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Abstract. The actinide elements U and Th undergo radioactive decay to three isotopes of Pb, forming the basis of three

coupled geochronometers. The 206Pb/238U and 207Pb/235U decay systems are routinely combined to improve accuracy. Joint

consideration with the 208Pb/232Th decay system is less common. This paper aims to change this. Co-measured 208Pb/232Th is

particularly useful for discordant samples containing variable amounts of non-radiogenic (‘common’) Pb.

The paper presents a maximum likelihood algorithm for joint isochron regression of the 206Pb/238Pb, 207Pb/235Pb, and5
208Pb/232Th chronometers. Given a set of cogenetic samples, this ‘Total-Pb/U–Th algorithm’ estimates the common Pb compo-

sition and concordia intercept age. U–Th–Pb data can be visualised on a conventional Wetherill or Tera-Wasserburg concordia

diagram, or on a 208Pb/232Th vs. 206Pb/238U plot. Alternatively, the results of the new discordia regression algorithm can also

be visualised as a 208Pbc/206Pb vs. 238U/206Pb or 208Pbc/207Pb vs. 238U/207Pb isochron, where 208Pbc represents the common
208Pb component. In its most general form, the Total-Pb/U–Th algorithm accounts for the uncertainties of all isotopic ratios10

involved, including the 232Th/238U-ratio, as well as the systematic uncertainties associated with the decay constants and the
238U/235U-ratio. However, numerical stability is greatly improved when the dependency on the 232Th/238U-ratio uncertainty is

dropped.

For detrital minerals, it is generally not safe to assume a shared common Pb composition and concordia intercept age. In this

case the Total-Pb/U–Th regression method must be modified by tying it to a terrestrial lead evolution model. Thus also detrital15

common Pb correction can be formulated in a maximum likelihood sense.

The new method was applied to three published datasets, including low Th/U carbonates, high Th/U allanites and overdis-

persed monazites. The carbonate example illustrates how the Total-Pb/U–Th method achieves a more precise common-Pb

correction than a conventional 207Pb-based approach. The allanite sample shows the significant gain in both precision and ac-

curacy that is made when the Th–Pb decay system is jointly considered with the U–Pb system. Finally the monazite example20

is used to illustrate how the Total-Pb/U–Th regression algorithm can be modified to include an overdispersion parameter.

All the parameters in the discordia regression method (including the age and the overdispersion parameter) are strictly

positive quantities that exhibit skewed error distributions near zero. This skewness can be accounted for using the profile log-

likelihood method, or by recasting the regression algorithm in terms of logarithmic quantities. Both approaches yield realistic

asymmetric confidence intervals for the model parameters. The new algorithm is flexible enough that it can accommodate25

disequilibrium corrections and inter-sample error correlations when these are provided by the user. All the methods presented
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in this paper have been added to the IsoplotR software package. This will hopefully encourage geochronologists to take full

advantage of the entire U–Th–Pb decay system.

1 Introduction

The lead content of uranium-bearing minerals comprises two components:30

1. Non-radiogenic (a.k.a. initial or ‘common’) Pb is inherited from the environment during crystallisation. It contains all of

lead’s four stable isotopes (204Pb, 206Pb, 207Pb and 208Pb) in fixed proportions for a given sample.

2. Radiogenic Pb is added to the common Pb after crystallisation due to the decay of U and Th. It contains only three

isotopes (206Pb, 207Pb and 208Pb), which occur in variable proportions as a function of the Th/U-ratio and age.

Denoting the measured and non-radiogenic components with subscripts ‘m’ and ‘c’ respectively, and assuming initial secular35

equilibrium, we can write:

204Pbm = 204Pbc (1)

206Pbm = 206Pbc + 238Um
(
eλ38t− 1

)
(2)

207Pbm = 207Pbc + 235Um
(
eλ35t− 1

)
(3)

208Pbm = 208Pbc + 232Thm
(
eλ32t− 1

)
(4)40

where λ38, λ35 and λ32 are the decay constants of 238U, 235U and 232Th, respectively, and t is the time elapsed since isotopic

closure. In order to accurately estimate t, the common Pb composition is needed. One way to account for common Pb is to

normalise all the measurements to 204Pb. For example, using the 238U – 206Pb decay scheme:[
206Pb
204Pb

]
m

=

[
206Pb
204Pb

]
c

+

[
238U
204Pb

]
m

(
eλ38t− 1

)
(5)

Applying Equation 5 to multiple cogenetic aliquots of the same sample defines an isochron with slope
(
eλ38t− 1

)
and intercept45 [

206Pb/204Pb
]
c
. Alternatively, and equivalently, an ‘inverse’ isochron line can be defined as:[

204Pb
206Pb

]
m

=

[
204Pb
206Pb

]
c

{
1−

[
238U
206Pb

]
m

(
eλ38t− 1

)}
(6)

In this case, the isochron is a line whose y-intercept defines the common 204Pb/206Pb-ratio, and the x-intercept determines the

radiogenic 238U/206Pb-ratio.

The isochron concept can easily be applied to the 235U – 207Pb system, by replacing 206Pb with 207Pb, 238Pb with 235Pb50

and λ38 with λ35 in Equations 5 and 6. The accuracy and precision of the calculation can be further improved by solving the
206Pb/238U and 207Pb/235U isochron equations simultaneously and requiring t to be the same in both systems. The resulting

three-dimensional constrained isochron is known as a ‘Total-Pb/U isochron’ (Ludwig, 1998).
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In igneous samples, the conventional Total-Pb/U isochron requires isotopic data for two or more cogenetic aliquots. In the

simplest case, a two-point isochron can be formed by analysing the U-Pb composition of the U-bearing phase of interest along55

with a cogenetic mineral devoid of U (e.g, feldspar). In detrital samples, the common Pb intercept of the isochron can be

anchored to some nominal value, or to a terrestrial lead evolution model (e.g., Stacey and Kramers, 1975). Thus, the 204Pb-

based total U-Pb isochron method is beneficial to nearly all applications of the U-Pb method.

Unfortunately, 204Pb-based common Pb correction is not always practical. First, not all mass spectrometers are able to

measure 204Pb with sufficient precision and accuracy. In some ICP-MS instruments, the presence of an isobaric interference60

with 204Hg precludes accurate 204Pb measurements. And second, because 204Pb is by far the least abundant of lead’s four

naturally occurring isotopes, it requires the longest dwell times. For single collector instruments, this reduces the precision of

the other isotopes.

To overcome these problems, alternative common-Pb correction schemes have been proposed that use 207Pb or 208Pb instead

of 204Pb. The ‘SemiTotal-Pb/U isochron’ method is based on linear regression of 206Pb–207Pb–238U-data in Tera-Wasserburg65

space (Ludwig, 1998; Williams, 1998; Chew et al., 2011). It assumes that all the samples are cogenetic and form a simple two

component mixture between common Pb and radiogenic Pb. The common Pb then marks the intercept with the 207Pb/206Pb-

axis, and the radiogenic Pb can be obtained from the intersection of the isochron with the concordia line. The 207Pb-based

common Pb correction only works if the assumption of initial concordance is valid, if 207Pb can be measured with sufficient

precision, and if there is enough spread in the initial Pb/U-ratios to produce a statistically robust isochron.70

Andersen (2002) introduced a 208Pb-based common-Pb correction scheme that does not require initial concordance. His

method assumes that U–Th–Pb discordance can be accounted for by a combination of lead loss at a defined time, and the

presence of common lead of known composition. However in most cases neither the timing of lead loss, nor the composition

of the common lead are known. Furthermore, the assumptions that underlie the Andersen (2002) method were tailored to the

mineral zircon, but do not apply so much to other minerals such as carbonates, which crystallise at low temperatures and do75

not experience diffusive lead loss.

This paper introduces a ‘Total-Pb/U–Th isochron’ algorithm that uses the 232Th – 208Pb decay scheme to determine the

common Pb component. Unlike the Andersen (2002) method, it does not require the common Pb composition to be pre-

specified, but assumes that no Pb-loss has occurred. The new algorithm is based on Ludwig (1998)’s Total-Pb/U isochron

method, but uses 208Pbc instead of 204Pb in Equation 5:80

206Pbm
208Pbc

=

[
206Pb
208Pb

]
c

+
238Um
208Pbc

(
eλ38t− 1

)
(7)

and similarly for Equation 6 and the 235U – 207Pb equivalents of Equations 5 and 6.

The algorithms introduced in this paper will be illustrated using three published U–Th–Pb datasets, which showcase how the

combined U–Th–Pb approach improves both the precision and accuracy of U–Pb geochronology (Section 4). The cases studies

include a carbonate dataset of Parrish et al. (2018), an allanite dataset of Janots and Rubatto (2014), and an overdispersed85

monazite dataset of Gibson et al. (2016). The carbonate dataset is an example of a low Th/U setting in which the 208Pb-based

common Pb correction is more precise than a conventional 207Pb/206Pb-based common Pb correction. The allanite dataset is an
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example of a high Th/U setting in which the 208Pb/232Th method offers greater precision than the U–Pb method. The Janots and

Rubatto (2014) study used SIMS and therefore also offers an opportunity to compare the new 208Pb method with a conventional
204Pb-based common Pb correction.90

Section 5 shows how the isochron regression algorithm can be modified to accommodate strongly skewed uncertainty dis-

tributions, using a simple logarithmic change of variables. The Total-Pb/U–Th isochron algorithm assumes that all aliquots are

cogenetic. However Section 6 shows how the algorithm can be adapted to detrital samples, by tying it to the two-stage lead

evolution model of Stacey and Kramers (1975). This procedure is similar in spirit to the iterative algorithm of Chew et al.

(2011), but uses a maximum likelihood approach that weights the uncertainties of all isotopes in the coupled U–Th–Pb decay95

system. Finally, Section 7 introduces an implementation of the algorithms described herein, using the IsoplotR software

package.

2 U–Th–Pb concordia and the Total-Pb/U–Th isochron

In conventional U–Pb geochronology, the set of concordant 206Pb/238U- and 207Pb/235U-ratios defines a ‘Wetherill’ concordia

line. Similarly, U–Th–Pb data can be visualised in 208Pb/232Th- vs. 206Pb/238U-ratio space. In the absence of common Pb,100

samples whose 208Pb/232Th-ages equal their 206Pb/238U-ages plot on a U–Th–Pb concordia line. The addition of common Pb

pulls samples away from this line. Binary mixing between common Pb and radiogenic Pb forms linear trends in conventional

concordia space, but not in U–Th–Pb concordia space. For example the Janots and Rubatto (2014) data plot above or below

the concordia line depending on the Th/U-ratio (Figure 1a).

An alternative visualisation is to plot 208Pb/206Pb against 238U/206Pb (Figure 1b). The radiogenic 208Pb-component can105

be removed by rearranging Equation 4 for 208Pbc/
232Thm. Doing this for different values of t moves the various aliquots

vertically on the diagram. Each value of t also corresponds to a radiogenic 238U/206Pb ratio, thus marking a point on the

horizontal axis of the diagram. We can fit a line through this point and minimise the residual scatter of the data around it,

using a least squares criterion such as the mean square of the weighted deviates (MSWD, McIntyre et al., 1966). For the Janots

and Rubatto (2014) data, the residual scatter is minimised when t≈ 23 Ma (Figure 1b). At this value, the aliquots plot along110

a simple binary mixture between common Pb and radiogenic Pb. This marks the best estimate for the concordia age. The

corresponding common-Pb corrected 208Pb/232Th – 206Pb/238U composition is shown as a tight cluster of blue error ellipses on

Figure 1a.

In order to formalise this procedure in a mathematical sense, let us first define a number of variables. In analogy to the

variable names used by Ludwig (1998), we will refer to the blank corrected isotopic ratios as X , Y , Z, W and U :115

X =

[
207Pb
235U

]
m

, Y =

[
206Pb
238U

]
m

, Z =

[
208Pb
232Th

]
m

, W =

[
232Th
238U

]
m

, U =

[
238U
235U

]
(8)

where X , Y and Z are vectors, W is a diagonal matrix, and U is a scalar; we will use Greek characters for the unknown

common Pb ratios:

α=

[
206Pb
208Pb

]
c

, β =

[
207Pb
208Pb

]
c

, γ =
208Pbc
232Thm

(9)
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Figure 1. U–Th–Pb data for allanite sample MF482 of Janots and Rubatto (2014) shown on (a) a U–Th–Pb concordia diagram, and (b) a
208Pb◦/206Pb – 238U/206Pb isochron plot. The raw data are shown in shades of green to red on the concordia diagram, in proportion to the

Th/U ratio. The same raw data are shown as green ellipses on the isochron diagram. Red, light and dark blue ellipses show the measurements

with 5, 23 and 40 Ma worth of radiogenic 208Pb removed, respectively. The misfit of the radiogenic 208Pb-corrected data around the best fit

line is expressed as weighted square of mean deviates (MSWD, McIntyre et al., 1966) values. Error ellipses are shown at 1σ.

where α and β are scalars and γ is a vector; and finally, we will use t as the concordia age so that the radiogenic ratios are120

given by:[
208Pb
232Th

]
∗

= eλ32t− 1,
[

207Pb
235U

]
∗

= eλ35t− 1,
[

206Pb
238U

]
∗

= eλ38t− 1 (10)
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Next, we define three misfit vectors K, L and M containing the difference between the measured and the predicted (i.e.

common + radiogenic) isotope ratios:

K =X −UβWγ− eλ35t + 1 (11)125

L= Y −αWγ− eλ38t + 1 (12)

M = Z − γ− eλ32t + 1 (13)

This formulation is a straightforward adaptation of Ludwig (1998)’s 204Pb-based Total-Pb/U isochron equations. And like

Ludwig (1998), we can then estimate t, α and β by minimising the sum of squares:

S = ∆Σ−1
∆ ∆T (14)130

where ∆ is the amalgamated misfit vector and ∆T is its transpose (i.e., ∆T =
[
KT LT MT

]
). Σ∆ is the covariance matrix of

∆, which can be estimated by error propagation:

Σ∆ =
[
Jx Jλ

] Σx 04n×4

04×4n Σλ

JTx
JTλ

 (15)

in which Σx is the 4n×4n covariance matrix of the collated data measurements X , Y , Z and W ; Σλ is the 4×4 covariance

matrix of the decay constants and U , and Jx and Jλ are Jacobian matrices with partial derivatives of ∆ with respect to the135

isotopic ratio measurements and the decay constants (plus U ), respectively. Further details for Σx, Σλ, Jx and Jλ are provided

in Appendix A.

Equation 14 can be solved for t, α, and β by iterative methods, but the numerical stability of these methods is not guaranteed.

Numerical stability and speed of convergence can be greatly improved if we remove the uncertainties of W from the data

covariance matrix Σx. If the sum of squares S does not depend on the uncertainty of W , then the partial derivatives of S140

w.r.t. α, β, γ and t can be calculated manually, which greatly simplifies the optimisation. Further details about this simplified

algorithm are provided in Appendix B.

3 Error propagation and overdispersion

The log-likelihood of the isochron fit is given by

L=−1

2
[3n ln(2π) + ln |Σ∆|+S] (16)145

where |Σ∆| marks the determinant of Σ∆. The covariance matrix of the fit parameters is then obtained by inverting the matrix

of second derivates of the negative log-likelihood with respect to the vector γ and the scalars t, α, β. This is also known as the
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Fisher Information matrix:
Σγ s[γ,t] s[γ,α] s[γ,β]

s[t,γ] s[t]2 s[t,α] s[t,β]

s[α,γ] s[α,t] s[α]2 s[α,β]

s[β,γ] s[β,t] s[β,α] s[β]2

=−


∂2L
∂γ2

∂2L
∂γ∂t

∂2L
∂γ∂α

∂2L
∂γ∂β

∂2L
∂t∂γ

∂2L
∂t2

∂2L
∂t∂α

∂2L
∂t∂β

∂2L
∂α∂γ

∂2L
∂α∂t

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂β∂γ

∂2L
∂β∂t

∂2L
∂β∂α

∂2L
∂β2


−1

(17)

where Σγ is an n×n matrix; s[γ,t], s[γ,α] and s[γ,β] are n-element row vectors, s[t,γ], s[α,γ] and s[β,γ] are n-element150

column vectors, and all other elements are scalars. The second derivatives are given in Appendix C. The Fisher Information

matrix is best solved by block matrix inversion. This is achieved by partitioning Equation 17 into four parts, with ∂2L/∂γ2

defining the first block.

If analytical uncertainty is the only source of data scatter around the discordia line, then the sum of squares S follows a

central Chi-square distribution with 2n− 3 degrees of freedom (i.e., χ2
2n−3). Normalising S by the degrees of freedom gives155

rise to the so-called reduced Chi-square statistic, which is also known as the Mean Square of the Weighted Deviates (MSWD):

MSWD =
S

2n− 3
(18)

Datasets are said to be overdispersed if S is greater than the 95% percentile of χ2
2n−3 or, equivalently, if MSWD� 1 Wendt

and Carl (1991). The overdispersion can either be attributed to geological scatter in the concordia intercept age t, or to excess160

variability in the common Pb ratios α and β. Suppose that the scatter follows a normal distribution with zero mean and let ω

be the standard deviation of this distribution. Then we can redefine Equation 15 as:

Σ∆ =
[
Jx Jλ

] Σx 04n×4

04×4n Σλ

JTx
JTλ

+ Jωω
2JTω (19)

where Jω a the Jacobian matrix with the partial derivatives of ∆ w.r.t. to the dispersion parameter ω. If the overdispersion is

attributed to diachronous isotopic closure, then:165

Jω =


−λ35e

λ35tIn×n

−λ38e
λ38tIn×n

−λ32e
λ32tIn×n

 (20)

Alternatively, if the overdispersion is attributed to excess scatter of the common Pb ratios, then:

Jω =


−UWγ

−Wγ

0n×1


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ω can then be found by plugging Equation 19 into Equation 16 and maximising L. Like before, the uncertainty of ω is

obtained by inverting the Fisher Information, replacing Equation 17 with170 

Σγ s[γ,t] s[γ,α] s[γ,β] s[γ,ω]

s[t,γ] s[t]2 s[t,α] s[t,β] s[t,ω]

s[α,γ] s[α,t] s[α]2 s[α,β] s[α,ω]

s[β,γ] s[β,t] s[β,α] s[β]2 s[β,ω]

s[ω,γ] s[ω,t] s[ω,α] s[ω,β]2 s[ω]2


=−



∂2L
∂γ2

∂2L
∂γ∂t

∂2L
∂γ∂α

∂2L
∂γ∂β

∂2L
∂γ∂ω

∂2L
∂t∂γ

∂2L
∂t2

∂2L
∂t∂α

∂2L
∂t∂β

∂2L
∂t∂ω

∂2L
∂α∂γ

∂2L
∂α∂t

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂ω

∂2L
∂β∂γ

∂2L
∂β∂t

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂ω

∂2L
∂ω∂γ

∂2L
∂ω∂t

∂2L
∂ω∂α

∂2L
∂ω∂β2

∂2L
∂ω2



−1

(21)

In this case, manual calculation of the second derivatives is only possible if the overdispersion is attributed to t, with formulae

shown in Appendix D. The second derivates are not tractable if the excess dispersion is assigned to α and β. In this case the

Fisher Information must always be calculated numerically, which can be difficult.

4 Application to literature data175

This section applies the U–Th–Pb isochron algorithm to two published datasets, a carbonate dataset of Parrish et al. (2018)

and an allanite dataset of Janots and Rubatto (2014). Parrish et al. (2018) investigated the Palaeogene deformation history of

southern England by dating calcite veins in chalk and greensand. The measurements were made by quadrupole LA-ICP-MS,

for which it was not possible to measure 204Pb with sufficient precision or accuracy. Figure 2a shows the U–Pb data of one

particular sample (CB-2, Isle of Wight) on a conventional Tera-Wasserburg diagram. In the absence of 204Pb, conventional180

data processing would apply a common-Pb correction using the 207Pb-method. That is, it would infer the concordia intercept

age by regression of a Semitotal-Pb/U isochron. Doing so suggests a U–Pb age of 29.72 ± 1.23 Ma. However, this isochron

exhibits significant overdispersion with respect to the analytical uncertainties (MSWD = 3.2), casting doubt on the accuracy of

the date. The fit also suffers from low precision, caused by the large uncertainties of the 207Pb-measurements. These cause the

error ellipses of some spots to cross over into negative 207Pb/206Pb space.185

The Th/U-ratios of CB-2 are extremely low (< 0.12, as shown on the colour scale of Figure 2). These low ratios are caused

by the low solubility of Th in the vein-forming fluids. As a consequence, less than 1% of the measured 208Pb is of radiogenic

origin. At the same time, the sample contains between 2 and 20 times more 208Pb than it does 207Pb. This makes the 208Pb-based

Total-Pb/U–Th correction far more precise than the conventional 207Pb-based Semitotal-Pb/U correction. Figure 2b shows the

Total-Pb/U–Th isochron of CB-2 in 208Pb◦/206Pb – 238U/206Pb space. The scatter around this line is much tighter than that of190

the Semitotal-Pb/U fit, and the MSWD is only 2.5, despite the high precision of the added 208Pb data. The isochron intercept

age has dropped to 24.43 ± 0.84 Ma, which is significantly younger than the 207Pb-corrected age estimate. Importantly, the

two age estimates do not overlap within the stated uncertainties.

It is not possible to formally prove that the 208Pb-corrected age is more accurate than the 207Pb-corrected age for the carbonate

dataset. However, an independent assessment of accuracy is possible for our second case study. Janots and Rubatto (2014)’s195

allanite dataset used SIMS instead of LA-ICP-MS, making it possible to compare a 204Pb-based common lead correction with

the new 208Pb method. Figure 3a shows the U–Pb data of one particular allanite sample (MF482) on a conventional Tera-
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Wasserburg concordia diagram, yielding a Semitotal-Pb/U isochron age of 22.77 ± 5.63 Ma. As before, the Th/U-ratios are

shown as shades of green to red. These values range from 23 to 235, which is three orders of magnitude higher than Parrish

et al. (2018)’s carbonate data. Consequently, most of the chronometric power of the allanite data is contained in the Th–Pb200

system and not in the U–Pb method. 90 – 97% of the 208Pb is radiogenic, as opposed to 0.3 – 1.0% of the 206Pb, and only 0.06

– 0.016% of the 207Pb.

Figure 3b shows the Th–Pb data in 204Pb/208Pb – 232Th/208Pb space, where they form an isochron with a Th–Pb age of 21.50

± 4.37 Ma. This agrees within error with the 207Pb-corrected U–Pb age, but has a slightly smaller uncertainty and a much lower

MSWD (0.74 instead of 1.4). Combining the U–Pb and Th–Pb systems together, Figure 3c shows allanite sample MF482 in205
208Pb◦/206Pb – 238U/206Pb space, where it defines an 23.21 ± 0.85 Ma isochron. This falls within the uncertainties of the U–Pb

and Th–Pb age estimates, but is more than five times more precise than the previous age estimates. An alternative visualisation

of the Total-Pb/U–Th isochron is shown in Figure 3d. Here, the common-Pb corrected 207Pb◦/208Pb-ratio is plotted against
232Th/208Pb. Thus, we use the 207Pb as a common-Pb indicator intead of the 204Pb used in Figure 3b. The >15 times greater

abundance of 207Pb compared to 204Pb nearly quadruples the precision of the data, producing a tight fit around the isochron.210

5 Dealing with skewed error distributions

All the free parameters in the regression algorithm (t, α, β and ω) are strictly positive quantities. This positivity constraint

manifests itself in skewed error distributions. For example, when the four parameter algorithm of Section 3 is applied to

datasets that exhibit little or no overdispersion (ω ≈ 0), then the usual ‘2-sigma’ error bounds can cross over into physically

impossible negative data space. This section of the paper introduces two ways to deal with this problem.215

A first solution is to obtain asymmetric uncertainty bounds for ω using a profile likelihood approach (Galbraith, 2005;

Vermeesch, 2018). First, maximise Equation 16 for the four parameters t, α, β and ω. Denote the corresponding log-likelihood

value by Lm. Second, consider a range of values for ω around the maximum likelihood estimate. For each of these values,

maximise L for t, α and β whilst keeping ω fixed. Denote the corresponding log-likelihood by Lω . Finally, a 95% confidence

region for ω is obtained by collecting all the values of ω for which Lω > Lm− 3.85/2, where 3.85 corresponds to the 95th220

percentile of a chi-square distribution with one degree of freedom (Figure 4). The same procedure can also be applied to t, α

and β, in order to obtain asymmetic confidence intervals for those parameters if needed. This would be particularly useful for

very young samples.

A second and more pragmatic approach to dealing with the positivity constraint is to simply redefine the regression param-

eters in terms of logarithmic quantities. This is done by replacing Equations 11, 12 and 19 with:225

K =X −U exp[β∗]Wγ− exp[λ35e
t∗ ] + 1 (22)

L= Y − exp[α∗]Wγ− exp[λ38e
t∗ ] + 1 (23)

Σ∆ =
[
Jx Jλ

] Σx 04n×4

04×4n Σλ

JTx
JTλ

+ Jω exp[ω∗]
2JTω (24)
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Figure 2. a) SemiTotal-Pb/U isochron (207Pb-based common Pb correction) for Parrish et al. (2018)’ chalk data; b) Total-Pb/U–Th isochron

(208Pb-based common Pb correction) shown in 208Pb◦/206Pb – 238U/206Pb space. Colours indicate the Th/U-ratio. All uncertainties are shown

at 1σ.

respectively, and maximising Equation 16 with respect to t∗, α∗, β∗ and ω∗. The standard errors for these log parameters (again

obtained from the Fisher Information matrix) can then be converted to asymmetric confidence intervals for t, α, β and ω. This230

approach yields results that are similar to those obtained using the profile log-likelihood method, as illustrated in Figure 4 for

monazite grain #10 in sample BHE-01 of Gibson et al. (2016). This sample experienced a diachronous crystallisation history,
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Figure 3. a) SemiTotal-Pb/U isochron (207Pb-based common Pb correction) for Janots and Rubatto (2014)’s allanite data; b) Conventional

Pb/Th-isochron (204Pb-based common Pb correction); c) and d) Total-Pb/U–Th isochron (208Pb-based common Pb correction) shown in
208Pb◦/206Pb – 238U/206Pb space (c) and 206Pb◦/208Pb – 232Th/208Pb space (d). Colours indicate the Th/U-ratio. All uncertainties are shown at

1σ.

resulting in an overdispersed Total-Pb/U–Th isochron fit (MSWD = 8). Quantifying the excess dispersion with a model-3 fit

yields an overdispersion parameter ω = 0.67 Ma with asymmetric confidence bounds of +0.48/-0.23 Ma. Besides generating
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realistic confidence regions, the logarithmic reparameterisation of the likelihood function has the added benefit increasing the235

numerical stability of the maximum likelihood method.

6 Detrital samples

So far we have assumed that all the U–Th–Pb measurements are cogenetic and share the same common Pb composition. This

assumption is generally not valid for detrital minerals, which tend to contain a mixture of provenance components. In this case

the different crystals in a sample are not expected to plot along a single isochron line. However it is still possible to remove the240

common Pb component by making certain assumptions about the common Pb composition. One way to do this is to assume

that the mineral of interest was extracted from a reservoir of known U–Th–Pb composition.
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For example, using the two-stage lead evolution model of Stacey and Kramers (1975), it is possible to predict the 206Pb/208Pb

and 207Pb/208Pb ratios of the reservoir for any given time t. More specifically, if t < 3.7 Ga, then

α(t) =

[
206Pb
204Pb

]
3.7

+
[

238U
204Pb

]
sk

(
eλ383.7− eλ38t

)
[ 208Pb

204Pb

]
3.7

+
[ 232Th

204Pb

]
sk

(eλ323.7− eλ32t)
(25)245

β(t) =

[
207Pb
204Pb

]
3.7

+ 1
U

[
238U
204Pb

]
sk

(
eλ353.7− eλ35t

)
[ 208Pb

204Pb

]
3.7

+
[ 232Th

204Pb

]
sk

(eλ323.7− eλ32t)
(26)

where
[

206Pb
204Pb

]
3.7

= 11.152,
[

208Pb
204Pb

]
3.7

= 31.23,
[

207Pb
204Pb

]
3.7

= 12.998,
[

238U
204Pb

]
sk

= 9.74, and
[

232Th
204Pb

]
sk

= 36.84. Substituting

α(t) and β(t) for α and β in Equations 11–13 reduces the number of free parameters from three (α, β and t) to one (t).

This provides a quick and numerically robust mechanism for common-Pb correction of detrital minerals. It is the maximum

likelihood equivalent of the heuristic approach used by Chew et al. (2011).250

7 Implementation in IsoplotR

The algorithms presented in this paper have been implemented in the IsoplotR software toolbox for geochronology (Ver-

meesch, 2018). The easiest way to use the U–Th–Pb isochron functions is via an online graphical user interface at http://

isoplotr. london-geochron.com. Alternatively, the same functions can also be accessed from the command line, us-

ing the R programming language (R Core Team, 2020). This section of the paper presents some code snippets to illustrate the255

key functions involved. This brief tutorial assumes that the reader has R and IsoplotR installed on her/his computer. Further

details about this are provided by Vermeesch (2018), and on the aforementioned website. First, we need to load IsoplotR

into R:

library(IsoplotR)

Two new data formats have been added to IsoplotR’s existing six U–Pb formats, to accommodate datasets comprising260
232Th and 208Pb. Sample Ga2 of Janots and Rubatto (2014) has been included in the IsoplotR package as two data files

(UPb7.csv and UPb8.csv).

UPb7.csv specifies the U–Th–Pb composition using the ‘Wetherill’ ratios 207Pb/235U, 206Pb/238U, 208Pb/232Th and 232Th/238U,

whereas UPb8.csv uses the ‘Tera-Wasserburg’ ratios 238U/206Pb, 207Pb/206Pb, 208Pb/206Pb and 232Th/238U. The key difference265

between the two formats is the strength of the internal error correlations, which is greater for format 7 than it is for format 8.

The following commands load the contents of UPb8.csv into a variable called UPb, and plot the data on a 208Pb/232Th vs.
206Pb/238U-concordia diagram:

UPb <- read.data('UPb8.csv',method='U-Pb',format=8)

concordia(UPb,type=3)270

Performing a discordia regression and visualising the results as a 208Pbc/206Pb vs. 238U/206Pb isochron:
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isochron(UPb,type=1)

which performs a three parameter regression without overdispersion. Accounting for overdispersion is done using the optional

model argument:

fit <- isochron(UPb,type=1,model=3)275

where fit is a variable that stores the numerical results of the isochron regression. This is a list of items that can be inspected

by typing fit at the R command prompt. For example, the maximum likelihood estimates for t, α, β and ω are stored in

fit$par and the covariance matrix in fit$cov. Changing type to 2 plots the regression results as a 208Pbc/207Pb vs.
235U/207Pb isochron. The isochron results can also be visualised on the concordia diagram:

concordia(UPb,type=2,show.age=2)280

where type=2 produces a Tera-Wasserburg diagram and the show.age argument adds a three-parameter regression line to

it. Change this to show.age=4 for a four-parameter fit.

8 Discussion and future developments

This paper introduced a ‘Total-Pb/U–Th algorithm’ for common Pb correction by joint regression of all Pb isotopes of U

and Th. For samples that are low in Th (such as carbonates), 208Pb offers the most precise way to correct for common lead,285

because 208Pb tends to be more abundant than both 204Pb and 207Pb. For samples that are high in Th, the 208Pb/232Th clock adds

chronometrically valuable information to the joint U–Pb decay systems.

The ingrowth of radiogenic Pb described by Equations 2–4 assumes initial secular equilibrium between all the intermediate

daughters in the U–Th–Pb decay chains. The new discordia regression algorithm can be modified to accommodate departures

from this assumption. In fact, such disequilibrium corrections have already been implemented in IsoplotR, using the matrix290

derivative approach of McLean et al. (2016). A manuscript detailing these calculation is in preparation by the latter author. The

disequilibrium correction is particularly useful for applications to young carbonates, whose initial 234U/238U and 230Th/238U

activity ratios may be far out of equilibrium.

The new discordia regression algorithm is based on the method of maximum likelihood, and accounts for correlated uncer-

tainties between variables. However geochronological datasets are often associated with equally significant error correlations295

between samples (Vermeesch, 2015). The algorithm presented in this paper easily handles such correlations, which carry sys-

tematic uncertainty. These are represented by the off-diagonal terms of the covariance matrix Σx in Equation 15. However, to

use this option in practical applications will require a new generation of low level data processing software.

This new generation software will also need to deal with a second issue that negatively affects the accuracy of the U(-Th)-Pb

method, which is apparent from Figure 1. After removing the radiogenic 208Pb-component from the Janots and Rubatto (2014)300

dataset, the 95% confidence ellipse of one of the aliquots crosses over into negative 208Pb/232Th ratios. This nonsensical result

is related to the issues discussed in Section 5. Isotopic data are strictly positive quantities that exhibit skewed error distributions.
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‘Normal’ statistical operations such as averaging and the calculation of ‘2-sigma’ confidence intervals can produce counter-

intuitive results when applied to such data.

In Section 5, the skewness of the fit parameters was removed by reformulating the regression algorithm in terms of log-305

arithmic quantities. Similarly, Vermeesch (2015) showed that the skewness of isotopic compositions can be removed using

log-ratios, in the context of 40Ar/39Ar geochronology. McLean et al. (2016) introduced the same approach to in-situ U–Pb

geochronology by LA-ICP-MS. Future software development will allow analysts to export their U–Th–Pb isotopic data di-

rectly as logratios and covariance matrices. Such a data structure can still be analysed with the new discordia regression

algorithm, after a logarithmic change a variables for X , Y , Z and W in Equations 11, 12 and 13.310

The U–Pb method is one of the most powerful and versatile methods in the geochronological toolbox. With two isotopes

of the same parent (235U and 238U) decaying to two different isotopes of the same daughter (207Pb and 206Pb), the U–Pb

method offers an internal quality control that is absent from most other geochronological techniques. U-bearing minerals often

contain significant amounts of Th, which decays to 208Pb. However until this day geochronologists have not frequently used

this additional parent-daughter pair to its full potential. It is hoped that the algorithm and software presented in this paper will315

change this situation.

Appendix A

The covariance matrix of the isotopic ratio measurements X , Y , Z and W is given by:

Σx =


ΣX ΣX,Y ΣX,Z ΣX,W

ΣY,X ΣY ΣY,Z ΣY,W

ΣZ,X ΣZ,Y ΣZ ΣZ,W

ΣW,X ΣW,Y ΣW,Z ΣW

 (27)

where320

ΣX =


s[X1]2 s[X1,X2] . . . s[X1,Xn]

s[X2,X1] s[X2]2 . . . s[X2,Xn]
...

...
. . .

...

s[Xn,X1] s[Xn,X2] . . . s[Xn]2

 , (28)

ΣX,Y =


s[X1,Y1]2 s[X1,Y2] . . . s[X1,Yn]

s[X2,Y1] s[X2,Y2] . . . s[X2,Yn]
...

...
. . .

...

s[Xn,Y1] s[Xn,Y2] . . . s[Xn,Yn]

 , (29)
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and so forth, in which s[a]2 is the variance of a and s[a,b] is the covariance of a and b, for any a and b. Σλ is the covariance

matrix of the decay constants and the 238U/235U-ratio:

Σλ =


s[λ35]2 0 0 0

0 s[λ38]2 0 0

0 0 s[λ32]2 0

0 0 0 s[U ]2

 , (30)325

Here the covariance terms have been set to zero, but nonzero values could also be accommodated. Finally, the Jacobian

matrices Jx and Jλ are given by:

Jx =


In×n 0n×n 0n×n −UβIn×nγ
0n×n In×n 0n×n −αIn×nγ
0n×n 0n×n In×n 0n×n

 (31)

and

Jλ =


−tn×1e

λ35t 0n×1 0n×1 −βWγ

0n×1 −tn×1e
λ38t 0n×1 0n×1

0n×1 0n×1 −tn×1e
λ32t 0n×1

 (32)330

where 0a×b and 1a×b mark a a× b matrices of zeros and ones, respectively, whereas In×n is the n×n identity matrix.

Appendix B

The numerical stability of the optimisation is greatly enhanced by dropping the dependency of the sum of squares S on the

uncertainty of the Th/U ratios W . Thus, we replace Equation 27 by

Σx =


ΣX ΣX,Y ΣX,Z

ΣY,X ΣY ΣY,Z

ΣZ,X ΣZ,Y ΣZ

 (33)335

and Equation 31 by the 3n× 3n identity matrix (i.e., Jx = I3n×3n). Let us define Ω to be the inverse covariance matrix of ∆,

so that

Σ−1
∆ ≡ Ω =


Ω1,1 Ω1,2 Ω1,3

Ω2,1 Ω2,2 Ω2,3

Ω3,1 Ω3,2 Ω3,3

 (34)

Then, we can directly estimate γ for any given value of t, α and β, by replacing γ with Z −M − eλ32t + 1 in Equation 13,

so that:340

K = K̂ +UβWM with K̂ =X −UβW (Z − eλ32t + 1)− eλ35t + 1 (35)
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and

L= L̂+αWM with L̂= Y −αW (Z − eλ32t + 1)− eλ38t + 1 (36)

Plugging Equations 35 and 36 into Equation 14 and rearranging yields:

S =MTAM +BM +MTC +D (37)345

where

A=U2β2WdΩ1,1Wd +α2WdΩ2,2Wd + Ω3,3 +UαβWd(Ω1,2 + Ω2,1)Wd+

Uβ(WdΩ1,3 + Ω3,1Wd) +α(WdΩ2,3 + Ω3,2Wd) (38)

B =UβK̂TΩ1,1Wd +αL̂TΩ2,2Wd +αK̂TΩ1,2Wd +UβL̂TΩ2,1Wd + K̂TΩ1,3 + L̂TΩ2,3 (39)

350

C =UβWdΩ1,1K̂ +αWdΩ2,2L̂+UβWdΩ1,2L̂+αWdΩ2,1K̂ + Ω3,1K̂ + Ω3,2L̂ (40)

D =K̂TΩ1,1K̂ + K̂TΩ1,2L̂+ L̂TΩ2,1K̂ + L̂TΩ2,2L̂ (41)

Taking the matrix derivative of S with respect to M :

∂S/∂M =MT (A+AT ) +B+CT (42)355

Setting ∂S/∂M = 0 and solving for M :

M =−(A+AT )−1(BT +C) (43)

Plugging M back into Equation 13 yields our estimate of γ, which allows us to calculate S. The values of t, α and β that

minimise S are then found by numerical methods.

Appendix C360

Explicit formulae for the Fisher Information matrix (Equation 17) are possible for the simplified algorithm, in which the

uncertainty of W is ignored:

∂2L
∂γ2

=−


UβW

αW

In×n


T

Σ−1
∆


UβW

αW

In×n

 (44)
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∂2L
∂γ∂t

=

(
∂2L
∂t∂γ

)T
=−


UβW

αW

In×n


T

Σ−1
∆


(λ35e

λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1

 (45)365

∂2L
∂γ∂α

=

(
∂2L
∂α∂γ

)T
=


0n×n

W

0n×n


T

Σ−1
∆ ∆−


UβW

αW

In×n


T

Σ−1
∆


0n×1

Wγ

0n×1

 (46)

∂2L
∂γ∂β

=

(
∂2L
∂β∂γ

)T
=


UW

0n×n

0n×n


T

Σ−1
∆ ∆−


UβW

αW

In×n


T

Σ−1
∆


UWγ

0n×1

0n×1

 (47)

370

∂2L
∂t2

= ∆TΣ−1
∆


(eλ35tλ2

35)n×1

(eλ38tλ2
38)n×1

(eλ32tλ2
32)n×1

−


(λ35e
λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1


T

Σ−1
∆


(λ35e

λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1

 (48)

∂2L
∂t∂α

=
∂2L
∂α∂t

=−


01×n

Wγ

01×n


T

Σ−1
∆


(λ35e

λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1

 (49)

∂2L
∂t∂β

=
∂2L
∂β∂t

=−


UWγ

0n×1

0n×1


T

Σ−1
∆


(λ35e

λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1

 (50)375

∂2L
∂α2

=−


0n×1

Wγ

0n×1


T

Σ−1
∆


0n×1

Wγ

0n×1

 (51)

∂2L
∂β2

=−


UWγ

0n×1

0n×1


T

Σ−1
∆


UWγ

0n×1

0n×1

 (52)

380

∂2L
∂α∂β

=
∂2L
∂β∂α

=−


UWγ

0n×1

0n×1


T

Σ−1
∆


0n×1

Wγ

0n×1

 (53)
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Appendix D

Additional derivatives are required to propagate the uncertainty of the overdispersion parameters ω. This can only be done

manually if the overdispersion is attributed to the concordia intercept age t, using the simplified model (ignoring the uncertainty

of W ). In that case385

∂2L
∂γ∂ω

=

(
∂2L
∂ω∂γ

)T
=−∆T ∂Σ−1

∆

∂ω


UβW

αW

In×n

 (54)

∂2L
∂t∂ω

=

(
∂2L
∂ω∂t

)T
=−∆T ∂Σ−1

∆

∂ω


(λ35e

λ35t)n×1

(λ38e
λ38t)n×1

(λ32e
λ32t)n×1

 (55)

∂2L
∂α∂ω

=

(
∂2L
∂ω∂α

)T
=−∆T ∂Σ−1

∆

∂ω


0n×1

Wγ

0n×1

 (56)390

∂2L
∂β∂ω

=

(
∂2L
∂ω∂β

)T
=−∆T ∂Σ−1

∆

∂ω


UWγ

0n×1

0n×1

 (57)

∂2L
∂ω2

=−1

2

(
∂2ln |Σ∆|
∂ω2

+ ∆T ∂
2Σ−1

∆

∂ω2
∆

)
(58)

with395

∂Σ−1
∆

∂ω
=−Σ−1

∆

∂Σ∆

∂ω
Σ−1

∆ (59)

∂2Σ−1
∆

∂ω2
=−

(
∂Σ−1

∆

∂ω

∂Σ∆

∂ω
Σ−1

∆ + Σ−1
∆

∂2Σ∆

∂ω2
Σ−1

∆ + Σ−1
∆

∂Σ∆

∂ω

∂Σ−1
∆

∂ω

)
(60)

∂2ln |Σ∆|
∂ω2

= Tr

(
∂Σ−1

∆

∂ω

∂Σ∆

∂ω
+ Σ−1

∆

∂2Σ∆

∂ω2

)
(61)400

in which Tr(∗) stands for the trace of ∗ and

∂Σ∆

∂ω
= 2JTω ωJω (62)

∂2Σ∆

∂ω2
= 2JTω Jω (63)
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Explicit formulae for the second derivatives are not available for the common-Pb based overdispersion model. In that case,

the Fisher Information matrix must be computed numerically.405
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