition
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

common
✿✿✿✿

lead
✿✿✿

are
✿✿✿✿✿✿

known.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿

that
✿✿✿✿✿✿✿

underlie
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Andersen (2002)

✿✿✿✿✿✿

method
✿✿✿✿

were
✿✿✿✿✿✿✿

tailored
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

mineral
✿✿✿✿✿✿

zircon,
✿✿✿

but
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

apply
✿✿

so
✿✿✿✿✿

much
✿✿

to
✿✿✿✿✿

other
✿✿✿✿✿✿✿

minerals
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿✿

carbonates,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

crystallise
✿✿

at

✿✿✿

low
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿

and
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿✿

experience
✿✿✿✿✿✿✿

diffusive
✿✿✿✿

lead
✿✿✿✿

loss.
✿

✿✿✿✿

This
✿✿✿✿✿

paper
✿✿✿✿✿✿✿✿✿

introduces
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

‘Total-Pb/U–Th
✿✿✿✿✿✿✿✿

isochron’
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

that
✿✿✿✿

uses
✿

the 232Th – 208Pb decay scheme to determine the

common Pb component. Thus, if we can estimate
✿✿✿✿✿

Unlike
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Andersen (2002)
✿✿✿✿✿✿

method,
✿✿

it
✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿✿✿

require
✿✿✿

the
✿✿✿✿✿✿✿✿

common
✿✿✿

Pb85

✿✿✿✿✿✿✿✿✿✿

composition
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

pre-specified,
✿✿✿

but
✿✿✿✿✿✿✿✿

assumes
✿✿✿

that
✿✿✿

no
✿✿✿✿✿✿

Pb-loss
✿✿✿✿

has
✿✿✿✿✿✿✿✿

occurred.
✿✿✿✿

The
✿✿✿

new
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

is
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿✿✿

Ludwig (1998)
✿✿

’s

✿✿✿✿✿✿✿✿✿

Total-Pb/U
✿✿✿✿✿✿✿

isochron
✿✿✿✿✿✿✿

method,
✿✿✿

but
✿✿✿✿

uses
✿

208Pbc
✿✿✿✿✿✿

instead
✿✿

of
✿✿✿✿✿

204Pb
✿

in Equation 4, then Equation 5can be replaced with
✿

5:

206Pbm
208Pbc

=

[

206Pb
208Pb

]

c

+
238Um

208Pbc

(

eλ38t − 1
)

(7)

and similarly for Equation 6 and the 235U – 207Pb equivalents of Equations 5 and 6.
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This paper introduces a ‘U-Th-Pb isochron’ algorithm that achieves this reformulation. The algorithm is similar to Ludwig (1998)90

’s total Pb/U isochron, but uses a unified approach that accommodates both random and systematic uncertainties. The algo-

rithms introduced in this paper will be illustrated using a published U-Th-Pb dataset for monazite grain #10 in sample BHE-01

✿✿✿✿

three
✿✿✿✿✿✿✿✿

published
✿✿✿✿✿✿✿✿✿

U–Th–Pb
✿✿✿✿✿✿✿

datasets,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

showcase
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿✿✿✿

U–Th–Pb
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿✿

improves
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿✿

precision
✿✿✿✿

and

✿✿✿✿✿✿✿

accuracy
✿✿

of
✿✿✿✿✿

U–Pb
✿✿✿✿✿✿✿✿✿✿✿✿✿

geochronology
✿✿✿✿✿✿✿

(Section
✿✿✿

4).
✿✿✿

The
✿✿✿✿✿

cases
✿✿✿✿✿✿

studies
✿✿✿✿✿✿

include
✿✿

a
✿✿✿✿✿✿✿✿

carbonate
✿✿✿✿✿✿

dataset
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Parrish et al. (2018)
✿

,
✿✿

an
✿✿✿✿✿✿✿

allanite

✿✿✿✿✿✿

dataset
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014),
✿✿✿✿

and
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersed
✿✿✿✿✿✿✿✿

monazite
✿✿✿✿✿✿

dataset
✿

of Gibson et al. (2016). With a
✿✿✿

The
✿✿✿✿✿✿✿✿✿

carbonate95

✿✿✿✿✿✿

dataset
✿

is
✿✿✿

an
✿✿✿✿✿✿✿

example
✿✿

of
✿✿

a
✿✿✿

low
✿

Th/U-ratio of ∼ 10, this sample represents a ‘worst case scenario’ in the sense that the addition

of lots of radiogenic 208Pbcomplicates the removal of the common
✿

U
✿✿✿✿✿✿

setting
✿✿

in
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

208Pb-based
✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿✿✿✿✿✿✿

correction

✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿

precise
✿✿✿✿

than
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿

207Pbcomponent. The fact that the new algorithm works very well for monazite implies

that it is generally applicable low Th phases such as carbonates
✿✿✿✿✿✿✿✿✿✿

/206Pb-based
✿✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿✿✿✿✿✿✿

correction.
✿✿✿✿

The
✿✿✿✿✿✿

allanite
✿✿✿✿✿✿✿

dataset
✿✿

is

✿✿

an
✿✿✿✿✿✿✿

example
✿✿✿

of
✿✿

a
✿✿✿✿

high
✿✿✿✿✿

Th/U
✿✿✿✿✿✿

setting
✿✿

in
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

208Pb/232Th
✿✿✿✿✿✿✿

method
✿✿✿✿✿

offers
✿✿✿✿✿✿✿

greater
✿✿✿✿✿✿✿✿

precision
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

U–Pb
✿✿✿✿✿✿✿

method.
✿✿✿✿

The100

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014)
✿✿✿✿

study
✿✿✿✿

used
✿✿✿✿✿

SIMS
✿✿✿✿

and
✿✿✿✿✿✿✿

therefore
✿✿✿✿

also
✿✿✿✿✿

offers
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

opportunity
✿✿

to
✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿

new
✿✿✿✿✿

208Pb
✿✿✿✿✿✿

method
✿✿✿✿

with
✿✿

a

✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿✿✿

204Pb-based
✿✿✿✿✿✿✿✿

common
✿✿

Pb
✿✿✿✿✿✿✿✿✿

correction.
✿

✿✿✿✿✿✿

Section
✿✿

5
✿✿✿✿✿✿

shows
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿

isochron
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

modified
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

accommodate
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

skewed
✿✿✿✿✿✿✿✿✿✿

uncertainty

✿✿✿✿✿✿✿✿✿✿

distributions,
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿✿

logarithmic
✿✿✿✿✿✿

change
✿✿✿

of
✿✿✿✿✿✿✿✿

variables.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿

isochron
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿

assumes
✿✿✿

that
✿✿✿

all
✿✿✿✿✿✿✿

aliquots

✿✿

are
✿✿✿✿✿✿✿✿✿

cogenetic.
✿✿✿✿✿✿✿✿

However
✿✿✿✿✿✿

Section
✿✿

6
✿✿✿✿✿

shows
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿

adapted
✿✿✿

to
✿✿✿✿✿✿

detrital
✿✿✿✿✿✿✿

samples,
✿✿✿

by
✿✿✿✿

tying
✿✿

it
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

two-stage
✿✿✿✿

lead105

✿✿✿✿✿✿✿

evolution
✿✿✿✿✿✿

model
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Stacey and Kramers (1975)
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

procedure
✿✿

is
✿✿✿✿✿✿

similar
✿✿

in
✿✿✿✿

spirit
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿

algorithm
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Chew et al. (2011)

✿

,
✿✿

but
✿✿✿✿

uses
✿✿

a
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿✿

likelihood
✿✿✿✿✿✿✿✿

approach
✿✿✿

that
✿✿✿✿✿✿✿

weights
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

of
✿✿

all
✿✿✿✿✿✿✿

isotopes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

coupled
✿✿✿✿✿✿✿✿

U–Th–Pb
✿✿✿✿✿

decay
✿✿✿✿✿✿✿

system.

✿✿✿✿✿✿

Finally,
✿✿✿✿✿✿✿

Section
✿

7
✿✿✿✿✿✿✿✿✿

introduces
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿✿✿✿✿✿

described
✿✿✿✿✿✿

herein,
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

IsoplotR
✿✿✿✿✿✿✿

software
✿✿✿✿✿✿✿

package.

2 U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb
✿

concordia
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿✿

isochron

In conventional U-Pb
✿✿✿✿

U–Pb
✿

geochronology, the set of concordant 206Pb/238U- and 207Pb/235U-ratios defines a ‘Wetherill’ con-110

cordia line. Similarly, U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb
✿

data can be visualised in 208Pb/232Th- vs. 206Pb/238U-ratio space(Figure ??.a). In the

absence of common Pb, samples whose 208Pb/232Th-ages equal their 206Pb/238U-ages plot on a U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb
✿

concordia

line. The addition of common Pb pulls samples away from this line. Common Pb correction amounts to moving samples back

to concordia:

[

208Pb
232Th

]

∗

=

[

208Pb
232Th

]

m

−
208Pbc
232Thm

115

[

206Pb
238U

]

∗

=

[

206Pb
238U

]

m

−

[

206Pb
208Pb

]

c

208Pbc
232Thm

[

232Th
238U

]

m

where ‘∗’ marks the radiogenic component. Figure ??. a shows the effect of this correction on the Gibson et al. (2016) data,

using
[

206Pb/208Pb
]

c
= 0.3685 and a variable 208Pbc/

232Thm-ratio calculated by rearranging Equation 4 for t= 17.66 Ma.

✿✿✿✿✿

Binary
✿✿✿✿✿✿✿

mixing
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿

and
✿✿✿✿✿✿✿✿✿

radiogenic
✿✿

Pb
✿✿✿✿✿

forms
✿✿✿✿✿

linear
✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿

concordia
✿✿✿✿✿✿

space,
✿✿✿

but
✿✿✿

not
✿✿

in
✿✿✿✿✿✿✿✿

U–Th–Pb

4



✿✿✿✿✿✿✿✿

concordia
✿✿✿✿✿✿

space.
✿✿✿

For
✿✿✿✿✿✿✿

example
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014)
✿✿✿

data
✿✿✿✿

plot
✿✿✿✿✿

above
✿✿✿

or
✿✿✿✿✿

below
✿✿✿✿

the
✿✿✿✿✿✿✿✿

concordia
✿✿✿✿

line
✿✿✿✿✿✿✿✿✿

depending
✿✿✿

on
✿✿✿

the120

✿✿✿✿✿✿✿✿✿

Th/U-ratio
✿✿✿✿✿✿

(Figure
✿✿✿

1a).
✿

An alternative visualisation is to plot the 208Pb/206Pb against 238U/206Pb (green ellipses in Figure ??.b,c). Removing the

✿✿✿✿✿

Figure
✿✿✿✿

1b).
✿✿✿✿

The radiogenic 208Pb-component and plotting 208Pbc/206Pb against
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

removed
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

rearranging
✿✿✿✿✿✿✿

Equation
✿✿

4
✿✿✿

for

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

208Pbc/
232Thm.

✿✿✿✿✿✿

Doing
✿✿✿

this
✿✿✿

for
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

values
✿✿✿

of
✿

t
✿✿✿✿✿✿

moves
✿✿✿

the
✿✿✿✿✿✿✿

various
✿✿✿✿✿✿✿

aliquots
✿✿✿✿✿✿✿✿

vertically
✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿

diagram.
✿✿✿✿✿

Each
✿✿✿✿✿

value
✿✿

of
✿✿

t

✿✿✿

also
✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿

radiogenic
✿

238U/206Pb creates a linear isochron array (blue ellipses in Figure ??.
✿✿✿✿

ratio,
✿✿✿✿

thus
✿✿✿✿✿✿✿

marking
✿✿

a125

✿✿✿✿

point
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿

axis
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

diagram.
✿✿✿

We
✿✿✿✿

can
✿✿

fit
✿✿

a
✿✿✿

line
✿✿✿✿✿✿✿

through
✿✿✿

this
✿✿✿✿✿

point
✿✿✿✿

and
✿✿✿✿✿✿✿✿

minimise
✿✿✿

the
✿✿✿✿✿✿✿

residual
✿✿✿✿✿

scatter
✿✿✿

of
✿✿✿

the
✿✿✿✿

data

✿✿✿✿✿✿

around
✿✿

it,
✿✿✿✿✿

using
✿

a
✿✿✿✿✿

least
✿✿✿✿✿✿

squares
✿✿✿✿✿✿✿✿

criterion
✿✿✿✿

such
✿✿✿

as
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿

square
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿

deviates
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(MSWD, McIntyre et al., 1966)
✿

.

✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014)
✿✿✿✿

data,
✿✿✿

the
✿✿✿✿✿✿✿

residual
✿✿✿✿✿

scatter
✿✿

is
✿✿✿✿✿✿✿✿✿

minimised
✿✿✿✿✿

when
✿✿✿✿✿✿

t≈ 23
✿✿✿

Ma
✿✿✿✿✿✿

(Figure
✿✿

1b). The x-intercept of this

line equals the radiogenic U-Pb composition whilst the y-intercept equals its common Pb composition. The same exercise can

be repeated for
✿✿

At
✿✿✿

this
✿✿✿✿✿✿

value,
✿✿✿

the
✿✿✿✿✿✿✿

aliquots
✿✿✿✿

plot
✿✿✿✿✿

along
✿

a
✿✿✿✿✿✿

simple
✿✿✿✿✿✿

binary
✿✿✿✿✿✿✿

mixture
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿

and
✿✿✿✿✿✿✿✿✿

radiogenic
✿✿✿✿

Pb.
✿✿✿✿

This130

✿✿✿✿✿

marks
✿✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿✿

estimate
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

concordia
✿✿✿✿

age.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿

corrected
✿

208Pb/
207235U

✿✿

232
Th

✿

–
✿✿✿✿✿

206Pb/
207

✿✿

238
Pb

(Figure ??.c). The linear fit corresponds to a concordant U-Pb age of 17.66 Ma and a common Pb composition with [208Pb/206Pb]c = 2.56

and [208Pb/207Pb]c = 11.71. The next section of this paper introduces an algorithm to automatically find this optimal solution

and propagate the corresponding uncertainties.
✿

U
✿✿✿✿✿✿✿✿✿✿✿

composition
✿✿

is
✿✿✿✿✿

shown
✿✿

as
✿✿

a
✿✿✿✿

tight
✿✿✿✿✿✿

cluster
✿✿

of
✿✿✿✿

blue
✿✿✿✿

error
✿✿✿✿✿✿✿

ellipses
✿✿

on
✿✿✿✿✿✿

Figure
✿✿✿

1a.

3 The U-Th-Pb isochron135

✿✿

In
✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿

formalise
✿✿✿✿

this
✿✿✿✿✿✿✿✿

procedure
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

mathematical
✿✿✿✿✿

sense,
✿✿✿

let
✿✿

us
✿✿✿

first
✿✿✿✿✿✿

define
✿

a
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

variables.
✿✿

In
✿✿✿✿✿✿✿

analogy
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

variable

✿✿✿✿✿

names
✿✿✿✿

used
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

Ludwig (1998)
✿

,
✿✿✿

we
✿✿✿

will
✿✿✿✿✿

refer
✿✿

to
✿✿✿

the
✿✿✿✿

blank
✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿

isotopic
✿✿✿✿✿

ratios
✿✿

as
✿✿✿

X ,
✿✿✿

Y ,
✿✿

Z,
✿✿✿

W
✿✿✿

and
✿✿✿

U :

X =

[

207Pb
235U

]

m

, Y =

[

206Pb
238U

]

m

, Z =

[

208Pb
232Th

]

m

, W =

[

232Th
238U

]

m

, U =

[

238U
235U

]

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(8)

The U-Th-Pb isochron line is constrained bythree free parameters, the age (t) and the common Pb composition (α
✿✿✿✿✿

where
✿✿

X ,

β) where:140

α=

[

206Pb
208Pb

]

c

and β =

[

207Pb
208Pb

]

c

✿✿

Y
✿✿✿

and
✿✿

Z
✿✿✿

are
✿✿✿✿✿✿✿

vectors,
✿✿✿

W
✿✿

is
✿

a
✿✿✿✿✿✿✿✿

diagonal
✿✿✿✿✿✿

matrix,
✿✿✿✿

and
✿✿

U
✿✿

is
✿

a
✿✿✿✿✿✿

scalar;
✿✿✿

we
✿✿✿✿

will
✿✿✿

use
✿✿✿✿✿✿

Greek
✿✿✿✿✿✿✿✿

characters
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

unknown
✿✿✿✿✿✿✿✿

common
✿✿✿

Pb

✿✿✿✿✿

ratios:

α=

[

206Pb
208Pb

]

c

, β =

[

207Pb
208Pb

]

c

, γ =
208Pbc
232Thm

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(9)

✿✿✿✿✿

where
✿✿

α
✿✿✿

and
✿✿

β
✿✿✿

are
✿✿✿✿✿✿

scalars
✿✿✿✿

and
✿✿

γ
✿✿

is
✿

a
✿✿✿✿✿✿

vector;
✿✿✿✿

and
✿✿✿✿✿✿

finally,
✿✿✿

we
✿✿✿✿

will
✿✿✿

use
✿

t
✿✿

as
✿✿✿✿

the
✿✿✿✿✿✿✿✿

concordia
✿✿✿

age
✿✿✿

so
✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

radiogenic
✿✿✿✿✿

ratios
✿✿✿

are145

✿✿✿✿

given
✿✿✿

by:
✿

[

208Pb
232Th

]

∗

= eλ32t − 1,

[

207Pb
235U

]

∗

= eλ35t − 1,

[

206Pb
238U

]

∗

= eλ38t − 1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)
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✿✿✿✿

Next,
✿✿✿

we
✿✿✿✿✿✿

define
✿✿✿✿✿

three
✿✿✿✿✿

misfit
✿✿✿✿✿✿

vectors
✿✿✿

K,
✿✿

L
✿✿✿✿

and
✿✿✿

M
✿✿✿✿✿✿✿✿✿

containing
✿✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

measured
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿

(i.e.

✿✿✿✿✿✿✿

common
✿✿✿

+
✿✿✿✿✿✿✿✿✿

radiogenic)
✿✿✿✿✿✿✿

isotope
✿✿✿✿✿

ratios:
✿

K =X −UβWγ− eλ35t +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(11)150

L= Y −αWγ− eλ38t +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(12)

M = Z − γ− eλ32t +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(13)

✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿✿✿✿✿✿✿✿✿

adaptation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

Ludwig (1998)
✿

’s
✿✿✿✿✿✿✿✿✿✿

204Pb-based
✿✿✿✿✿✿✿✿✿✿

Total-Pb/U
✿✿✿✿✿✿✿

isochron
✿✿✿✿✿✿✿✿✿

equations.
✿✿✿✿

And
✿✿✿✿

like

✿✿✿✿✿✿✿✿✿✿✿✿

Ludwig (1998)
✿

,
✿✿

we
✿✿✿✿

can
✿✿✿✿

then
✿✿✿✿✿✿✿

estimate t, α and β can be estimated by minimising the sum of squares:

S =∆Σ−1

∆
∆T

✿✿✿✿✿✿✿✿✿✿✿

(14)155

with

K =X −UβWγ− eλ35t +1

L= Y −αWγ− eλ38t +1

M = Z − γ− eλ32t +1

where U is the 238U/235U-ratio (= 137.818; Hiess et al., 2012),160

X =

[

207Pb
235U

]

m

,Y =

[

206Pb
238U

]

m

and Z =

[

208Pb
232Th

]

m

are n-element column vectors containing the 207Pb/235U-, 206Pb/238U-, and 208Pb/232Th-measurements,

W =

[

232Th
238U

]

m

is an n×n diagonal matrix with the 232Th/238U-measurements, and

γ =
208Pbc
232Thm

165

is an n-element column vector with the inherited 208Pb/232Th-ratios.γ is unknown but can be estimated from the data along

with the scalars t
✿

∆
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

amalgamated
✿✿✿✿✿

misfit
✿✿✿✿✿✿

vector
✿✿✿

and
✿✿✿✿

∆T
✿

is
✿✿✿

its
✿✿✿✿✿✿✿✿

transpose
✿✿✿

(i.e., α, and β.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∆T =
[

KT LT MT
]

).
✿

Σ∆ is the covariance matrix of the misfit parameters K, L and M . This matrix is obtained
✿✿

∆,
✿✿✿✿✿✿

which

✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿

by error propagationof the isotopic measurement and decay constant uncertainties:
✿

:

Σ∆ = JTΣJ
[

Jx Jλ

]





Σx 04n×4

04×4n Σλ









JT
x

JT
λ



 (15)170
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where

Σ=

























s[X]2 s[X,Y ]s[X,Z] 0n×1 0n×1 0n×1

s[Y,X] s[Y ]2 s[Y,Z] 0n×1 0n×1 0n×1

s[Z,X]s[Z,Y ] s[Z]2 0n×1 0n×1 0n×1

01×n 01×n 01×n s[λ35]
2 0 0

01×n 01×n 01×n 0 s[λ38]
2 0

01×n 01×n 01×n 0 0 s[λ32]
2

























in which

s[X]2 = In×n























s[X1]
2

...

s[Xi]
...

s[Xn]
2























, s[X,Y ]= In×n























s[X1,Y1]
...

s[Xi,Yi]
...

s[Xn,Yn]























and so forth, where In×n marks the n×n identity matrix175

✿✿

in
✿✿✿✿✿

which
✿✿✿

Σx
✿✿

is
✿✿

the
✿✿✿✿✿✿✿✿

4n× 4n
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

collated
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

X ,
✿✿

Y ,
✿✿

Z
✿✿✿

and
✿✿✿

W ;
✿✿✿

Σλ
✿✿

is
✿✿✿

the
✿✿✿✿✿

4× 4
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

decay
✿✿✿✿✿✿✿✿

constants
✿✿✿✿

and
✿✿✿

U , and s[Xi]
2

✿✿

Jx
✿

and s[Xi,Yi] represent the variance and covariance of Xi and Yi,

respectively. The Jacobian matrix J is given by:

J =

























1n,n 0n×n 0n×n

0n×n 1n×n 0n×n

0n×n 0n×n 1n×n

−t1×ne
λ35t 01×n 01×n

01×n −t1×ne
λ38t 01×n

01×n 01×n −t1×ne
λ32t

























where 1a×b, 0a×b and ta×b are a× b matrices filled with 1s, 0s and ts
✿✿

Jλ
✿✿✿

are
✿✿✿✿✿✿✿✿

Jacobian
✿✿✿✿✿✿✿

matrices
✿✿✿✿

with
✿✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿

derivatives
✿✿

of
✿✿✿

∆180

✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

isotopic
✿✿✿✿

ratio
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

decay
✿✿✿✿✿✿✿✿

constants
✿✿✿✿

(plus
✿✿✿

U ), respectively.
✿✿✿✿✿✿

Further
✿✿✿✿✿✿

details
✿✿✿

for
✿✿✿✿

Σx,
✿✿✿

Σλ,
✿✿✿

Jx

✿✿✿

and
✿✿✿

Jλ
✿✿

are
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

A.

To minimise S with respect to
✿✿✿✿✿✿✿

Equation
✿✿✿

14
✿✿✿

can
✿✿✿

be
✿✿✿✿✿

solved
✿✿✿

for
✿

t, αand β, we first need to estimate γ for any given value of

these free parameters. To this end, we replace γ by Z −M − eλ32t +1 in Equation 13, so that:

K = K̂ +UβWM with K̂ =X −UβW (Z − eλ32t +1)− eλ35t +1185

and

L= L̂+αWM with L̂= Y −αW (Z − eλ32t +1)− eλ38t +1

7



Plugging Equations 35 and 36 into Equation 14 and rearranging yields:

S =MTAM +BM +MTC +D

where190

A=U2β2WdΩ1,1Wd +α2WdΩ2,2Wd +Ω3,3 +UαβWd(Ω1,2 +Ω2,1)Wd+

Uβ(WdΩ1,3 +Ω3,1Wd)+α(WdΩ2,3 +Ω3,2Wd)

B =UβK̂TΩ1,1Wd +αL̂TΩ2,2Wd +αK̂TΩ1,2Wd +UβL̂TΩ2,1Wd + K̂TΩ1,3 + L̂TΩ2,3

C =UβWdΩ1,1K̂ +αWdΩ2,2L̂+UβWdΩ1,2L̂+αWdΩ2,1K̂ +Ω3,1K̂ +Ω3,2L̂195

D =K̂TΩ1,1K̂ + K̂TΩ1,2L̂+ L̂TΩ2,1K̂ + L̂TΩ2,2L̂

Taking the matrix derivative of
✿

β
✿✿

by
✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿

methods,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

stability
✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿✿

methods
✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿

guaranteed.
✿✿✿✿✿✿✿✿✿

Numerical

✿✿✿✿✿✿

stability
✿✿✿✿

and
✿✿✿✿✿

speed
✿✿

of
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿✿

improved
✿

if
✿✿✿

we
✿✿✿✿✿✿

remove
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿

W
✿✿✿✿✿

from
✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix

✿✿✿

Σx.
✿✿

If
✿✿✿

the
✿✿✿✿

sum
✿✿

of
✿✿✿✿✿✿

squares
✿

S with respect to M :200

∂S/∂M =MT (A+AT )+B+CT

Setting ∂S/∂M = 0 and solving for M :

M =−(A+AT )−1(BT +C)

Plugging M back into Equation 13 yields our estimate of γ, which allows us to calculate
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿

depend
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty

✿✿

of
✿✿✿

W ,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿

derivatives
✿✿

of
✿

S . The values of t,
✿✿✿

w.r.t.
✿

αand ,
✿

βthat minimise S are then found by numerical methods,
✿✿

γ205

✿✿✿

and
✿

t
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿✿✿✿

manually,
✿✿✿✿✿

which
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿✿✿

simplifies
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

optimisation.
✿✿✿✿✿✿✿

Further
✿✿✿✿✿✿

details
✿✿✿✿✿

about
✿✿✿

this
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

are

✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿✿✿✿✿✿✿

Appendix
✿

B.

3 Error propagation
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion

The log-likelihood of the isochron fit is given by

L=−
1

2

[

33n
✿✿

ln(2π)+ ln |Σ∆|+S
]

(16)210

where |Σ∆| is
✿✿✿✿✿

marks
✿

the determinant of Σ∆. The covariance matrix of the three fit parameters is then obtained by inverting

the matrix of second derivates of the negative log-likelihood with respect to the vector γ and the scalars t, α, β(
✿

.
✿✿✿✿

This
✿✿

is
✿✿✿✿

also

8



✿✿✿✿✿

known
✿✿✿

as the Fisher Information matrix): :
✿















Σγ s[γ,t] s[γ,α] s[γ,β]

s[t,γ] s[t]2 s[t,α] s[t,β]

s[α,γ] s[α,t] s[α]2 s[α,β]

s[β,γ] s[β,t] s[β,α] s[β]2















=−















∂2
L

∂γ2

∂2
L

∂γ∂t
∂2

L

∂γ∂α
∂2

L

∂γ∂β

∂2
L

∂t∂γ
∂2

L

∂t2
∂2

L

∂t∂α
∂2

L

∂t∂β

∂2
L

∂α∂γ
∂2

L

∂α∂t
∂2

L

∂α2

∂2
L

∂α∂β

∂2
L

∂β∂γ
∂2

L

∂β∂t
∂2

L

∂β∂α
∂2

L

∂β2















−1

(17)

where Σγ is an n×n matrix; s[γ,t], s[γ,α] and s[γ,β] are n-element row vectors, s[t,γ], s[α,γ] and s[β,γ] are n-element215

column vectors, and all other elements are scalars. The second derivatives are as follows:

∂2L

∂γ2
=−









UβW

αW

In×n









T

Σ−1

∆









UβW

αW

In×n









∂2L

∂γ∂t
=

(

∂2L

∂t∂γ

)T

=−









UβW

αW

In×n









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









220

∂2L

∂γ∂α
=

(

∂2L

∂α∂γ

)T

=









0n×n

W

0n×n









T

Σ−1

∆
∆−









UβW

αW

In×n









T

Σ−1

∆









0n×1

Wγ

0n×1









∂2L

∂γ∂β
=

(

∂2L

∂β∂γ

)T

=









UW

0n×n

0n×n









T

Σ−1

∆
∆−









UβW

αW

In×n









T

Σ−1

∆









UWγ

0n×1

0n×1









∂2L

∂t2
=∆TΣ−1

∆









(eλ35tλ2
35)n×1

(eλ38tλ2
38)n×1

(eλ32tλ2
32)n×1









−









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1
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∂2L

∂t∂α
=

∂2L

∂α∂t
=−









01×n

Wγ

01×n









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









∂2L

∂t∂β
=

∂2L

∂β∂t
=−









UWγ

0n×1

0n×1









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









9
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∂2L

∂α2
=−









0n×1

Wγ

0n×1









T

Σ−1

∆









0n×1

Wγ

0n×1









∂2L

∂β2
=−









UWγ

0n×1

0n×1









T

Σ−1

∆









UWγ

0n×1

0n×1









∂2L

∂α∂β
=

∂2L

∂β∂α
=−









UWγ

0n×1

0n×1









T

Σ−1

∆









0n×1

Wγ

0n×1









235

✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

C.
✿

The Fisher Information matrix is best solved by block matrix inversion. This is achieved by partitioning

Equation 17 into four parts, with ∂2L/∂γ2 defining the first block.

4 Overdispersion

If analytical uncertainty is the only source of data scatter around the discordia line, then the sum of squares S follows a central

Chi-square distribution with 2n− 3 degrees of freedom (i.e., χ2
2n−3). Normalising S by the degrees of freedom gives rise to240

the so-called reduced Chi-square statistic, which is also known as the Mean Square of the Weighted Deviates (MSWD):

MSWD =
S

2n− 3
(18)

Datasets are said to be overdispersed if S is greater than the 95% percentile of χ2
2n−3 or, equivalently, if MSWD ≫ 1 . This

is the case for the Gibson et al. (2016) dataset, whose MSWD = 8.6 (p-value ≈ 0)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wendt and Carl (1991). The overdispersion

can
✿✿✿✿✿

either be attributed to geological scatter in the concordia intercept age t
✿

,
✿✿

or
✿✿

to
✿✿✿✿✿✿

excess
✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

common
✿✿✿

Pb
✿✿✿✿✿

ratios245

✿

α
✿✿✿✿

and
✿

β. Suppose that this
✿✿

the
✿

scatter follows a normal distribution with zero mean and let ω be the standard deviation of this

distribution. Then we can redefine Σ∆ as:
✿✿✿✿✿✿✿

Equation
✿✿✿

15
✿✿

as:
✿

Σ∆ = JΣJT
[

Jx Jλ

]





Σx 04n×4

04×4n Σλ









JT
x

JT
λ



+ Jωω
2JT

ω (19)

where
✿✿✿

Jω
✿

a
✿✿✿

the
✿✿✿✿✿✿✿✿

Jacobian
✿✿✿✿✿✿

matrix
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿✿

derivatives
✿✿

of
✿✿

∆
✿✿✿✿✿

w.r.t.
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersion
✿✿✿✿✿✿✿✿

parameter
✿✿✿

ω.
✿

If
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿

is

✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿✿✿✿✿✿✿✿

diachronous
✿✿✿✿✿✿✿

isotopic
✿✿✿✿✿✿✿

closure,
✿✿✿✿

then:
✿
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Jω =









−λ35e
λ35tIn×n

−λ38e
λ38tIn×n

−λ32e
λ32tIn×n









(20)

10



✿✿✿✿✿✿✿✿✿✿✿

Alternatively,
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿

is
✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿✿✿

excess
✿✿✿✿✿✿

scatter
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

common
✿✿

Pb
✿✿✿✿✿✿

ratios,
✿✿✿✿

then:
✿

Jω =









−UWγ

−Wγ

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ω can then be found by plugging Equation 19 into Equation 16 and maximising L. Like before, the uncertainty of ω is

obtained by inverting the Fisher Information, replacing Equation 17 with255





















Σγ s[γ,t] s[γ,α] s[γ,β] s[γ,ω]

s[t,γ] s[t]2 s[t,α] s[t,β] s[t,ω]

s[α,γ] s[α,t] s[α]2 s[α,β] s[α,ω]

s[β,γ] s[β,t] s[β,α] s[β]2 s[β,ω]

s[ω,γ] s[ω,t] s[ω,α] s[ω,β]2 s[ω]2
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∂2
L

∂γ2

∂2
L

∂γ∂t
∂2

L

∂γ∂α
∂2

L

∂γ∂β
∂2

L

∂γ∂ω

∂2
L

∂t∂γ
∂2

L

∂t2
∂2

L

∂t∂α
∂2

L

∂t∂β
∂2

L

∂t∂ω

∂2
L

∂α∂γ
∂2

L

∂α∂t
∂2

L

∂α2

∂2
L

∂α∂β
∂2

L

∂α∂ω

∂2
L

∂β∂γ
∂2

L

∂β∂t
∂2

L

∂β∂α
∂2

L

∂β2

∂2
L

∂β∂ω

∂2
L

∂ω∂γ
∂2

L

∂ω∂t
∂2

L

∂ω∂α
∂2

L

∂ω∂β2

∂2
L

∂ω2





















−1
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where

∂2L

∂γ∂ω
=

(

∂2L

∂ω∂γ

)T

=−∆T ∂Σ−1

∆

∂ω









UβW

αW

In×n









∂2L

∂t∂ω
=

(

∂2L

∂ω∂t

)T

=−∆T ∂Σ−1

∆

∂ω









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1
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∂2L

∂α∂ω
=

(

∂2L

∂ω∂α

)T

=−∆T ∂Σ−1

∆

∂ω









0n×1

Wγ

0n×1









∂2L

∂β∂ω
=

(

∂2L

∂ω∂β

)T

=−∆T ∂Σ−1

∆

∂ω









UWγ

0n×1

0n×1
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∂2L

∂ω2
=−

1

2

(

∂2ln |Σ∆|

∂ω2
+∆T ∂2Σ−1

∆

∂ω2
∆

)

with

∂Σ−1

∆

∂ω
=−Σ−1

∆

∂Σ∆

∂ω
Σ−1

∆

11



∂2Σ−1

∆

∂ω2
=−

(

∂Σ−1

∆

∂ω

∂Σ∆

∂ω
Σ−1

∆
+Σ−1

∆

∂2Σ∆

∂ω2
Σ−1

∆
+Σ−1

∆

∂Σ∆

∂ω

∂Σ−1

∆

∂ω

)
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∂2ln |Σ∆|

∂ω2
=Tr

(

∂Σ−1

∆

∂ω

∂Σ∆

∂ω
+Σ−1

∆

∂2Σ∆

∂ω2

)

in which Tr(∗) stands for the trace of ∗ and

∂Σ∆

∂ω
= 2JT

ω ωJω

∂2Σ∆

∂ω2
= 2JT

ω Jω275

For the Gibson et al. (2016) dataset, the maximum likelihood estimate of the overdispersion parameter is 0.672 Mawith a

standard error

✿✿

In
✿✿✿

this
✿✿✿✿

case,
✿✿✿✿✿✿✿

manual
✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿

derivatives
✿

is
✿✿✿✿

only
✿✿✿✿✿✿✿

possible
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿

is
✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿

t,
✿✿✿✿

with
✿✿✿✿✿✿✿✿

formulae

✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

D.
✿✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿

derivates
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

tractable
✿✿

if
✿✿✿

the
✿✿✿✿✿✿

excess
✿✿✿✿✿✿✿✿✿

dispersion
✿✿

is
✿✿✿✿✿✿✿

assigned
✿✿

to
✿✿

α
✿✿✿✿

and
✿✿

β.
✿✿

In
✿✿✿✿

this
✿✿✿✿

case
✿✿✿

the

✿✿✿✿✿

Fisher
✿✿✿✿✿✿✿✿✿✿

Information
✿✿✿✿

must
✿✿✿✿✿✿

always
✿✿✿

be
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿✿✿✿✿✿

numerically,
✿✿✿✿✿

which
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

difficult.
✿
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4
✿✿✿✿✿✿✿✿✿✿

Application
✿✿

to
✿✿✿✿✿✿✿✿✿

literature
✿✿✿✿

data

✿✿✿✿

This
✿✿✿✿✿✿

section
✿✿✿✿✿✿

applies
✿✿✿

the
✿✿✿✿✿✿✿✿✿

U–Th–Pb
✿✿✿✿✿✿✿

isochron
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

to
✿✿✿

two
✿✿✿✿✿✿✿✿✿

published
✿✿✿✿✿✿✿

datasets,
✿✿

a
✿✿✿✿✿✿✿✿

carbonate
✿✿✿✿✿✿

dataset
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Parrish et al. (2018)

✿✿✿

and
✿✿

an
✿✿✿✿✿✿✿

allanite
✿✿✿✿✿✿

dataset
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014)
✿

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Parrish et al. (2018)
✿✿✿✿✿✿✿✿✿

investigated
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Palaeogene
✿✿✿✿✿✿✿✿✿✿

deformation
✿✿✿✿✿✿

history
✿✿✿

of

✿✿✿✿✿✿✿

southern
✿✿✿✿✿✿✿

England
✿✿✿

by
✿✿✿✿✿

dating
✿✿✿✿✿✿

calcite
✿✿✿✿✿

veins
✿✿

in
✿✿✿✿✿

chalk
✿✿✿

and
✿✿✿✿✿✿✿✿✿

greensand.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿

were
✿✿✿✿✿

made
✿✿

by
✿✿✿✿✿✿✿✿✿✿

quadrupole
✿✿✿✿✿✿✿✿✿✿✿

LA-ICP-MS,

✿✿

for
✿✿✿✿✿✿

which
✿✿

it
✿✿✿

was
✿✿✿✿

not
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿✿✿

measure
✿✿✿✿✿

204Pb
✿✿✿✿

with
✿✿✿✿✿✿✿✿

sufficient
✿✿✿✿✿✿✿✿

precision
✿✿✿

or
✿✿✿✿✿✿✿✿

accuracy.
✿✿✿✿✿✿

Figure
✿✿

2a
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿

U–Pb
✿✿✿✿

data
✿✿

of
✿✿✿✿

one285

✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿

sample
✿✿✿✿✿✿

(CB-2,
✿✿✿✿

Isle
✿✿

of
✿✿✿✿✿✿

Wight)
✿✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tera-Wasserburg
✿✿✿✿✿✿✿

diagram.
✿✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿

absence
✿✿

of
✿✿✿✿✿✿

204Pb,
✿✿✿✿✿✿✿✿✿✿✿

conventional

✿✿✿

data
✿✿✿✿✿✿✿✿✿

processing
✿✿✿✿✿✿

would
✿✿✿✿✿

apply
✿

a
✿✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

207Pb-method.
✿✿✿✿✿

That
✿✿

is,
✿✿

it
✿✿✿✿✿

would
✿✿✿✿✿

infer
✿✿✿

the
✿✿✿✿✿✿✿✿

concordia
✿✿✿✿✿✿✿✿

intercept

✿✿✿

age
✿✿

by
✿✿✿✿✿✿✿✿✿

regression
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

Semitotal-Pb/U
✿✿✿✿✿✿✿✿

isochron.
✿✿✿✿✿

Doing
✿✿✿

so
✿✿✿✿✿✿✿

suggests
✿✿

a
✿✿✿✿✿

U–Pb
✿✿✿

age
✿✿

of
✿✿✿✿✿✿

29.72
✿✿

±
✿✿✿✿

1.23
✿✿✿✿

Ma.
✿✿✿✿✿✿✿✿

However,
✿✿✿

this
✿✿✿✿✿✿✿✿

isochron

✿✿✿✿✿✿

exhibits
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿

(MSWD
✿

=
✿✿✿✿

3.2),
✿✿✿✿✿✿✿

casting
✿✿✿✿✿

doubt
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

accuracy
✿✿

of

✿✿

the
✿✿✿✿✿

date.
✿✿✿

The
✿✿✿

fit
✿✿✿

also
✿✿✿✿✿✿

suffers
✿✿✿✿✿

from
✿✿✿

low
✿✿✿✿✿✿✿✿

precision,
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿

the
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

207Pb-measurements.
✿✿✿✿✿

These
✿✿✿✿✿

cause
✿✿✿

the290

✿✿✿✿

error
✿✿✿✿✿✿

ellipses
✿✿✿

of
✿✿✿✿

some
✿✿✿✿✿

spots
✿✿

to
✿✿✿✿✿

cross
✿✿✿✿

over
✿✿✿

into
✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿✿✿✿✿

207Pb/206Pb
✿✿✿✿✿

space.
✿

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

Th/U-ratios
✿

of 0.16 Ma
✿✿✿✿✿

CB-2
✿✿✿

are
✿✿✿✿✿✿✿✿

extremely
✿✿✿✿

low
✿✿✿✿✿✿✿

(< 0.12,
✿✿

as
✿✿✿✿✿✿

shown
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

colour
✿✿✿✿✿

scale
✿✿

of
✿✿✿✿✿✿

Figure
✿✿✿

2).
✿✿✿✿✿

These
✿✿✿✿

low
✿✿✿✿✿

ratios

✿✿

are
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿

the
✿✿✿

low
✿✿✿✿✿✿✿✿✿

solubility
✿✿

of
✿✿✿

Th
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

vein-forming
✿✿✿✿✿

fluids.
✿✿✿

As
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

consequence,
✿✿✿

less
✿✿✿✿

than
✿✿✿

1%
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿

208Pb
✿✿

is
✿✿

of

✿✿✿✿✿✿✿✿

radiogenic
✿✿✿✿✿✿

origin.
✿✿✿

At
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

time,
✿✿✿

the
✿✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿

contains
✿✿✿✿✿✿✿

between
✿✿

2
✿✿✿

and
✿✿✿

20
✿✿✿✿✿

times
✿✿✿✿✿

more
✿✿✿✿

208Pb
✿✿✿✿✿

than
✿

it
✿✿✿✿✿

does
✿✿✿✿✿

207Pb.
✿✿✿✿

This
✿✿✿✿✿✿

makes

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

208Pb-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿✿✿

correction
✿✿✿

far
✿✿✿✿✿

more
✿✿✿✿✿✿

precise
✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿✿✿

207Pb-based
✿✿✿✿✿✿✿✿✿✿✿✿✿

Semitotal-Pb/U
✿✿✿✿✿✿✿✿✿✿

correction.295

✿✿✿✿✿

Figure
✿✿✿

2b
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿

isochron
✿✿✿

of
✿✿✿✿✿

CB-2
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

208Pb◦/206Pb
✿✿

–
✿✿✿✿✿✿✿✿✿

238U/206Pb
✿✿✿✿✿✿

space.
✿✿✿✿

The
✿✿✿✿✿✿

scatter
✿✿✿✿✿✿

around
✿✿✿✿

this
✿✿✿✿

line
✿✿

is

✿✿✿✿

much
✿✿✿✿✿✿

tighter
✿✿✿✿

than
✿✿✿✿

that
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Semitotal-Pb/U
✿✿✿

fit,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

MSWD
✿✿

is
✿✿✿✿

only
✿✿✿✿

2.5,
✿✿✿✿✿✿

despite
✿✿✿✿

the
✿✿✿✿

high
✿✿✿✿✿✿✿✿

precision
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

added
✿✿✿✿✿

208Pb

12



✿✿✿✿

data.
✿✿✿

The
✿✿✿✿✿✿✿✿

isochron
✿✿✿✿✿✿✿

intercept
✿✿✿✿

age
✿✿✿

has
✿✿✿✿✿✿✿

dropped
✿✿

to
✿✿✿✿✿

24.43
✿✿

±
✿✿✿✿

0.84
✿✿✿✿

Ma,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿

younger
✿✿✿✿

than
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

207Pb-corrected
✿✿✿✿

age

✿✿✿✿✿✿✿

estimate.
✿✿✿✿✿✿✿✿✿✿

Importantly,
✿✿✿

the
✿✿✿✿

two
✿✿✿

age
✿✿✿✿✿✿✿✿

estimates
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿

overlap
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

stated
✿✿✿✿✿✿✿✿✿✿✿

uncertainties.
✿

✿

It
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿✿✿

formally
✿✿✿✿✿

prove
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

208Pb-corrected
✿✿✿

age
✿✿

is
✿✿✿✿

more
✿✿✿✿✿✿✿

accurate
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

207Pb-corrected
✿✿✿

age
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

carbonate300

✿✿✿✿✿✿

dataset.
✿✿✿✿✿✿✿✿

However,
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿✿✿

assessment
✿✿

of
✿✿✿✿✿✿✿✿

accuracy
✿✿

is
✿✿✿✿✿✿✿

possible
✿✿✿

for
✿✿✿

our
✿✿✿✿✿✿

second
✿✿✿✿

case
✿✿✿✿✿✿

study.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014)
✿✿

’s

✿✿✿✿✿✿

allanite
✿✿✿✿✿✿

dataset
✿✿✿✿✿

used
✿✿✿✿✿

SIMS
✿✿✿✿✿✿

instead
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

LA-ICP-MS,
✿✿✿✿✿✿✿

making
✿✿

it
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿✿✿✿

compare
✿✿

a
✿✿✿✿✿✿✿✿✿✿

204Pb-based
✿✿✿✿✿✿✿✿

common
✿✿✿✿

lead
✿✿✿✿✿✿✿✿✿

correction

✿✿✿✿

with
✿✿✿

the
✿✿✿✿

new
✿✿✿✿✿

208Pb
✿✿✿✿✿✿✿

method.
✿✿✿✿✿✿

Figure
✿✿✿

3a
✿✿✿✿✿

shows
✿✿✿✿

the
✿✿✿✿✿

U–Pb
✿✿✿✿

data
✿✿

of
✿✿✿✿

one
✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿

allanite
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿

(MF482)
✿✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

conventional

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Tera-Wasserburg
✿✿✿✿✿✿✿✿

concordia
✿✿✿✿✿✿✿✿

diagram,
✿✿✿✿✿✿✿

yielding
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

Semitotal-Pb/U
✿✿✿✿✿✿✿

isochron
✿✿✿✿

age
✿✿

of
✿✿✿✿✿

22.77
✿✿

±
✿✿✿✿

5.63
✿✿✿✿

Ma.
✿✿✿

As
✿✿✿✿✿✿

before,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Th/U-ratios

✿✿

are
✿✿✿✿✿✿

shown
✿✿✿

as
✿✿✿✿✿✿

shades
✿✿

of
✿✿✿✿✿

green
✿✿✿

to
✿✿✿✿

red.
✿✿✿✿✿

These
✿✿✿✿✿✿

values
✿✿✿✿✿

range
✿✿✿✿✿

from
✿✿

23
✿✿✿

to
✿✿✿✿

235,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿

three
✿✿✿✿✿✿

orders
✿✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿✿✿

higher
✿✿✿✿

than305

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Parrish et al. (2018)
✿

’s
✿✿✿✿✿✿✿✿✿

carbonate
✿✿✿✿

data.
✿✿✿✿✿✿✿✿✿✿✿✿

Consequently,
✿✿✿✿✿

most
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

chronometric
✿✿✿✿✿✿

power
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

allanite
✿✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿✿

contained
✿✿✿

in
✿✿✿

the

✿✿✿✿✿

Th–Pb
✿✿✿✿✿✿

system
✿✿✿✿

and
✿✿✿

not
✿✿

in
✿✿✿

the
✿✿✿✿✿

U–Pb
✿✿✿✿✿✿✿

method.
✿✿✿

90
✿✿

–
✿✿✿✿

97%
✿✿

of
✿✿✿

the
✿✿✿✿✿

208Pb
✿✿

is
✿✿✿✿✿✿✿✿✿✿

radiogenic,
✿✿

as
✿✿✿✿✿✿✿

opposed
✿✿

to
✿✿✿

0.3
✿✿

–
✿✿✿✿✿

1.0%
✿✿

of
✿✿✿

the
✿✿✿✿✿

206Pb,
✿✿✿✿

and

✿✿✿✿

only
✿✿✿✿

0.06
✿

–
✿✿✿✿✿✿✿

0.016%
✿✿

of
✿✿✿

the
✿✿✿✿✿

207Pb.
✿

✿✿✿✿✿

Figure
✿✿✿

3b
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

Th–Pb
✿✿✿✿

data
✿✿

in
✿✿✿✿✿✿✿✿✿

204Pb/208Pb
✿✿

–
✿✿✿✿✿✿✿✿✿✿

232Th/208Pb
✿✿✿✿✿

space,
✿✿✿✿✿

where
✿✿✿✿

they
✿✿✿✿

form
✿✿✿

an
✿✿✿✿✿✿✿

isochron
✿✿✿✿

with
✿✿

a
✿✿✿✿✿

Th–Pb
✿✿✿✿

age
✿✿

of
✿✿✿✿✿

21.50

✿✿

±
✿✿✿

4.37
✿✿✿✿

Ma.
✿✿✿✿

This
✿✿✿✿✿✿

agrees
✿✿✿✿✿

within
✿✿✿✿

error
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

207Pb-corrected
✿✿✿✿✿

U–Pb
✿✿✿✿

age,
✿✿✿

but
✿✿✿

has
✿

a
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

and
✿

a
✿✿✿✿✿

much
✿✿✿✿✿

lower310

✿✿✿✿✿✿

MSWD
✿✿✿✿✿

(0.74
✿✿✿✿✿✿

instead
✿✿✿

of
✿✿✿✿

1.4).
✿✿✿✿✿✿✿✿✿

Combining
✿✿✿

the
✿✿✿✿✿✿

U–Pb
✿✿✿

and
✿✿✿✿✿✿

Th–Pb
✿✿✿✿✿✿✿

systems
✿✿✿✿✿✿✿

together,
✿✿✿✿✿✿

Figure
✿✿✿

3c
✿✿✿✿✿

shows
✿✿✿✿✿✿✿

allanite
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿

MF482
✿✿

in

✿✿✿✿✿✿✿✿✿✿

208Pb◦/206Pb
✿✿

–
✿✿✿✿✿✿✿✿✿

238U/206Pb
✿✿✿✿✿

space,
✿✿✿✿✿

where
✿✿

it
✿✿✿✿✿✿

defines
✿✿

an
✿✿✿✿✿

23.21
✿✿

±
✿✿✿✿

0.85
✿✿✿✿

Ma
✿✿✿✿✿✿✿

isochron.
✿✿✿✿✿

This
✿✿✿

falls
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿✿

the
✿✿✿✿✿

U–Pb

✿✿✿

and
✿✿✿✿✿✿

Th–Pb
✿✿✿

age
✿✿✿✿✿✿✿✿

estimates,
✿✿✿

but
✿✿

is
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿

five
✿✿✿✿✿

times
✿✿✿✿

more
✿✿✿✿✿✿✿

precise
✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿

previous
✿✿✿

age
✿✿✿✿✿✿✿✿

estimates.
✿✿✿

An
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿✿✿✿✿

visualisation

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿

isochron
✿✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

3d.
✿✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿

corrected
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

207Pb◦/208Pb-ratio
✿✿

is
✿✿✿✿✿✿

plotted
✿✿✿✿✿✿✿

against

✿✿✿✿✿✿✿✿✿✿

232Th/208Pb.
✿✿✿✿✿

Thus,
✿✿✿

we
✿✿✿

use
✿✿✿

the
✿✿✿✿✿

207Pb
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿✿✿✿

indicator
✿✿✿✿✿

intead
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

204Pb
✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿

Figure
✿✿✿

3b.
✿✿✿

The
✿✿✿✿✿

>15
✿✿✿✿✿

times
✿✿✿✿✿✿

greater315

✿✿✿✿✿✿✿✿✿

abundance
✿✿

of
✿✿✿✿

207Pb
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

204Pb
✿✿✿✿✿

nearly
✿✿✿✿✿✿✿✿✿✿

quadruples
✿✿

the
✿✿✿✿✿✿✿✿

precision
✿✿

of
✿✿✿

the
✿✿✿✿✿

data,
✿✿✿✿✿✿✿✿

producing
✿✿

a
✿✿✿✿

tight
✿✿

fit
✿✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿✿✿✿

isochron.

5 Dealing with skewed error distributions

All the free parameters in the regression algorithm (t, α, β and ω) are strictly positive quantities. This positivity constraint

manifests itself in skewed error distributions. For example, when the four parameter algorithm of Section ??
✿

3
✿

is applied to

datasets that exhibit little or no overdispersion (ω ≈ 0), then the usual ‘2-sigma’ error bounds can cross over into physically320

impossible negative data space. This section of the paper introduces two ways to deal with this problem.

A first solution is to obtain asymmetric uncertainty bounds for ω using a profile likelihood approach (Galbraith, 2005;

Vermeesch, 2018). First, maximise Equation 16 for the four parameters t, α, β and ω. Denote the corresponding log-likelihood

value by Lm. Second, consider a range of values for ω around the maximum likelihood estimate. For each of these values,

maximise L for t, α and β whilst keeping ω fixed. Denote the corresponding log-likelihood by Lω . Finally, a 95% confidence325

region for ω is obtained by collecting all the values of ω for which Lω > Lm − 3.85/2, where 3.85 corresponds to the 95th

percentile of a chi-square distribution with one degree of freedom .

✿

(Figure 4illustrates the profile likelihood method using the Gibson et al. (2016) dataset). The same procedure can also be ap-

plied to t, α and β, in order to obtain asymmetic confidence intervals for those parameters if needed. This would be particularly

useful for very young samples.330
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A second and more pragmatic approach to dealing with the positivity constraint is to simply redefine the regression param-

eters in terms of logarithmic quantities. This is done by replacing Equations 11, 12 and 19 with:

K =X −U exp[β∗]Wγ− exp[λ35e
t∗ ] + 1 (22)

L= Y − exp[α∗]Wγ− exp[λ38e
t∗ ] + 1 (23)

Σ∆ = JΣJT
[

Jx Jλ

]





Σx 04n×4

04×4n Σλ









JT
x

JT
λ



+ Jω exp[ω∗]
2JT

ω (24)335

respectively, and maximising Equation 16 with respect to t∗, α∗, β∗ and ω∗. The standard errors for these log parameters (again

obtained from the Fisher Information matrix) can then be converted to asymmetric confidence intervals for t, α, β and ω.

Applying this approach to the Gibson et al. (2016) dataset
✿✿✿

This
✿✿✿✿✿✿✿✿

approach
✿

yields results that are similar to those obtained using

the profile log-likelihood method(,
✿✿✿

as
✿✿✿✿✿✿✿✿

illustrated
✿✿

in Figure 4 ).
✿✿

for
✿✿✿✿✿✿✿✿

monazite
✿✿✿✿✿

grain
✿✿✿

#10
✿✿

in
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿

BHE-01
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Gibson et al. (2016)

✿

.
✿✿✿✿

This
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿✿✿

experienced
✿✿

a
✿✿✿✿✿✿✿✿✿✿

diachronous
✿✿✿✿✿✿✿✿✿✿✿✿

crystallisation
✿✿✿✿✿✿✿

history,
✿✿✿✿✿✿✿✿

resulting
✿✿

in
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersed
✿✿✿✿✿✿✿✿✿✿✿✿✿

Total-Pb/U–Th
✿✿✿✿✿✿✿

isochron
✿✿✿

fit340

✿✿✿✿✿✿✿

(MSWD
✿✿

=
✿✿✿

8).
✿✿✿✿✿✿✿✿✿✿

Quantifying
✿✿✿

the
✿✿✿✿✿✿

excess
✿✿✿✿✿✿✿✿✿

dispersion
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿

model-3
✿✿✿

fit
✿✿✿✿✿

yields
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿✿

ω = 0.67
✿✿✿

Ma
✿✿✿✿✿

with

✿✿✿✿✿✿✿✿✿

asymmetric
✿✿✿✿✿✿✿✿✿✿

confidence
✿✿✿✿✿✿

bounds
✿✿

of
✿✿✿✿✿✿✿✿✿✿

+0.48/-0.23
✿✿✿✿

Ma. Besides generating realistic confidence regions, the logarithmic reparame-

terisation of the likelihood function has the added benefit increasing the numerical stability of the maximum likelihood method.

6 Detrital samples

So far we have assumed that all the U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb
✿

measurements are cogenetic and share the same common Pb composi-345

tion. This assumption is generally not valid for detrital minerals, which tend to contain a mixture of provenance components.

In this case the different crystals in a sample are not expected to plot along a single isochron line. However it is still possible to

remove the common Pb component by making certain assumptions about the common Pb composition. One way to do this is

to assume that the mineral of interest was extracted from a reservoir of known U-Th-Pb composition.
✿✿✿✿✿✿✿✿

U–Th–Pb
✿✿✿✿✿✿✿✿✿✿✿

composition.
✿

For example, using the two-stage lead evolution model of Stacey and Kramers (1975), it is possible to predict the 206Pb/208Pb350

and 207Pb/208Pb ratios of the reservoir for any given time t. In other words, any given value of the concordia intersection age

determines parameters α and β of Equation ??. If
✿✿✿✿✿

More
✿✿✿✿✿✿✿✿✿

specifically,
✿✿

if
✿

t < 3.7 Ga, then

α(t) =

[

206Pb
204Pb

]

3.7
+
[

238U
204Pb

]

sk

(

eλ383.7 − eλ38t
)

[

208Pb
204Pb

]

3.7
+
[

232Th
204Pb

]

sk
(eλ323.7 − eλ32t)

(25)

β(t) =

[

207Pb
204Pb

]

3.7
+ 1

U

[

238U
204Pb

]

sk

(

eλ353.7 − eλ35t
)

[

208Pb
204Pb

]

3.7
+
[

232Th
204Pb

]

sk
(eλ323.7 − eλ32t)

(26)

where
[

206Pb/204Pb
]

3.7
= 11.152,

[

208Pb/204Pb
]

3.7
= 31.23,

[

207Pb/204Pb
]

3.7
= 12.998,

[

238U/204Pb
]

sk
= 9.74, and

[

232Th/204Pb
]

sk
355

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[

208Pb
204Pb

]

3.7
= 31.23,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[

207Pb
204Pb

]

3.7
= 12.998,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[

238U
204Pb

]

sk
= 9.74,

✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[

232Th
204Pb

]

sk
= 36.84. Substituting α(t) and β(t) for α and β in

Equations 11–13 reduces the number of free parameters from three (α, β and t) to one (t). This provides a quick and numeri-
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cally robust mechanism for common-Pb correction of detrital minerals.
✿

It
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿✿

likelihood
✿✿✿✿✿✿✿✿

equivalent
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

heuristic

✿✿✿✿✿✿✿

approach
✿✿✿✿

used
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Chew et al. (2011)
✿

.

7 Implementation in IsoplotR360

The algorithms presented in this paper have been implemented in the IsoplotR software toolbox for geochronology (Ver-

meesch, 2018). The easiest way to use the U-Th-Pb
✿✿✿✿✿✿✿

U–Th–Pb
✿

isochron functions is via an online graphical user interface at

http://isoplotr.london-geochron.comhttp:// isoplotr. london-geochron.com. Alternatively, the

same functions can also be accessed from the command line, using the R programming language
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(R Core Team, 2020). This

section of the paper presents some code snippets to illustrate the key functions involved. This brief tutorial assumes that the365

reader has R and IsoplotR installed on her/his computer. Further details about this are provided by Vermeesch (2018), and

on the aforementioned website. First, we need to load IsoplotR into R:

library(IsoplotR)

Two new data formats have been added to IsoplotR’s existing six U-Pb
✿✿✿✿

U–Pb
✿

formats, to accommodate datasets com-

prising 232Th and 208Pb. The Gibson et al. (2016) dataset
✿✿✿✿✿✿

Sample
✿✿✿✿

Ga2
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014) has been included in the370

IsoplotR package as two data files (UPb7.csv and UPb8.csv), which are also available in the supplementary information

of this paper.

UPb7.csv specifies the U-Th-Pb
✿✿✿✿✿✿✿

U–Th–Pb
✿

composition using the ‘Wetherill’ ratios 207Pb/235U, 206Pb/238U, 208Pb/232Th

and 232Th/238U, whereas UPb8.csv uses the ‘Tera-Wasserburg’ ratios 238U/206Pb, 207Pb/206Pb, 208Pb/206Pb and 232Th/238U.375

Both data formats require that the analytical uncertainties and error correlations of all the ratios are specified.
✿✿✿

The
✿✿✿

key
✿✿✿✿✿✿✿✿✿

difference

✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿

formats
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

strength
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

internal
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿✿

correlations,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿

greater
✿✿✿

for
✿✿✿✿✿✿

format
✿

7
✿✿✿✿

than
✿✿

it
✿✿

is
✿✿✿

for
✿✿✿✿✿✿

format
✿✿

8.

The following commands load the contents of UPb7
✿✿✿✿✿

UPb8.csv into a variable called UPb, and plot the data on a 208Pb/232Th

vs. 206Pb/238U-concordia diagram:

UPb <- read.data('UPb8.csv',method='U-Pb',format=8)380

concordia(UPb,type=3)

Performing a discordia regression and visualising the results as a 208Pbc/206Pb vs. 238U/206Pb isochron:

isochron(UPb,type=1)

which performs a three parameter regression without overdispersion. Accounting for overdispersion is done using the optional

model argument:385

fit <- isochron(UPb,type=1,model=3)

where fit is a variable that stores the numerical results of the isochron regression. This is a list of items that can be inspected

by typing fit at the R command prompt. For example, the maximum likelihood estimates for t, α, β and ω are stored in
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fit$par and the covariance matrix in fit$cov. Changing type to 2 plots the regression results as a 208Pbc/207Pb vs.

235U/207Pb isochron. The isochron results can also be visualised on the concordia diagram:390

concordia(UPb,type=2,show.age=2)

where type=2 produces a Tera-Wasserburg diagram and the show.age argument adds a three-parameter regression line to

it. Change this to show.age=4 for a four-parameter fit.

8 Discussion and future developments

This paper introduced a new algorithm
✿✿✿✿✿✿✿✿✿✿✿✿✿

‘Total-Pb/U–Th
✿✿✿✿✿✿✿✿✿

algorithm’
✿

for common Pb correction by joint regression of all Pb395

isotopes of U and Th. The algorithm was successfully applied to a monazite dataset by Gibson et al. (2016). With a Th /U-ratio

of ∼10, the Gibson et al. (2016) sample represents a ‘worst case scenario’, because the presence of significant amounts of

radiogenic 208Pb complicates the
✿✿✿

For
✿✿✿✿✿✿✿

samples
✿✿✿✿

that
✿✿✿

are
✿✿✿✿

low
✿✿

in
✿✿✿

Th
✿✿✿✿✿

(such
✿✿

as
✿✿✿✿✿✿✿✿✿✿

carbonates),
✿✿✿✿✿

208Pb
✿✿✿✿✿✿

offers
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿

precise
✿✿✿✿

way
✿✿

to

✿✿✿✿✿✿

correct
✿✿

for
✿✿✿✿✿✿✿✿

common
✿✿✿✿

lead,
✿✿✿✿✿✿✿

because
✿✿✿✿✿

208Pb
✿✿✿✿✿

tends
✿✿

to
✿✿✿

be
✿✿✿✿

more
✿✿✿✿✿✿✿✿

abundant
✿✿✿✿

than
✿✿✿✿

both
✿

208
✿✿

204
Pb-based common Pbcorrection. The fact

that the Gibson et al. (2016) test case is successful holds great promise for the application of the new algorithm to Th-poor400

materials such as carbonates.
✿✿

Pb
✿✿✿

and
✿✿✿✿✿✿

207Pb.
✿✿✿

For
✿✿✿✿✿✿✿✿

samples
✿✿✿

that
✿✿✿✿

are
✿✿✿✿

high
✿✿

in
✿✿✿✿

Th,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

208Pb/232Th
✿✿✿✿✿

clock
✿✿✿✿

adds
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

chronometrically

✿✿✿✿✿✿✿

valuable
✿✿✿✿✿✿✿✿✿✿

information
✿✿

to
✿✿✿

the
✿✿✿✿

joint
✿✿✿✿✿

U–Pb
✿✿✿✿✿

decay
✿✿✿✿✿✿✿

systems.
✿

The ingrowth of radiogenic Pb described by Equations 2–4 assumes initial secular equilibrium between all the intermediate

daughters in the U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb
✿

decay chains. The new discordia regression algorithm can be modified to accommodate

departures from this assumption. In fact, such disequilibrium corrections have already been implemented in IsoplotR, using405

the matrix derivative approach of McLean et al. (2016). A manuscript detailing these calculation is in preparation by the latter

author. The disequilibrium correction is particularly useful for applications to young carbonates, whose initial 234U/238U and

230Th/238U activity ratios may be far out of equilibrium.

The new discordia regression algorithm is based on the method of maximum likelihood, and accounts for correlated uncer-

tainties between variables. For example, the analytical uncertainties of the 208Pb/232Th and 232Th/238U ratios in the Gibson et al. (2016)410

dataset are characterised by correlation coefficients of ca. -0.6. However geochronological datasets are often associated with

equally significant error correlations between samples (Vermeesch, 2015). The algorithm presented in this paper easily handles

such correlations, which carry systematic uncertainty. It suffices to replace the zero values in the upper left [3n× 3n] sub-matrix

of Equation ?? with non-zero values. Unfortunately, there currently exist no algorithms that keep track of inter-sample error

correlations in the context of U-Pb geochronology. Doing so
✿✿✿✿

These
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

represented
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

off-diagonal
✿✿✿✿✿

terms
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance415

✿✿✿✿✿

matrix
✿✿✿

Σx
✿✿

in
✿✿✿✿✿✿✿✿

Equation
✿✿✿

15.
✿✿✿✿✿✿✿✿

However,
✿✿

to
✿✿✿

use
✿✿✿✿

this
✿✿✿✿✿

option
✿✿

in
✿✿✿✿✿✿✿✿

practical
✿✿✿✿✿✿✿✿✿✿

applications
✿

will require a new generation of low level data

processing software.

This new generation software will also need to deal with a second issue that negatively affects the accuracy of the U(-

Th)-Pb method, which is apparent from Figures ??.b and ??.c
✿✿✿✿✿

Figure
✿✿

1. After removing the radiogenic 208Pb-component from

the Gibson et al. (2016)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Janots and Rubatto (2014) dataset, the 95% confidence ellipse of one of the aliquots crosses over into420

negative 208Pbc/
206

✿✿

232
Pb and 208Pbc/207Pb

✿✿✿

Th ratios. This nonsensical result is related to the issues discussed in Section 5.
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Isotopic data are strictly positive quantities that exhibit skewed error distributions. ‘Normal’ statistical operations such as

averaging and the calculation of ‘2-sigma’ confidence intervals can produce counter-intuitive results when applied to such

data.

In Section 5, the skewness of the fit parameters was removed by reformulating the regression algorithm in terms of log-425

arithmic quantities. Similarly, Vermeesch (2015) showed that the skewness of isotopic compositions can be removed using

log-ratios, in the context of 40Ar/39Ar geochronology. McLean et al. (2016) introduced the same approach to in-situ U-Pb

✿✿✿✿✿

U–Pb geochronology by LA-ICP-MS. Future software development will allow analysts to export their U-Th-Pb
✿✿✿✿✿✿✿✿

U–Th–Pb

isotopic data directly as logratios and covariance matrices. Such a data structure can still be analysed with the new discordia

regression algorithm, after a logarithmic change a variables for X , Y , Z and W in Equations 11, 12 and 13.430

The U-Pb
✿✿✿✿

U–Pb
✿

method is one of the most powerful and versatile methods in the geochronological toolbox. With two

isotopes of the same parent (235U and 238U) decaying to two different isotopes of the same daughter (207Pb and 206Pb), the

U-Pb
✿✿✿✿

U–Pb
✿

method offers an internal quality control that is absent from most other geochronological techniques. U-bearing

minerals often contain significant amounts of Th, which decays to 208Pb. However until this day geochronologists have not

frequently used this additional parent-daughter pair to its full potential. It is hoped that the algorithm and software presented435

in this paper will change this situation.

✿✿✿✿✿✿✿✿

Appendix
✿✿

A

✿✿✿

The
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

isotopic
✿✿✿✿

ratio
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

X ,
✿✿

Y ,
✿✿

Z
✿✿✿✿

and
✿✿

W
✿✿

is
✿✿✿✿✿

given
✿✿✿

by:
✿

Σx =















ΣX ΣX,Y ΣX,Z ΣX,W

ΣY,X ΣY ΣY,Z ΣY,W

ΣZ,X ΣZ,Y ΣZ ΣZ,W

ΣW,X ΣW,Y ΣW,Z ΣW















✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(27)

✿✿✿✿✿

where440

ΣX =















s[X1]
2 s[X1,X2] . . . s[X1,Xn]

s[X2,X1] s[X2]
2 . . . s[X2,Xn]

...
...

. . .
...

s[Xn,X1] s[Xn,X2] . . . s[Xn]
2















,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(28)

17



ΣX,Y =















s[X1,Y1]
2 s[X1,Y2] . . . s[X1,Yn]

s[X2,Y1] s[X2,Y2] . . . s[X2,Yn]
...

...
. . .

...

s[Xn,Y1] s[Xn,Y2] . . . s[Xn,Yn]















,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(29)

✿✿✿

and
✿✿

so
✿✿✿✿✿

forth,
✿✿

in
✿✿✿✿✿✿

which
✿✿✿✿

s[a]2
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿✿

of
✿

a
✿✿✿✿

and
✿✿✿✿✿

s[a,b]
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance
✿✿

of
✿✿

a
✿✿✿

and
✿✿

b,
✿✿✿

for
✿✿✿✿

any
✿

a
✿✿✿✿

and
✿✿

b.
✿✿✿

Σλ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance

✿✿✿✿✿

matrix
✿✿

of
✿✿✿

the
✿✿✿✿✿

decay
✿✿✿✿✿✿✿✿

constants
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

238U/235U-ratio:
✿

Σλ =















s[λ35]
2 0 0 0

0 s[λ38]
2 0 0

0 0 s[λ32]
2 0

0 0 0 s[U ]2















,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(30)445

✿✿✿✿

Here
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

terms
✿✿✿✿✿

have
✿✿✿✿

been
✿✿✿

set
✿✿

to
✿✿✿✿✿

zero,
✿✿✿

but
✿✿✿✿✿✿✿

nonzero
✿✿✿✿✿✿

values
✿✿✿✿✿

could
✿✿✿✿

also
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿✿

accommodated.
✿✿✿✿✿✿✿

Finally,
✿✿✿

the
✿✿✿✿✿✿✿✿

Jacobian

✿✿✿✿✿✿✿

matrices
✿✿

Jx
✿✿✿✿

and
✿✿

Jλ
✿✿✿

are
✿✿✿✿✿

given
✿✿✿

by:
✿

Jx =









In×n 0n×n 0n×n −UβIn×nγ

0n×n In×n 0n×n −αIn×nγ

0n×n 0n×n In×n 0n×n









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(31)

✿✿✿

and

Jλ =









−tn×1e
λ35t 0n×1 0n×1 −βWγ

0n×1 −tn×1e
λ38t 0n×1 0n×1

0n×1 0n×1 −tn×1e
λ32t 0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(32)450

✿✿✿✿✿

where
✿✿✿✿

0a×b
✿✿✿✿

and
✿✿✿✿

1a×b
✿✿✿✿✿

mark
✿

a
✿✿✿✿✿

a× b
✿✿✿✿✿✿✿

matrices
✿✿

of
✿✿✿✿✿

zeros
✿✿✿

and
✿✿✿✿✿

ones,
✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿✿✿✿

whereas
✿✿✿✿✿

In×n
✿✿

is
✿✿✿

the
✿✿✿✿✿

n×n
✿✿✿✿✿✿✿

identity
✿✿✿✿✿✿

matrix.

✿✿✿✿✿✿✿✿

Appendix
✿✿

B

✿✿✿

The
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

stability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

optimisation
✿✿

is
✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿✿

enhanced
✿✿✿

by
✿✿✿✿✿✿✿✿

dropping
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dependency
✿✿

of
✿✿✿

the
✿✿✿✿

sum
✿✿

of
✿✿✿✿✿✿✿

squares
✿✿

S
✿✿✿

on
✿✿✿

the

✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

of
✿✿✿

the
✿✿✿✿✿

Th/U
✿✿✿✿✿

ratios
✿✿✿

W .
✿✿✿✿✿

Thus,
✿✿✿

we
✿✿✿✿✿✿

replace
✿✿✿✿✿✿✿✿

Equation
✿✿

27
✿✿✿

by

Σx =









ΣX ΣX,Y ΣX,Z

ΣY,X ΣY ΣY,Z

ΣZ,X ΣZ,Y ΣZ









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(33)455
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✿✿✿

and
✿✿✿✿✿✿✿✿

Equation
✿✿

31
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

3n× 3n
✿✿✿✿✿✿

identity
✿✿✿✿✿✿

matrix
✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿✿✿✿✿✿

Jx = I3n×3n).
✿✿✿✿

Let
✿✿

us
✿✿✿✿✿

define
✿✿

Ω
✿✿

to
✿✿✿

be
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

of
✿✿✿

∆,

✿✿

so
✿✿✿

that
✿

Σ−1

∆
≡ Ω=









Ω1,1 Ω1,2 Ω1,3

Ω2,1 Ω2,2 Ω2,3

Ω3,1 Ω3,2 Ω3,3









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(34)

✿✿✿✿✿

Then,
✿✿

we
✿✿✿✿

can
✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿

estimate
✿

γ
✿✿✿

for
✿✿✿✿

any
✿✿✿✿

given
✿✿✿✿✿

value
✿✿

of
✿✿

t,
✿✿

α
✿✿✿

and
✿✿✿

β,
✿✿

by
✿✿✿✿✿✿✿✿

replacing
✿✿

γ
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Z −M − eλ32t +1
✿✿

in
✿✿✿✿✿✿✿✿

Equation
✿✿✿

13,

✿✿

so
✿✿✿✿

that:460

K = K̂ +UβWM with K̂ =X −UβW (Z − eλ32t +1)− eλ35t +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(35)

✿✿✿

and

L= L̂+αWM with L̂= Y −αW (Z − eλ32t +1)− eλ38t +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(36)

✿✿✿✿✿✿✿

Plugging
✿✿✿✿✿✿✿✿✿

Equations
✿✿

35
✿✿✿✿

and
✿✿

36
✿✿✿✿

into
✿✿✿✿✿✿✿

Equation
✿✿✿

14
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

rearranging
✿✿✿✿✿✿

yields:

S =MTAM +BM +MTC +D
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(37)465

✿✿✿✿✿

where

A=U2β2WdΩ1,1Wd +α2WdΩ2,2Wd +Ω3,3 +UαβWd(Ω1,2 +Ω2,1)Wd+

Uβ(WdΩ1,3 +Ω3,1Wd)+α(WdΩ2,3 +Ω3,2Wd)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(38)

B =UβK̂TΩ1,1Wd +αL̂TΩ2,2Wd +αK̂TΩ1,2Wd +UβL̂TΩ2,1Wd + K̂TΩ1,3 + L̂TΩ2,3
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(39)

470

C =UβWdΩ1,1K̂ +αWdΩ2,2L̂+UβWdΩ1,2L̂+αWdΩ2,1K̂ +Ω3,1K̂ +Ω3,2L̂
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(40)

D =K̂TΩ1,1K̂ + K̂TΩ1,2L̂+ L̂TΩ2,1K̂ + L̂TΩ2,2L̂
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(41)

✿✿✿✿✿✿

Taking
✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

derivative
✿✿✿

of
✿

S
✿✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

M :

∂S/∂M =MT (A+AT )+B+CT

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(42)475

✿✿✿✿✿✿

Setting
✿✿✿✿✿✿✿✿✿✿

∂S/∂M = 0
✿✿✿✿

and
✿✿✿✿✿✿

solving
✿✿✿

for
✿✿✿

M :
✿

M =−(A+AT )−1(BT +C)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(43)

✿✿✿✿✿✿✿

Plugging
✿✿✿

M
✿✿✿✿

back
✿✿✿✿

into
✿✿✿✿✿✿✿✿

Equation
✿✿✿

13
✿✿✿✿✿

yields
✿✿✿✿

our
✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿

γ,
✿✿✿✿✿

which
✿✿✿✿✿✿

allows
✿✿

us
✿✿✿

to
✿✿✿✿✿✿✿

calculate
✿✿✿

S.
✿✿✿✿

The
✿✿✿✿✿

values
✿✿✿

of
✿✿

t,
✿✿

α
✿✿✿

and
✿✿

β
✿✿✿✿

that

✿✿✿✿✿✿✿

minimise
✿✿

S
✿✿✿

are
✿✿✿✿

then
✿✿✿✿✿

found
✿✿✿

by
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

methods.
✿
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Appendix
✿✿

C480

✿✿✿✿✿✿

Explicit
✿✿✿✿✿✿✿✿

formulae
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿

Fisher
✿✿✿✿✿✿✿✿✿✿✿

Information
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

(Equation
✿✿✿✿

17)
✿✿✿

are
✿✿✿✿✿✿✿

possible
✿✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿✿✿

algorithm,
✿✿

in
✿✿✿✿✿✿

which
✿✿✿

the

✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

of
✿✿✿

W
✿✿

is
✿✿✿✿✿✿✿

ignored:

∂2L

∂γ2
=−









UβW

αW

In×n









T

Σ−1

∆









UβW

αW

In×n









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(44)

∂2L

∂γ∂t
=

(

∂2L

∂t∂γ

)T

=−









UβW

αW

In×n









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(45)485

∂2L

∂γ∂α
=

(

∂2L

∂α∂γ

)T

=









0n×n

W

0n×n









T

Σ−1

∆
∆−









UβW

αW

In×n









T

Σ−1

∆









0n×1

Wγ

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(46)

∂2L

∂γ∂β
=

(

∂2L

∂β∂γ

)T

=









UW

0n×n

0n×n









T

Σ−1

∆
∆−









UβW

αW

In×n









T

Σ−1

∆









UWγ

0n×1

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(47)
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∂2L

∂t2
=∆TΣ−1

∆









(eλ35tλ2
35)n×1

(eλ38tλ2
38)n×1

(eλ32tλ2
32)n×1









−









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(48)

∂2L

∂t∂α
=

∂2L

∂α∂t
=−









01×n

Wγ

01×n









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(49)

∂2L

∂t∂β
=

∂2L

∂β∂t
=−









UWγ

0n×1

0n×1









T

Σ−1

∆









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(50)495
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∂2L

∂α2
=−









0n×1

Wγ

0n×1









T

Σ−1

∆









0n×1

Wγ

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(51)

∂2L

∂β2
=−









UWγ

0n×1

0n×1









T

Σ−1

∆









UWγ

0n×1

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(52)
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∂2L

∂α∂β
=

∂2L

∂β∂α
=−









UWγ

0n×1

0n×1









T

Σ−1

∆









0n×1

Wγ

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(53)

✿✿✿✿✿✿✿✿

Appendix
✿✿

D

✿✿✿✿✿✿✿✿✿

Additional
✿✿✿✿✿✿✿✿✿

derivatives
✿✿✿

are
✿✿✿✿✿✿✿

required
✿✿✿

to
✿✿✿✿✿✿✿✿

propagate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

ω.
✿✿✿✿

This
✿✿✿

can
✿✿✿✿✿

only
✿✿

be
✿✿✿✿✿

done

✿✿✿✿✿✿✿

manually
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿

is
✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

concordia
✿✿✿✿✿✿✿

intercept
✿✿✿✿

age
✿

t,
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

(ignoring
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty

✿✿

of
✿✿✿

W ).
✿✿✿

In
✿✿✿

that
✿✿✿✿

case
✿
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∂2L

∂γ∂ω
=

(

∂2L

∂ω∂γ

)T

=−∆T ∂Σ−1

∆

∂ω









UβW

αW

In×n









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(54)

∂2L

∂t∂ω
=

(

∂2L

∂ω∂t

)T

=−∆T ∂Σ−1

∆

∂ω









(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(55)

∂2L

∂α∂ω
=

(

∂2L

∂ω∂α

)T

=−∆T ∂Σ−1

∆

∂ω









0n×1

Wγ

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(56)510

∂2L

∂β∂ω
=

(

∂2L

∂ω∂β

)T

=−∆T ∂Σ−1

∆

∂ω









UWγ

0n×1

0n×1









✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(57)
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∂2L

∂ω2
=−

1

2

(

∂2ln |Σ∆|

∂ω2
+∆T ∂2Σ−1

∆

∂ω2
∆

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(58)

✿✿✿✿

with515

∂Σ−1

∆

∂ω
=−Σ−1

∆

∂Σ∆

∂ω
Σ−1

∆

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(59)

∂2Σ−1

∆

∂ω2
=−

(

∂Σ−1

∆

∂ω

∂Σ∆

∂ω
Σ−1

∆
+Σ−1

∆

∂2Σ∆

∂ω2
Σ−1

∆
+Σ−1

∆

∂Σ∆

∂ω

∂Σ−1

∆

∂ω

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(60)

∂2ln |Σ∆|

∂ω2
=Tr

(

∂Σ−1

∆

∂ω

∂Σ∆

∂ω
+Σ−1

∆

∂2Σ∆

∂ω2

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(61)520

✿✿

in
✿✿✿✿✿

which
✿✿✿✿✿

Tr(∗)
✿✿✿✿✿

stands
✿✿✿

for
✿✿✿

the
✿✿✿✿

trace
✿✿

of
✿✿

∗
✿✿✿

and
✿

∂Σ∆

∂ω
✿✿✿✿

= 2JT
ω ωJω

✿✿✿✿✿✿✿✿✿

(62)

∂2Σ∆

∂ω2
✿✿✿✿✿

= 2JT
ω Jω

✿✿✿✿✿✿✿

(63)

✿✿✿✿✿✿

Explicit
✿✿✿✿✿✿✿✿

formulae
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿

derivatives
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

common-Pb
✿✿✿✿✿

based
✿✿✿✿✿✿✿✿✿✿✿✿

overdispersion
✿✿✿✿✿✿

model.
✿✿✿

In
✿✿✿

that
✿✿✿✿✿

case,

✿✿

the
✿✿✿✿✿✿

Fisher
✿✿✿✿✿✿✿✿✿✿

Information
✿✿✿✿✿✿

matrix
✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿✿✿✿✿✿

numerically.
✿
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Figure 4. Profile log-likelihood intervals of the overdispersion parameter ω (black, left) and log(ω) (black, right) for the Gibson et al. (2016)

dataset. The set of ω-values whose log-likelihood fall within a range of 1.92 from the maximum value define an asymmetric 95% confidence

interval. Alternatively, a standard symmetric confidence interval for log(ω) (grey, right) can be mapped to an asymmetric confidence interval

for ω (grey, left). The two approaches yield similar results.
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