1 Technical note: on LA–ICP-MS U–Pb dating of unetched and etched apatites

- 2 Fanis Abdullin et al.: LA–ICP-MS U–Pb dating of apatites
- 3 Fanis Abdullin¹, Luigi A. Solari², Jesús Solé³, Carlos Ortega-Obregón²
- ⁴ ¹CONACyT–Centro de Geociencias, Campus Juriquilla, UNAM, Querétaro, 76230, Mexico
- ⁵ ²Centro de Geociencias, Campus Juriquilla, UNAM, Querétaro, 76230, Mexico
- ⁶ ³LANGEM, Instituto de Geología, UNAM, Ciudad Universitaria, CDMX, 04510, Mexico

7 **Correspondence:** Fanis Abdullin (<u>fanis@geociencias.unam.mx</u>)

8

9 Abstract

The same unetched and chemically etched apatite crystals from five rock samples were dated by U–Pb method via laser ablation inductively-coupled plasma mass spectrometry (LA–ICP-MS). The objective of this study is to test whether chemical etching required for apatite fission track analysis impacts the precision and accuracy of apatite U–Pb geochronology. The results of this experiment suggest that etching has insignificant effects on the accuracy of apatite U–Pb ages obtained by LA–ICP-MS. Therefore, LA–ICP-MS is reliable for U–Pb analysis as part of apatite fission track and U–Pb double dating.

17

18

19 Short summary

20 Unetched and etched apatite grains from five samples were dated by U–Pb method using laser 21 ablation inductively-coupled plasma mass spectrometry. Our experiment indicates that etching 22 needed for apatite fission track dating has insignificant effects on obtaining accurate U–Pb ages; thus, the laser ablation-based technique may be used for apatite fission track and U–Pb double
dating.

25

26 1 Introduction

27

28 Apatite, Ca₅(PO₄)₃[F,Cl,OH], is the most common phosphate mineral in the Earth's crust and can 29 be found in practically all igneous and metamorphic rocks, in many ancient and recent sediments 30 as well as in certain mineral deposits (Piccoli and Candela, 2002; Morton and Yaxley, 2007; 31 Webster and Piccoli, 2015). This accessory mineral is often used as a natural thermochronometer 32 for fission track, helium, U-Th and U-Pb dating (e.g., Zeitler et al., 1987; Wolf et al., 1996; 33 Ehlers and Farley, 2003; Hasebe et al., 2004; Donelick et al., 2005; Chew and Donelick, 2012; 34 Chew et al., 2014; Cochrane et al., 2014; Liu et al., 2014; Spikings et al., 2015; Glorie et al., 35 2017). Presently, apatite fission track (AFT) ages can be obtained rapidly by using laser ablation 36 inductively-coupled plasma mass spectrometry (LA-ICP-MS) for direct measurement of "parent 37 nuclides", i.e., ²³⁸U contents (Cox et al., 2000; Svojtka and Košler, 2002; Hasebe et al., 2004, 38 2009; Donelick et al., 2005; Abdullin et al., 2014, 2016, 2018; Vermeesch, 2017). The LA-ICP-MS technique may be used to measure ²³⁸U for AFT dating, together with Pb isotopes needed for 39 40 U-Pb dating (e.g., Chew and Donelick, 2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et al., 41 2020; Nieto-Samaniego et al., 2020).

Hasebe et al. (2009) previously performed an important experimental study, during which they demonstrated that chemical etching required for apatite/zircon fission track dating does not interfere with U analysis by LA–ICP-MS. After chemical etching of apatite, a smaller volume of ablated material is analyzed by LA–ICP-MS. The influence of etching needed for AFT dating on

46	the precision and accuracy of dating the same crystals by U-Pb using LA-ICP-MS remains to be
47	quantified. To investigate this issue, the same unetched and etched apatite grains extracted from
48	five rock samples were analyzed via LA-ICP-MS for U-Pb dating. The chosen rock samples
49	have either emplacement or metamorphic ages ranging from the Cretaceous to the
50	Neoproterozoic (see Table 1 for further details).
51	Table 1
52	
53	
54	2 Sample descriptions
55	
56	2.1 OV-0421 (Tres Sabanas Pluton, Guatemala)
57	
58	This sample is a two mica-bearing deformed granite belonging to the Tres Sabanas Pluton, which
59	is located northwest of Guatemala City, Guatemala. For sample OV-0421, an emplacement age
60	of 115 \pm 4 (2 σ) Ma was proposed based on zircon U–Pb data (Torres de León, 2016). A cooling
61	age of 102 ± 1 (2 σ) Ma, obtained with K–Ar (on biotite), was also reported by the same author.
62	
63	2.2. MCH-38 (Chiapas Massif Complex, Mexico)
64	
65	MCH-38 is an orthogneiss from the Permian Chiapas Massif Complex. This rock was sampled to
66	the west of Unión Agrarista, the State of Chiapas, southeastern Mexico. There is no reported age
67	for this sample. Some zircon U-Pb dates obtained for the Chiapas Massif Complex (Weber et al.,

68	2007, 2008; Ortega-Obregón et al., 2019) suggest that a Lopingian (260-252 Ma) crystallization
69	or metamorphic age may be assumed for sample MCH-38.
70	
71	2.3 TO-AM (Totoltepec Pluton, Mexico)
72	
73	TO-AM is a granitic rock, sampled ca. 5 km west of Totoltepec de Guerrero, the State of Puebla,
74	southern Mexico. There is no reported radiometric data for sample TO-AM. Previous geological
75	studies indicate that the Pennsylvanian-Cisuralian Totoltepec Pluton was emplaced over a ca. 23
76	million year period (from ca. 308 to ca. 285 Ma; e.g., Kirsch et al., 2013).
77	
78	2.4 CH-0403 (Altos Cuchumatanes, Guatemala)
79	
80	CH-0403 was collected 5 km ESE of Barillas, in the Altos Cuchumatanes, Guatemala. It consists
81	of a gray to green granodiorite. Five zircon aliquots of sample CH-0403 were dated using isotope
82	dilution thermal-ionization mass spectrometry, yielding a lower intercept date of 391 \pm 8 (2 σ)
83	Ma that is interpreted as its approximate crystallization age (Solari et al., 2009).
84	
85	2.5 OC-1008 (Oaxacan Complex, Mexico)
86	
87	This sample is a paragneiss from the Grenvillian Oaxacan Complex, southern Mexico. OC-1008
88	was collected in the federal road which connects Nochixtlán to Oaxaca. It was demonstrated that
89	this sample underwent granulite facies metamorphism at 1000–980 Ma (Solari et al., 2014).
90	

92

93

- **3** Analytical procedures
- 94

95 Accessory minerals were concentrated using conventional mineral separation techniques such as 96 rock crushing, sieving, Wilfley table, Frantz magnetic separator, and bromoform. Approximately 97 300 apatite grains were extracted from each rock sample and mounted with their surfaces parallel 98 to the crystallographic *c*-axis in a 2.5 cm diameter epoxy mount. Mounted crystals were polished 99 to expose their internal surfaces (i.e., up to 4π geometry). For this experiment, complete crystals 100 lacking visible inclusions and other defects, such as cracks, were carefully selected for analysis. 101 Sample preparation was performed at Taller de Molienda and Taller de Laminación, Centro de 102 Geociencias (CGEO), Campus Juriquilla, Universidad Nacional Autónoma de Mexico (UNAM). 103 Single spot analyses were performed with a Resonetics RESOlutionTM LPX Pro (193 nm, 104 ArF excimer) laser ablation system, coupled to a Thermo Scientific iCAP[™] Qc quadrupole ICP-105 MS at Laboratorio de Estudios Isotópicos (LEI), CGEO, UNAM. During this experimental work, 106 LA-ICP-MS-based sampling was performed in central parts of the selected apatite grains before 107 and after chemical etching (in 5.5M HNO₃ at 21 °C for 20 s to reveal spontaneous fission tracks), 108 as shown schematically in Fig. 1. The LA–ICP-MS protocol used for apatite analyses, as given in 109 Table 2, was established on the basis of numerous experiments carried out at LEI during the past 110 five years, and can be used for U–Pb and fission track double dating plus multielemental analysis 111 (Abdullin et al., 2018; Ortega-Obregón et al., 2019). Corrected isotopic ratios and errors were calculated using Iolite 3.5 (Paton et al., 2011) and the VizualAge data reduction scheme (Petrus 112 and Kamber, 2012). UcomPbine (Chew et al., 2014) was used to model ²⁰⁷Pb/²⁰⁶Pb initial values 113

and thus force a ²⁰⁷Pb correction that considers the common Pb (non-radiogenic Pb) incorporated
by apatite standards at the moment of their crystallization (see also Ortega-Obregón et al., 2019).
The "First Mine Discovery" apatite from Madagascar, with a mean U–Pb age of ca. 480 Ma
(Thomson et al., 2012; Chew et al., 2014), was used as a primary reference material. The results
for measured isotopes using NIST-612 (Pearce et al., 1997) were normalized using ⁴³Ca as an
internal standard and taking an average CaO content of 55%.
Tera–Wasserburg Concordia diagrams (T–W; Tera and Wasserburg, 1972) are used in

121 apatite U–Pb dating, because the LA–ICP-MS-derived U–Pb results are generally discordant.
122 The lower intercept in the T–W plot is considered as a mean apatite U–Pb age that should have
123 geological significance (crystallization or cooling age, the age of mineralization or metamorphic
124 event). Apatite U–Pb ages were calculated with IsoplotR (Vermeesch, 2017, 2018) and described
125 below. Detailed information on U–Pb experiments is given in Table S1 in the Supplement.

126 --- Figure 1 ---127 --- Table 2 ---128 129 130 4 **Results** 131 132 4.1 OV-0421 133 134 For rock sample OV-0421, 41 unetched apatites yielded a lower intercept age of 106 ± 4 (2 σ) Ma 135 with a mean square weighted deviation (MSWD) of 1.07, passing the chi-squared test with the $P(\chi^2)$ value of 0.35 (see in Fig. 2). Practically the same U–Pb date, 107 ± 5 (2 σ) Ma, was 136

137	obtained after chemical etching of the same apatite grains, yielding a MSWD of 1.13 and a $P(\chi^2)$
138	of 0.27. Both these apatite U–Pb ages lie between the zircon U–Pb date of $115 \pm 4 (2\sigma)$ Ma (i.e.,
139	crystallization age) and the biotite K–Ar age of 102 \pm 1 (2 σ) Ma (i.e., cooling age), which were
140	previously obtained for the same granite sample by Torres de León (2016).
141	
142	4.2. MCH-38
143	
144	For orthogneiss sample MCH-38, the lower intercept in T–W yielded a U–Pb age of $245 \pm 6 (2\sigma)$
145	Ma (obtained from 41 unetched apatites) with a MSWD of 0.28 and a $P(\chi^2)$ of 1. Etched apatite
146	grains from MCH-38 yielded an age of 240 ± 4 (2 σ) Ma with a MSWD of 0.36 and a $P(\chi^2)$ of 1
147	(Fig. 2). Our U-Pb results are in close agreement with geochronological data reported from the
148	Chiapas Massif Complex in previous studies (Damon et al., 1981; Torres et al., 1999; Schaaf et
149	al., 2002; Ortega-Obregón et al., 2019). For instance, Torres et al. (1999) compiled biotite K-Ar
150	ages, most of which lie within Early-Middle Triassic period. Triassic cooling ages in the Chiapas
151	Massif Complex were also detected by Rb–Sr in mica–whole rock pairs that range from 244 ± 12
152	(2σ) Ma to $214 \pm 11 (2\sigma)$ Ma (Schaaf et al., 2002).
153	
154	4.3 TO-AM

156 Unetched apatites (32 crystals; Fig. 2) from granite TO-AM yielded a lower intercept date of 303 157 $\pm 5 \ (2\sigma)$ Ma with a MSWD of 0.6 and a $P(\chi^2)$ of 0.96. After etching, a slightly younger age of 158 299 $\pm 3 \ (2\sigma)$ Ma was obtained, with a MSWD of 0.89 and a $P(\chi^2)$ of 0.65. These apatite U–Pb

- ages are in line with the zircon U–Pb ages of $306 \pm 2 (2\sigma)$ Ma to $287 \pm 2 (2\sigma)$ Ma reported for the Pennsylvanian–Cisuralian Totoltepec Pluton (e.g., see details in Kirsch et al., 2013).
- 161
- 162 4.4 CH-0403
- 163

164 36 unetched apatite grains from sample CH-0403 yielded a lower intercept U–Pb age of 345 ± 10 165 (2σ) Ma with a MSWD of 0.7 and a $P(\chi^2)$ of 0.9, whereas etched grains yielded an age of 334 ± 8 166 (2σ) Ma with a MSWD of 1.37 and a $P(\chi^2)$ of 0.08 (Fig. 2). These cooling dates are considerably 167 younger if compared to the CH-0403 emplacement age of 391 ± 8 (2σ) Ma (Solari et al., 2009).

168

```
169 4.5 OC-1008
```

170

171 41 unetched apatites belonging to sample OC-1008 yielded a U–Pb age of $839 \pm 12 (2\sigma)$ Ma with 172 a MSWD of 0.98 and a $P(\chi^2)$ of 0.50. After etching, the same apatite crystals yielded an age of 173 $830 \pm 10 (2\sigma)$ Ma with a MSWD of 1.24 and a $P(\chi^2)$ of 0.14 (Fig. 2). Both these apatite U–Pb 174 ages are significantly younger than the age of granulite facies metamorphism in the Grenville-175 aged Oaxacan Complex (1 Ga to 980 Ma, Solari et al., 2014), and thus, should be considered as 176 cooling ages.

- 177
- 178
- 179
- 180
- 181

---- Figure 2 ----

5 Discussion and concluding remarks

184	Most rock samples, except OV-0421, yielded slightly younger apatite U-Pb ages after chemical
185	etching (up to 3.3% in sample CH-0403). However, the lower intercept U-Pb ages obtained from
186	unetched apatite grains are indistinguishable within error from the U-Pb ages obtained on the
187	same etched grains (see diagram in Fig. 3). The results of this experiment demonstrate that
188	chemical etching required for AFT analysis has negligible effects on the accuracy of apatite U-
189	Pb ages determined via LA-ICP-MS. Thus, as a main conclusion of this study, LA-ICP-MS can
190	be used for simultaneous AFT and U-Pb ages double dating, as it was already done in some
191	previous studies (e.g., Chew and Donelick, 2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et
192	al., 2020; Nieto-Samaniego et al., 2020).
193	Figure 3
194	
195	Supplement
196	The supplement related to this article is available online at: https://
197	
198	Author contributions
199	Conceptualisation, investigation, and writing of the original draft were done by FA. LS and COO
200	provided technical support. LS and JS acquired funding and resources, supervised the study, and
201	reviewed the manuscript.
202	
203	Competing interests
204	The authors declare that they have no conflict of interest.

2	0	5

207 Acknowledgements

208 The authors are grateful to Juan Tomás Vázquez Ramírez and Ofelia Pérez Arvizu for their help 209 with sample preparation for this study. Professor Stuart Thomson is acknowledged for sharing 210 Madagascar apatite. Dr. Michelangelo Martini kindly provided sample TO-AM that was useful 211 for our experimental study. Dr. Ziva Shulaker, Dr. Jakub Sliwinski, and Professor Axel Schmitt 212 are acknowledged for their constructive comments that improved our manuscript significantly. 213 214 **Financial support** 215 This research has been supported by PAPIIT DGAPA UNAM (grant no. IN101520 to LS). 216 217 218 **Figure caption** 219 220 Figure 1 221 Illustration displaying the LA-ICP-MS-based U-Pb dating of the same apatite crystal before and 222 after chemical etching (i.e., etched in 5.5M nitric acid at 21 °C for 20 s). Spot diameter of 60 µm. 223 224 Figure 2 225 Tera–Wasserburg Concordia diagrams for the U–Pb results of unetched and etched apatites from 226 samples OV-0421, MCH-38, TO-AM, CH-0403, and OC-1008. MSWD - mean square weighted

227 deviation, Ngr – number of grains dated. Errors are given in 2σ .

22	28
	-0

229	Figure 3
230	Plot showing the lower intercept U–Pb ages obtained on unetched and etched apatite grains.
231	
232	
233	References
234	
235	Abdullin, F., Solé, J., and Solari, L.: Datación mediante trazas de fisión y análisis multielemental
236	con LA-ICP-MS del fluorapatito de Cerro de Mercado (Durango, México), Revista Mexicana de
237	Ciencias Geológicas, 31, 395–406, 2014.
238	
239	Abdullin, F., Solé, J., Meneses-Rocha, J.D.J., Solari, L., Shchepetilnikova, V., and Ortega-
240	Obregón, C.: LA-ICP-MS-based apatite fission track dating of the Todos Santos Formation
241	sandstones from the Sierra de Chiapas (SE Mexico) and its tectonic significance, International
242	Geology Review, 58, 32–48, 2016,
243	https://doi.org/10.1080/00206814.2015.1055596.
244	
245	Abdullin, F., Solari, L., Ortega-Obregón, C., and Solé, J.: New fission-track results from the
246	northern Chiapas Massif area, SE Mexico: trying to reconstruct its complex thermo-tectonic
247	history, Revista Mexicana de Ciencias Geológicas, 35, 79–92,
248	https://doi.org/10.22201/cgeo.20072902e.2018.1.523, 2018.
249	

250	Bonilla, A., Franco, J. A., Cramer, T., Poujol, M., Cogné, N., Nachtergaele, S., and De Grave, J.:
251	Apatite LA-ICP-MS U-Pb and fission-track geochronology of the Caño Viejita gabbro in E-
252	Colombia: Evidence for Grenvillian intraplate rifting and Jurassic exhumation in the NW
253	Amazonian Craton, Journal of South American Earth Sciences, 98, 102438,
254	https://doi.org/10.1016/j.jsames.2019.102438, 2020.
255	
256	Chew, D. M., and Donelick, R. A.: Combined apatite fission track and U-Pb dating by LA-ICP-
257	MS and its application in apatite provenance analysis, Quantitative Mineralogy and
258	Microanalysis of Sediments and Sedimentary Rocks: Mineralogical Association of Canada,
259	Short Course, 42, 219–247, 2012.
260	
261	Chew, D. M., Petrus, J. A., and Kamber, B. S.: U-Pb LA-ICPMS dating using accessory mineral
262	standards with variable common Pb, Chemical Geology, 363, 185–199,
263	https://doi.org/10.1016/j.chemgeo.2013.11.006, 2014.
264	
265	Cochrane, R., Spikings, R. A., Chew, D., Wotzlaw, J. F., Chiaradia, M., Tyrrell, S., Schaltegger,
266	U., and Van der Lelij, R.: High temperature (> 350 °C) thermochronology and mechanisms of Pb

- loss in apatite, Geochimica et Cosmochimica Acta, 127, 39–56,
- 268 https://doi.org/10.1016/j.gca.2013.11.028, 2014.
- 269
- 270 Cox, R., Košler, J., Sylvester, P., and Hodych, P.: Apatite fission-track (FT) dating by LAM-
- 271 ICP-MS analysis, Goldschmidt Conference, Oxford, UK, Journal of Conference Abstracts, 5, p.
- 272 322, 2000.

Damon, P. E., Shafiqullah, M., and Clark, K. F.: Age trends of igneous activity in relation to
metallogenesis in the southern Cordillera, Tucson, Arizona, Arizona Geological Society Digest,
14, 137–153, 1981.

277

- Donelick, R. A., O'Sullivan, P. B., and Ketcham, R. A.: Apatite fission-track analysis, Reviews
 in Mineralogy and Geochemistry, 58, 49–94, https://doi.org/10.2138/rmg.2005.58.3, 2005.
- 281 Ehlers, T. A., and Farley, K. A.: Apatite (U-Th)/He thermochronometry: methods and
- applications to problems in tectonic and surface processes, Earth and Planetary Science Letters,

283 206, 1–14, https://doi.org/10.1016/S0012-821X(02)01069-5, 2003.

284

- 285 Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., and Jahn, B. M.: Thermal and
- exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track
- thermochronology, Journal of Asian Earth Sciences, 143, 326–342,
- 288 https://doi.org/10.1016/j.jseaes.2017.05.011, 2017.

289

- Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., and Hurford, A. J.: Apatite fission-track
- chronometry using laser ablation ICP-MS, Chemical Geology, 207, 135–145,
- 292 https://doi.org/10.1016/j.chemgeo.2004.01.007, 2004.

294	Hasebe, N., Carter, A., Hurford, A. J., and Arai, S.: The effect of chemical etching on LA-ICP-
295	MS analysis in determining uranium concentration for fission-track chronometry, Geological
296	Society, London, Special Publications, 324, 37–46, https://doi.org/10.1144/SP324.3, 2009.
297	
298	Kirsch, M., Keppie, J. D., Murphy, J. B., and Lee, J. K.: Arc plutonism in a transtensional
299	regime: the late Palaeozoic Totoltepec pluton, Acatlán Complex, southern Mexico, International
300	Geology Review, 55, 263–286, https://doi.org/10.1080/00206814.2012.693247, 2013.
301	
302	Liu, W., Zhang, J., Sun, T., Wang, J.: Application of apatite U–Pb and fission-track double
303	dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and
304	Ningwu volcanic basins, eastern China, Journal of Geochemical Exploration, 138, 22–32,
305	https://doi.org/10.1016/j.gexplo.2013.12.006, 2014.
306	
307	Morton, A., and Yaxley, G.: Detrital apatite geochemistry and its application in provenance
308	studies, Special Papers, Geological Society of America, 420, 319,
309	https://doi.org/10.1130/2006.2420(19), 2007.
310	
311	Nieto-Samaniego, A. F., Olmos-Moya, M. D. J. P., Levresse, G., Alaniz-Alvarez, S. A.,
312	Abdullin, F., del Pilar-Martínez, A., and Xu, S.: Thermochronology and exhumation rates of
313	granitic intrusions at Mesa Central, Mexico, International Geology Review, 62, 311-319,
314	https://doi.org/10.1080/00206814.2019.1602789, 2020.
315	

- 316 Ortega-Obregón, C., Abdullin, F., Solari, L., Schaaf, P., and Solís-Pichardo, G.: Apatite U-Pb
- 317 dating at UNAM laboratories: analytical protocols and examples of its application, Revista
- 318 Mexicana de Ciencias Geológicas, 36, 27–37,
- 319 https://doi.org/10.22201/cgeo.20072902e.2019.1.749, 2019.
- 320
- 321 Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J.: Iolite: Freeware for the visualisation
- 322 and processing of mass spectrometric data, Journal of Analytical Atomic Spectrometry, 26,
- 323 2508–2518, https://doi.org/10.1039/C1JA10172B, 2011.
- 324
- 325 Pearce, N. J., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and
- 326 Chenery, S. P.: A compilation of new and published major and trace element data for NIST SRM
- 327 610 and NIST SRM 612 glass reference materials, Geostandards newsletter, 21, 115–144,
- 328 https://doi.org/10.1111/j.1751-908X.1997.tb00538.x, 1997.
- 329
- 330 Petrus, J. A., and Kamber, B. S.: VizualAge: A novel approach to laser ablation ICP-MS U-Pb
- 331 geochronology data reduction, Geostandards and Geoanalytical Research, 36, 247–270,
- 332 https://doi.org/10.1111/j.1751-908X.2012.00158.x, 2012.
- 333
- 334 Piccoli, P. M., and Candela, P. A.: Apatite in igneous systems, Reviews in Mineralogy and
- 335 Geochemistry, 48, 255–292, https://doi.org/10.2138/rmg.2002.48.6, 2002.
- 336

337	Schaaf, P., Weber, B., Weis, P., Groß, A., Ortega-Gutiérrez, F., and Kohler, H.: The Chiapas
338	Massif (Mexico) revised: New geologic and isotopic data and basement characteristics, Neues
339	Jahrbuch fur Geologie und Paläontologie, Abhandlungen, 225, 1–23, 2002.
340	
341	Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Schaaf, P., Norman, M., Ortega-Obregón,
342	C., and Chiquín, M.: U-Pb zircon geochronology of Palaeozoic units in western and central

343 Guatemala: Insights into the tectonic evolution of Middle America, Geological Society, London,

344 Special Publications, 328, 295–313, https://doi.org/10.1144/SP328.12, 2009.

345

346 Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C.,

347 Reyes-Salas, M.: Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a

348 zircon perspective, International Journal of Earth Sciences, 103, 1301–1315,

349 https://doi.org/10.1007/s00531-013-0938-9, 2014.

350

- 351 Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and
- Beate, B.: The geological history of northwestern South America: From Pangaea to the early

353 collision of the Caribbean large igneous province (290–75 Ma), Gondwana Research, 27, 95–

354 139, https://doi.org/10.1016/j.gr.2014.06.004, 2015.

- 355
- 356 Svojtka, M., and Košler: Fission-track dating of zircon by LA-ICP-MS, Goldschmidt
- 357 Conference, Davos, Switzerland, Journal of Conference Abstracts, Special Supplement of

358 Geochimica et Cosmochimica Acta, 66, A756, 2002.

- 360 Tera, F., and Wasserburg, G. J.: U-Th-Pb systematics in three Apollo 14 basalts and the problem
- 361 of initial Pb in lunar rocks, Earth and Planetary Science Letters, 14, 281–304,

362 https://doi.org/10.1016/0012-821X(72)90128-8, 1972.

- 363
- 364 Thomson, S. N., Gehrels, G. E., Ruiz, J., and Buchwaldt, R.: Routine low-damage apatite U-Pb
- 365 dating using laser ablation–multicollector–ICPMS, Geochemistry, Geophysics, Geosystems,

366 13(2), https://doi.org/10.1029/2011GC003928, 2012.

- 367
- 368 Torres, R., Ruiz, J., Patchett, P. J., Grajales, J. M., Bartolini, C., Wilson, J. L., and Lawton, T. F.:
- 369 Permo-Triassic continental arc in eastern Mexico: Tectonic implications for reconstruction of
- 370 southern North America, , Geological Society of America, Special Papers, 340, 191–196,

371 https://doi.org/10.1130/0-8137-2340-X.191, 1999.

- 372
- 373 Torres de León, R.: Caracterización geológica y geocronológica de unidades metamórficas e

374 intrusivas de la región centro-Oeste de la Cuenca del Rio Motagua, Sureste de Guatemala,

- 375 Centroamerica: implicaciones en las conexiones Sur de México–Bloque Chortís, Universidad
- 376 Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Ph.D Thesis, 221 pp., 2016.
- 377
- 378 Vermeesch, P.: Statistics for LA-ICP-MS based fission track dating, Chemical Geology, 456,

379 19–27, https://doi.org/10.1016/j.chemgeo.2017.03.002, 2017.

- 380
- Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geoscience Frontiers, 9,
 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.

384	Weber, B., Iriondo, A., Premo, W. R., Hecht, L., and Schaaf, P.: New insights into the history
385	and origin of the southern Maya block, SE Mexico: U-Pb-SHRIMP zircon geochronology from
386	metamorphic rocks of the Chiapas massif, International Journal of Earth Sciences, 96, 253–269,
387	https://doi.org/10.1007/s00531-006-0093-7, 2007.
388	
389	Weber, B., Valencia, V. A., Schaaf, P., Pompa-Mera, V., and Ruiz, J.: Significance of
390	provenance ages from the Chiapas Massif Complex (southeastern Mexico): redefining the
391	Paleozoic basement of the Maya Block and its evolution in a peri-Gondwanan realm, The
392	Journal of Geology, 116, 619-639, https://doi.org/10.1086/591994, 2008.
393	
394	Webster, J. D., and Piccoli, P. M.: Magmatic apatite: A powerful, yet deceptive, mineral,
395	Elements, 11, 177–182, https://doi.org/10.2113/gselements.11.3.177, 2015.
396	
397	Wolf, R. A., Farley, K. A., and Silver, L. T.: Helium diffusion and low-temperature
398	thermochronometry of apatite, Geochimica et Cosmochimica Acta, 60, 4231-4240,
399	https://doi.org/10.1016/S0016-7037(96)00192-5, 1996.
400	
401	Zeitler, P. K., Herczeg, A. L., McDougall, I., and Honda, M.: U-Th-He dating of apatite: A
402	potential thermochronometer, Geochimica et Cosmochimica Acta, 51, 2865–2868,
403	https://doi.org/10.1016/0016-7037(87)90164-5, 1987.
404	

LA-ICP-MS apatite U-Pb dating before etching

Figure 1

chemical etching (5.5M nitric acid, 21 °C for 20 s)

LA-ICP-MS apatite U-Pb dating after etching

Figure 2

Figure 3 OC-1008 unetched apatite lower intercept U-Pb age (Ma) CH-0403 TO-AM MCH-38 OV-0421 400 800 etched apatite lower intercept U-Pb age (Ma)

- **Table 1**
- 431 Lithology, locality, and zircon U–Pb data for the selected experimental rock samples.

	Sample	Unit and locality	Rock type	Zircon U–Pb age	References
	OV-0421	Tres Sabanas Pluton, Guatemala	deformed granite	$115\pm4\ Ma$	Torres de León (2016)
	MCH-38	Chiapas Massif Complex, Mexico	orthogneiss	ca. 260 to ca. 252 Ma (?)	Weber et al. (2007, 2008)
	TO-AM	Totoltepec Pluton, Mexico	granite	ca. 308 to ca. 285 Ma (?)	Kirsch et al. (2013)
	CH-0403	Altos Cuchumatanes, Guatemala	granodiorite	$391\pm8\;Ma$	Solari et al. (2009)
	OC-1008	Oaxacan Complex, Mexico	paragneiss	$990\pm10~\text{Ma}$	Solari et al. (2014)
432					
433					
434					
435					
436					
437					
438					
439					
440					
441					
442					
443					
444					
445					

- 447
- 448 **Table 2**
- 449
- 450 LA-ICP-MS protocol established at LEI to be applied for simultaneous apatite U-Pb and fission-
- 451 track in-situ double dating plus multielemental analysis (REEs, Y, Sr, Mn, Mg, Th, U, and Cl).

ICP-MS operating conditions		
Instrument	Thermo Scientific [™] iCAP [™] Qc	
Forward power	1450 W	
Carrier gas flow rate	~1 L/min (Ar) and ~0.35 L/min (He)	
Auxiliary gas flow rate	~1 L/min	
Plasma gas flow rate	~14 L/min	
Nitrogen	~3.5 mL/min	
Data acquisition parame	eters	
Mode of operating	STD (standard mode)	
Sampling scheme	-2NIST-612-2MAD-1DUR-10apt-	
Background scanning	15 s	
Data acquisition time	35 s	
Wash-out time	15 s	
	$^{26}Mg\ ^{31}P\ ^{35}Cl\ ^{43}Ca\ ^{44}Ca\ ^{55}Mn\ ^{88}Sr$	
	89Y 139La 140Ce 141Pr 146Nd 147Sm	
Measured isotopes	$^{153}Eu \ ^{157}Gd \ ^{159}Tb \ ^{163}Dy \ ^{165}Ho \ ^{166}Er$	
	$^{169}Tm \ ^{172}Yb \ ^{175}Lu \ ^{202}Hg \ ^{204}Pb \ ^{206}Pb$	
	207 Pb 208 Pb 232 Th 238 U [total = 29]	
Laser ablation system		
Ablation cell	RESOlution [™] Laurin Technic S-155	

Mode of sampling	spot diameter of 60 µm
Energy density	$*4 \text{ J/cm}^2$
Repetition rate	4 Hz
Wavelength	193 nm (Excimer ArF)
Model of laser	Resonetics RESOlution [™] LPX Pro
Ablation cell	RESOlution [™] Laurin Technic S-155

452

453 Note: MAD – "First mine Discovery" U–Pb apatite standard from Madagascar; DUR – Durango 454 apatite from Cerro de Mercado mine (Mexico); apt – unknown apatite crystals. (*) Laser pulse 455 energy of 4 J/cm², which was measured directly on target with a CoherentTM laser energy meter.

457	
458	Santiago de Querétaro, 6 Nov 2020
459	
460	
461	
462	
463	
464	
465	Dear Professor Axel,
466	
467	
468	
469	First of all, I would like to thank You for your help with English grammar.
470	
471	I revised our manuscript according to your minor comments.
472	
473	Below, I attached a polifie with track changes.
4/4	
4/5	
4/0	
4//	
470	
479	
400	
482	
482	
484	
485	
486	
487	
488	
489	
490	With Best Wishes.
491	
492	Fanis
493	

494 Technical note: on LA–ICP-MS U–Pb dating of unetched and etched apatites

- 495 Fanis Abdullin et al.: LA–ICP-MS U–Pb dating of apatites
- 496 Fanis Abdullin¹, Luigi A. Solari², Jesús Solé³, Carlos Ortega-Obregón²
- ⁴⁹⁷ ¹CONACyT–Centro de Geociencias, Campus Juriquilla, UNAM, Querétaro, 76230, Mexico
- ⁴98 ²Centro de Geociencias, Campus Juriquilla, UNAM, Querétaro, 76230, Mexico
- ⁴⁹⁹ ³LANGEM, Instituto de Geología, UNAM, Ciudad Universitaria, CDMX, 04510, Mexico
- 500 **Correspondence:** Fanis Abdullin (<u>fanis@geociencias.unam.mx</u>)
- 501

502 Abstract

503 The same unetched and chemically etched apatite grainscrystals from five rock samples were 504 dated withby U–Pb method via laser ablation inductively-coupled plasma mass spectrometry 505 (LA–ICP-MS). The objective of this study is to assertest whether chemical etching required for 506 apatite fission track analysis impacts the precision and accuracy of same grainapatite U-Pb 507 agesgeochronology. The results of our this experiment suggest that etching has no significant 508 effectinsignificant effects on the accuracy of apatite U-Pb ages obtained by LA-ICP-MS. 509 Thus Therefore, LA-ICP-MS can be used safely is reliable for U-Pb analysis as part of apatite 510 fission track and U–Pb double dating.

- 511
- 512

513 Short summary

514 Unetched and etched apatite grains from five samples were dated <u>withby</u> U–Pb<u>method</u> using 515 laser ablation inductively-coupled plasma mass spectrometry. Our experiment indicates that 516 etching needed for apatite fission track dating has <u>no effectinsignificant effects</u> on <u>the</u> obtaining accurate U–Pb ages; thereforethus, the laser ablation-based technique may be used for apatite
fission track and U–Pb double dating.

519

520 **1** Introduction

521

522 Apatite, Ca₅(PO₄)₃[F,Cl,OH], is the most common phosphate mineral in the Earth's crust and can 523 be found in practically all igneous and metamorphic rocks, in many ancient and recent sediments 524 as well as in certain mineral deposits (Piccoli and Candela, 2002; Morton and Yaxley, 2007; 525 Webster and Piccoli, 2015). This accessory mineral is often used as a natural thermochronometer 526 for fission track, Hehelium, U–Th and U–Pb dating (e.g., Zeitler et al., 1987; Wolf et al., 1996; 527 Ehlers and Farley, 2003; Hasebe et al., 2004; Donelick et al., 2005; Chew and Donelick, 2012; 528 Chew et al., 2014; Cochrane et al., 2014; Liu et al., 2014; Spikings et al., 2015; Glorie et al., 529 2017). Presently, apatite fission track (AFT) ages can be obtained rapidly by using laser ablation 530 inductively-coupled plasma mass spectrometry (LA-ICP-MS) for direct measurement of "parent nuclides", i.e., ²³⁸U contents (Cox et al., 2000; Svojtka and Košler, 2002; Hasebe et al., 2004;;, 531 532 2009; Donelick et al., 2005; Abdullin et al., 2014, 2016, 2018; Vermeesch, 2017). The LA-ICP-MS technique may be used to obtain measure ²³⁸U for AFT dating, together with isotope ratiosPb 533 534 isotopes needed for U-Pb dating (e.g., Chew and Donelick, 2012; Liu et al., 2014; Glorie et al., 535 2017; Bonilla et al., 2020; Nieto-Samaniego et al., 2020).

Hasebe et al. (2009) previously performed an important experimental study, during which they demonstrated that chemical etching required for <u>apatite/zircon</u> fission track dating <u>has no</u> significant effect on the accuracy of<u>does not interfere with</u> U <u>measurementanalysis</u> by LA–ICP-MS-method. After chemical etching of <u>apatitesapatite</u>, a smaller volume of ablated material is

540	analy	zed by LA-ICP-MS. The influence of etching needed for AFT dating on the precision and
541	accur	acy of <u>dating the same-grain crystals by</u> U–Pb dating analyzed viausing LA-ICP-MS
542	remai	ns to be quantified. To investigate this issue, the same unetched and etched apatite grains
543	extrac	cted from five rock samples were analyzed usingvia LA-ICP-MS for U-Pb dating. The
544	chose	n rock samples have either emplacement or metamorphic ages ranging from the Cretaceous
545	to the	Neoproterozoic (see Table 1 for further details).
546		Table 1
547		
548		
549		
550	2	Sample descriptions
551		
552	2.1	OV-0421 (Tres Sabanas Pluton, Guatemala)
553		
554	This s	sample is a two mica-bearing deformed granite belonging to the Tres Sabanas Pluton, which
555	is loc	ated NW northwest of Guatemala City, Guatemala. For sample OV-0421, an emplacement
556	age o	f 115 \pm 4 (2 σ) Ma was proposed based on zircon U–Pb data (Torres de León, 2016). A
557	coolii	ng age of 102 ± 1 (2 σ) Ma, obtained with K–Ar (on biotite), haswas also been reported by
558	the sa	me author.
559		
560	2.2.	MCH-38 (Chiapas Massif Complex, Mexico)
561		

562	MCH-38 is an orthogneiss from the Permian Chiapas Massif Complex. This rock was sampled to
563	the west of Unión Agrarista, the State of Chiapas, southeastern Mexico. There is no reported age
564	for this sample. Some zircon U–Pb dates obtained for the Chiapas Massif Complex (Weber et al.,
565	2007, 2008; Ortega-Obregón et al., 2019) suggest that a Lopingian (260-252 Ma) crystallization
566	or metamorphic age may be assumed for sample MCH-38.
567	
568	2.3 TO-AM (Totoltepec Pluton, Mexico)
569	
570	TO-AM is a granitic rock, sampled ca. 5 km west of Totoltepec de Guerrero, the State of Puebla,
571	southern Mexico. There is no reported radiometric data for sample TO-AM. Previous geological
572	studies indicate that the Pennsylvanian-Cisuralian Totoltepec Pluton was emplaced over a ca. 23
573	million year period (from ca. 308 to ca. 285 Ma; e.g., Kirsch et al., 2013).
574	
575	2.4 CH-0403 (Altos Cuchumatanes, Guatemala)
576	
577	CH-0403 was collected 5 km ESE of Barillas, in the Altos Cuchumatanes, Guatemala. It consists
578	of a gray to green granodiorite. Five zircon aliquots of sample CH-0403 were dated using isotope
579	dilution thermal-ionization mass spectrometry, yielding a lower intercept date of 391 \pm 8 (2 σ)
580	Ma that is interpreted as its approximate crystallization age (Solari et al., 2009).
581	
582	2.5 OC-1008 (Oaxacan Complex, Mexico)
583	

584	This sample is a paragneiss from the Grenvillian Oaxacan Complex, southern Mexico. OC-1008
585	was collected in the federal road which connects Nochixtlán to Oaxaca. It was demonstrated that
586	this sample underwent granulite facies metamorphism at 1000–980 Ma (Solari et al., 2014).
587	
588	
589	
590	
591	3 Analytical procedures
592	
593	Accessory minerals were concentrated using conventional mineral separation techniques such as
594	rock crushing, sieving, Wilfley table, Frantz magnetic separator, and bromoform. Approximately
595	300 apatite grains were extracted from each rock sample and mounted with their surfaces parallel
596	to the crystallographic c-axis in a 2.5 cm diameter epoxy mount. Mounted crystals were polished
597	to expose their internal surfaces (i.e., up to 4π geometry). For this experiment, complete crystals
598	lacking visible inclusions and other defects, such as cracks, were carefully selected for analysis.
599	Sample preparation was performed at Taller de Molienda and Taller de Laminación, Centro de
600	Geociencias (CGEO), Campus Juriquilla, Universidad Nacional Autónoma de Mexico (UNAM).

Single spot analyses were performed with a Resonetics RESOlution[™] LPX Pro (193 nm,
ArF excimer) laser ablation system, coupled to a Thermo Scientific iCAP[™] Qc quadrupole ICPMS at Laboratorio de Estudios Isotópicos (LEI), CGEO, UNAM. During this experimental work,
LA–ICP-MS-based sampling was performed in central parts of the selected apatite grains before
and after chemical etching (in 5.5M HNO₃ at 21 °C for 20 s to reveal spontaneous fission tracks),
as shown schematically in Fig. 1. The LA–ICP-MS protocol used for apatite analyses, as given in

607	Table 2, was established on the basis of numerous experiments carried out at LEI during the past
608	five years, and can be used for U-Pb and fission track double dating plus multielemental analysis
609	(Abdullin et al., 2018; Ortega-Obregón et al., 2019). Corrected isotopic ratios and errors were
610	calculated using Iolite 3.5 (Paton et al., 2011) and the VizualAge data reduction scheme (Petrus
611	and Kamber, 2012). UcomPbine (Chew et al., 2014) was used to model ²⁰⁷ Pb/ ²⁰⁶ Pb initial values
612	and thus force a ²⁰⁷ Pb correction that considers the common Pb (non-radiogenic Pb) incorporated
613	by apatite standards at the moment of their crystallization (see also Ortega-Obregón et al., 2019).
614	The "First Mine Discovery" apatite from Madagascar, with a mean U-Pb age of ca. 480 Ma
615	(Thomson et al., 2012; Chew et al., 2014), was used as a primary reference material. The results
616	for measured isotopes using NIST-612 (Pearce et al., 1997) were normalized using ⁴³ Ca as an
617	internal standard and taking an average CaO content of 55% (i.e., for F-apatites).%.
618	Tera-and_Wasserburg Concordia diagrams (T-W; Tera and Wasserburg, 1972) are used
619	in apatite U-Pb dating, because the LA-ICP-MS-derived U-Pb results are generally discordant.
620	The lower intercept in the T–W plot is considered as a mean apatite U–Pb age that should have
621	geological significance (crystallization or cooling age, the age of mineralization or metamorphic
622	event). Apatite U-Pb ages were calculated with IsoplotR (Vermeesch, 2017, 2018) and described
623	below. Detailed information on-our U-Pb experiments is given in Table S1 in the Supplement.
624	Figure 1
625	Table 2
626	

- **4 Results**

630 4.1 OV-0421

631

For rock sample OV-0421, 41 unetched apatites yielded a lower intercept age of 106 ± 4 (2σ) Ma with a mean square weighted deviation (MSWD) of 1.07, passing the chi-squared test with the $P(\chi^2)$ value of 0.35 (see in Fig. 2). <u>VirtuallyPractically</u> the same U–Pb date, 107 ± 5 (2σ) Ma, was obtained after chemical etching of the same apatite grains, yielding a MSWD of 1.13 and a $P(\chi^2)$ of 0.27. Both these apatite U–Pb ages lie between the zircon U–Pb date of 115 ± 4 (2σ) Ma (i.e., crystallization age) and the biotite K–Ar age of 102 ± 1 (2σ) Ma (i.e., cooling age), which were previously obtained for the same granite sample by Torres de León (2016).

639

```
640 4.2. MCH-38
```

641

642 For orthogneiss sample MCH-38, the lower intercept in T–W yielded a U–Pb age of 245 ± 6 (2 σ) Ma (obtained from 41 unetched apatites) with a MSWD of 0.28 and a $P(\chi^2)$ of 1. Etched apatite 643 grains from MCH-38 yielded an age of 240 ± 4 (2 σ) Ma with a MSWD of 0.36 and a $P(\chi^2)$ of 1 644 645 (Fig. 2). Our U-Pb results are in close agreement with geochronological data reported from the 646 Chiapas Massif Complex in previous studies (Damon et al., 1981; Torres et al., 1999; Schaaf et 647 al., 2002; Ortega-Obregón et al., 2019). For instance, Torres et al. (1999) compiled biotite K-Ar 648 ages, most of which lie within Early-Middle Triassic period. Triassic cooling ages in the Chiapas 649 Massif Complex were also detected by Rb–Sr in mica–whole rock pairs that range from 244 ± 12 (2σ) Ma to $214 \pm 11 (2\sigma)$ Ma (Schaaf et al., 2002). 650

651

652 4.3 TO-AM

675	Figure 2
674	cooling ages.
673	aged Oaxacan Complex (1 Ga to 980 Ma, Solari et al., 2014), and thus, should be considered as
672	ages are significantly younger than the age of granulite facies metamorphism in the Grenville-
671	of 830 ± 10 (2 σ) Ma with a MSWD of 1.24 and a $P(\chi^2)$ of 0.14 (Fig. 2). Both these apatite U–Pb
670	with a MSWD of 0.98 and a $P(\chi^2)$ of 0.50. After etching, the same apatite crystals yielded an age
669	41 unetched apatites belonging to the sample OC-1008 yielded a U–Pb age of 839 \pm 12 (2 σ) Ma
668	
667	4.5 OC-1008
666	
665	younger if compared to the CH-0403 emplacement age of 391 ± 8 (2 σ) Ma (Solari et al., 2009).
664	(2 σ) Ma with a MSWD of 1.37 and a $P(\chi^2)$ of 0.08 (Fig. 2). These cooling dates are considerably
663	(2 σ) Ma with a MSWD of 0.7 and a $P(\chi^2)$ of 0.9, whereas etched grains yielded an age of 334 ± 8
662	36 unetched apatite grains from sample CH-0403 yielded a lower intercept U–Pb age of 345 ± 10
661	
660	4.4 CH-0403
659	
658	the Pennsylvanian–Cisuralian Totoltepec Pluton (e.g., see details in Kirsch et al., 2013).
657	ages are in line with the zircon U–Pb ages of 306 ± 2 (2 σ) Ma to 287 ± 2 (2 σ) Ma reported for
656	299 ± 3 (2 σ) Ma was obtained, with a MSWD of 0.89 and a $P(\chi^2)$ of 0.65. These apatite U–Pb
655	\pm 5 (2 σ) Ma with a MSWD of 0.6 and a $P(\chi^2)$ of 0.96. After etching, a slightly younger age of
654	Unetched apatites (32 crystals; Fig. 2) from granite TO-AM yielded a lower intercept date of 303

- 676
- 677
- 678
- 679
- 680

5 Discussion and concluding remarks

681

682 Most rock samples, except OV-0421, yielded slightly younger apatite U-Pb ages after chemical 683 etching (up to 3.3% in sample CH-0403). However, the lower intercept U–Pb ages obtained from 684 unetched apatite grains are identical indistinguishable within errors toerror from the U-Pb ages 685 obtained on the same etched grains (see diagram in Fig. 3). The results of our experimental 686 study this experiment demonstrate that the chemical etching, required for the AFT analysis, has 687 no important effectnegligible effects on the accuracy of apatite U–Pb ages determined via LA– 688 ICP-MS. Thus, as a main conclusion of this experimental study, LA-ICP-MS can be used safely 689 to obtain simultaneously for simultaneous AFT and U-Pb ages (i.e., double dating), as it was 690 already done in some studies without previous proofstudies (e.g., Chew and Donelick, 2012; Liu 691 et al., 2014; Glorie et al., 2017; Bonilla et al., 2020; Nieto-Samaniego et al., 2020). 692 --- Figure 3 ----

693

694 Supplement

695 The supplement related to this article is available online at: https://...

696

697 Author contributions

Conceptualisation, investigation, and writing of the original draft were done by FA. LS and COO
provided technical support. LS and JS acquired funding and resources, supervised the study, and
reviewed the manuscript.
Competing interests
The authors declare that they have no conflict of interest.
Acknowledgements
The authors are grateful to Juan Tomás Vázquez Ramírez and Ofelia Pérez Arvizu for their help
with sample preparation for this study. Professor Stuart Thomson is acknowledged for sharing
Madagascar apatite. Dr. Michelangelo Martini kindly provided sample TO-AM that was useful
for our experimental study. Dr. Ziva Shulaker, Dr. Jakub Sliwinski, and Professor Axel Schmitt
are acknowledged for their constructive comments that improved our manuscript significantly.
Financial support
This research has been supported by PAPIIT DGAPA UNAM (grant no. IN101520 to LS).
Figure caption

722	Figure 1
723	Illustration displaying the LA-ICP-MS-based U-Pb dating of the same apatite crystal before and
724	after chemical etching (i.e., etched in 5.5M nitric acid at 21 $^{\circ}$ C for 20 s). Spot diameter of 60 μ m.
725	
726	Figure 2
727	Tera-Wasserburg Concordia diagrams for the U-Pb results of unetched and etched apatites from
728	samples OV-0421, MCH-38, TO-AM, CH-0403, and OC-1008. MSWD – mean square weighted
729	deviation, Ngr – number of grains dated. Errors are given in 2σ .
730	
731	Figure 3
732	Plot showing the lower intercept U–Pb ages obtained on unetched and etched apatite grains.
733	
734	
735	References
736	
737	Abdullin, F., Solé, J., and Solari, L.: Datación mediante trazas de fisión y análisis multielemental
738	con LA-ICP-MS del fluorapatito de Cerro de Mercado (Durango, México), Revista Mexicana de
739	<u>Ciencias Geológicas, 31, 395–406, 2014.</u>
740	
741	Abdullin, F., Solé, J., Meneses-Rocha, J.D.J., Solari, L., Shchepetilnikova, V., and Ortega-
742	Obregón, C.: LA-ICP-MS-based apatite fission track dating of the Todos Santos Formation

- sandstones from the Sierra de Chiapas (SE Mexico) and its tectonic significance, International
 Geology Review, 58, 32–48, 2016,
- 745 <u>https://doi.org/10.1080/00206814.2015.1055596.</u>
- 746
- 747 Abdullin, F., Solari, L., Ortega-Obregón, C., and Solé, J.: New fission-track results from the
- northern Chiapas Massif area, SE Mexico: trying to reconstruct its complex thermo-tectonic
- 749 history, Revista Mexicana de Ciencias Geológicas, 35, 79–92,
- 750 https://doi.org/10.22201/cgeo.20072902e.2018.1.523, 2018.
- 751
- 752 Bonilla, A., Franco, J. A., Cramer, T., Poujol, M., Cogné, N., Nachtergaele, S., and De Grave, J.:
- 753 Apatite LA-ICP-MS U-Pb and fission-track geochronology of the Caño Viejita gabbro in E-
- 754 Colombia: Evidence for Grenvillian intraplate rifting and Jurassic exhumation in the NW
- Amazonian Craton, Journal of South American Earth Sciences, 98, 102438,
- 756 https://doi.org/10.1016/j.jsames.2019.102438, 2020.
- 757
- 758 Chew, D. M., and Donelick, R. A.: Combined apatite fission track and U-Pb dating by LA-ICP-
- 759 MS and its application in apatite provenance analysis, Quantitative Mineralogy and
- 760 Microanalysis of Sediments and Sedimentary Rocks: Mineralogical Association odof Canada,
- 761 Short Course, 42, 219–247, 2012.
- 762
- 763 Chew, D. M., Petrus, J. A., and Kamber, B. S.: U–Pb LA–ICPMS dating using accessory mineral
- standards with variable common Pb, Chemical Geology, 363, 185–199,
- 765 https://doi.org/10.1016/j.chemgeo.2013.11.006, 2014.

767

- 768 Cochrane, R., Spikings, R. A., Chew, D., Wotzlaw, J. F., Chiaradia, M., Tyrrell, S., Schaltegger,
- 769 U., and Van der Lelij, R.: High temperature (> 350 °C) thermochronology and mechanisms of Pb
- 1770 loss in apatite, Geochimica et Cosmochimica Acta, 127, 39–56,
- 771 https://doi.org/10.1016/j.gca.2013.11.028, 2014.

772

- 773 Cox, R., Košler, J., Sylvester, P., and Hodych, P.: Apatite fission-track (FT) dating by LAM-
- 774 ICP-MS analysis, Goldschmidt Conference, Oxford, UK, Journal of Conference Abstracts, 5, p.

775 322, 2000.

776

Damon, P. E., Shafiqullah, M., and Clark, K. F.: Age trends of igneous activity in relation to
metallogenesis in the southern Cordillera, Tucson, Arizona, Arizona Geological Society Digest,
14, 137–153, 1981.

780

- 781 Donelick, R. A., O'Sullivan, P. B., and Ketcham, R. A.: Apatite fission-track analysis, Reviews
- in Mineralogy and Geochemistry, 58, 49–94, https://doi.org/10.2138/rmg.2005.58.3, 2005.

783

- Ehlers, T. A., and Farley, K. A.: Apatite (U–Th)/He thermochronometry: methods and
- applications to problems in tectonic and surface processes, Earth and Planetary Science Letters,

786 206, 1–14, https://doi.org/10.1016/S0012-821X(02)01069-5, 2003.

787

790

791	exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track
792	thermochronology, Journal of Asian Earth Sciences, 143, 326–342,
793	https://doi.org/10.1016/j.jseaes.2017.05.011, 2017.
794	
795	Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., and Hurford, A. J.: Apatite fission-track
796	chronometry using laser ablation ICP-MS, Chemical Geology, 207, 135–145,
797	https://doi.org/10.1016/j.chemgeo.2004.01.007, 2004.
798	
799	Hasebe, N., Carter, A., Hurford, A. J., and Arai, S.: The effect of chemical etching on LA-ICP-
800	MS analysis in determining uranium concentration for fission-track chronometry, Geological
801	Society, London, Special Publications, 324, 37–46, https://doi.org/10.1144/SP324.3, 2009.
802	
803	Kirsch, M., Keppie, J. D., Murphy, J. B., and Lee, J. K.: Arc plutonism in a transtensional
804	regime: the late Palaeozoic Totoltepec pluton, Acatlán Complex, southern Mexico, International
805	Geology Review, 55, 263–286, https://doi.org/10.1080/00206814.2012.693247, 2013.
806	
807	Liu, W., Zhang, J., Sun, T., Wang, J.: Application of apatite U-Pb and fission-track double
808	dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and
809	Ningwu volcanic basins, eastern China, Journal of Geochemical Exploration, 138, 22-32,
810	https://doi.org/10.1016/j.gexplo.2013.12.006, 2014.
811	

Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., and Jahn, B. M.: Thermal and

813	Morton, A., and Yaxley, G.: Detrital apatite geochemistry and its application in provenance
814	studies, Special Papers, Geological Society of America, 420, 319,
815	https://doi.org/10.1130/2006.2420(19), 2007.
816	
817	Nieto-Samaniego, A. F., Olmos-Moya, M. D. J. P., Levresse, G., Alaniz-Alvarez, S. A.,
818	Abdullin, F., del Pilar-Martínez, A., and Xu, S.: Thermochronology and exhumation rates of
819	granitic intrusions at Mesa Central, Mexico, International Geology Review, 62, 311–319,
820	https://doi.org/10.1080/00206814.2019.1602789, 2020.
821	
822	Ortega-Obregón, C., Abdullin, F., Solari, L., Schaaf, P., and Solís-Pichardo, G.: Apatite U-Pb
823	dating at UNAM laboratories: analytical protocols and examples of its application, Revista
824	Mexicana de Ciencias Geológicas, 36, 27–37,
825	https://doi.org/10.22201/cgeo.20072902e.2019.1.749, 2019.
826	
827	Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J.: Iolite: Freeware for the visualisation
828	and processing of mass spectrometric data, Journal of Analytical Atomic Spectrometry, 26,
829	2508-2518, https://doi.org/10.1039/C1JA10172B, 2011.
830	
831	Pearce, N. J., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and
832	Chenery, S. P.: A compilation of new and published major and trace element data for NIST SRM
833	610 and NIST SRM 612 glass reference materials, Geostandards newsletter, 21, 115–144,
834	https://doi.org/10.1111/j.1751-908X.1997.tb00538.x, 1997.

836	
837	Petrus, J. A., and Kamber, B. S.: VizualAge: A novel approach to laser ablation ICP-MS U-Pb
838	geochronology data reduction, Geostandards and Geoanalytical Research, 36, 247-270,
839	https://doi.org/10.1111/j.1751-908X.2012.00158.x, 2012.
840	
841	Piccoli, P. M., and Candela, P. A.: Apatite in igneous systems, Reviews in Mineralogy and
842	Geochemistry, 48, 255–292, https://doi.org/10.2138/rmg.2002.48.6, 2002.
843	
844	Schaaf, P., Weber, B., Weis, P., Groß, A., Ortega-Gutiérrez, F., and Kohler, H.: The Chiapas
845	Massif (Mexico) revised: New geologic and isotopic data and basement characteristics, Neues
846	Jahrbuch fur Geologie und Paläontologie, Abhandlungen, 225, 1–23, 2002.
847	
848	Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Schaaf, P., Norman, M., Ortega-Obregón,
849	C., and Chiquín, M.: U-Pb zircon geochronology of Palaeozoic units in western and central
850	Guatemala: Insights into the tectonic evolution of Middle America, Geological Society, London,
851	Special Publications, 328, 295–313, https://doi.org/10.1144/SP328.12, 2009.
852	
853	Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C.,
854	Reyes-Salas, M.: Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a
855	zircon perspective, International Journal of Earth Sciences, 103, 1301–1315,
856	https://doi.org/10.1007/s00531-013-0938-9, 2014.
857	

859	Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and
860	Beate, B.: The geological history of northwestern South America: From Pangaea to the early
861	collision of the Caribbean large igneous province (290–75 Ma), Gondwana Research, 27, 95–
862	139, https://doi.org/10.1016/j.gr.2014.06.004, 2015.
863	
864	Svojtka, M., and Košler: Fission-track dating of zircon by LA-ICP-MS, Goldschmidt
865	Conference, Davos, Switzerland, Journal of Conference Abstracts, Special Supplement of
866	Geochimica et Cosmochimica Acta, 66, A756, 2002.
867	
868	Tera, F., and Wasserburg, G. J.: U-Th-Pb systematics in three Apollo 14 basalts and the problem
869	of initial Pb in lunar rocks, Earth and Planetary Science Letters, 14, 281–304,
870	https://doi.org/10.1016/0012-821X(72)90128-8, 1972.
871	
872	Thomson, S. N., Gehrels, G. E., Ruiz, J., and Buchwaldt, R.: Routine low-damage apatite U-Pb
873	dating using laser ablation-multicollector-ICPMS, Geochemistry, Geophysics, Geosystems,
874	13(2), https://doi.org/10.1029/2011GC003928, 2012.
875	
876	Torres, R., Ruiz, J., Patchett, P. J., Grajales, J. M., Bartolini, C., Wilson, J. L., and Lawton, T. F.:
877	Permo-Triassic continental arc in eastern Mexico: Tectonic implications for reconstruction of

- 878 southern North America, , Geological Society of America, Special Papers, 340, 191–196,
- 879 https://doi.org/10.1130/0-8137-2340-X.191, 1999.
- 880

001

882	Torres de León, R;:.: Caracterización geológica y geocronológica de unidades metamórficas e
883	intrusivas de la región centro-Oeste de la Cuenca del Rio Motagua, Sureste de Guatemala,
884	Centroamerica: implicaciones en las conexiones Sur de México-Bloque Chortís, Universidad
885	Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Ph.D Thesis, 221 pp., 2016.
886	
887	Vermeesch, P.: Statistics for LA-ICP-MS based fission track dating, Chemical Geology, 456,
888	19–27, https://doi.org/10.1016/j.chemgeo.2017.03.002, 2017.
889	
890	Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geoscience Frontiers, 9,
891	1479-1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
892	
893	Weber, B., Iriondo, A., Premo, W. R., Hecht, L., and Schaaf, P.: New insights into the history
894	and origin of the southern Maya block, SE Mexico: U-Pb-SHRIMP zircon geochronology from
895	metamorphic rocks of the Chiapas massif, International Journal of Earth Sciences, 96, 253–269,
896	https://doi.org/10.1007/s00531-006-0093-7, 2007.
897	
898	Weber, B., Valencia, V. A., Schaaf, P., Pompa-Mera, V., and Ruiz, J.: Significance of
899	provenance ages from the Chiapas Massif Complex (southeastern Mexico): redefining the
900	Paleozoic basement of the Maya Block and its evolution in a peri-Gondwanan realm, The
901	Journal of Geology, 116, 619-639, https://doi.org/10.1086/591994, 2008.

- 903 Webster, J. D., and Piccoli, P. M.: Magmatic apatite: A powerful, yet deceptive, mineral,
- 904 Elements, 11, 177–182, https://doi.org/10.2113/gselements.11.3.177, 2015.
- 906 Wolf, R. A., Farley, K. A., and Silver, L. T.: Helium diffusion and low-temperature
- 907 thermochronometry of apatite, Geochimica et Cosmochimica Acta, 60, 4231–4240,
- 908 https://doi.org/10.1016/S0016-7037(96)00192-5, 1996.
- 910 Zeitler, P. K., Herczeg, A. L., McDougall, I., and Honda, M.: U-Th-He dating of apatite: A
- 911 potential thermochronometer, Geochimica et Cosmochimica Acta, 51, 2865–2868,
- 912 https://doi.org/10.1016/0016-7037(87)90164-5, 1987.

Figure 1

LA-ICP-MS apatite U-Pb dating before etching

chemical etching (5.5M nitric acid, 21 °C for 20 s)

LA-ICP-MS apatite U-Pb dating after etching

Figure 3

Table 1

954 Lithology, locality, and zircon U–Pb data for the selected experimental rock samples.

	Sample	Unit and locality	Rock type	Zircon U–Pb age	References
	OV-0421	Tres Sabanas Pluton, Guatemala	deformed granite	115 ± 4 Ma	Torres de León (2016)
	MCH-38	Chiapas Massif Complex, Mexico	orthogneiss	ca. 260 to ca. 252 Ma (?)	Weber et al. (2007, 2008)
	TO-AM	Totoltepec Pluton, Mexico	granite	ca. 308 to ca. 285 Ma (?)	Kirsch et al. (2013)
	CH-0403	Altos Cuchumatanes, Guatemala	granodiorite	$391\pm8\;Ma$	Solari et al. (2009)
	OC-1008	Oaxacan Complex, Mexico	paragneiss	$990\pm10~\text{Ma}$	Solari et al. (2014)
955					
956					
057					
957					
958					
959					
0.60					
960					
961					
962					
0.62					
903					
964					
965					
066					
900					
967					
968					
0.60					
969					
970					

Table 2

- 973 LA-ICP-MS protocol established at LEI to be applied for simultaneous apatite U-Pb and fission-
- 974 track in-situ double dating plus multielemental analysis (REEs, Y, Sr, Mn, Mg, Th, U, and Cl).

ICP-MS operating cond	litions
Instrument	Thermo Scientific TM iCAP TM Qc
Forward power	1450 W
Carrier gas flow rate	~1 L/min (Ar) and ~0.35 L/min (He)
Auxiliary gas flow rate	~1 L/min
Plasma gas flow rate	~14 L/min
Nitrogen	~3.5 mL/min
Data acquisition param	eters
Mode of operating	STD (standard mode)
Sampling scheme	-2NIST-612-2MAD-1DUR-10apt-
Background scanning	15 s
Data acquisition time	35 s
Wash-out time	15 s
Measured isotopes	²⁶ Mg ³¹ P ³⁵ Cl ⁴³ Ca ⁴⁴ Ca ⁵⁵ Mn ⁸⁸ Sr ⁸⁹ Y ¹³⁹ La ¹⁴⁰ Ce ¹⁴¹ Pr ¹⁴⁶ Nd ¹⁴⁷ Sm ¹⁵³ Eu ¹⁵⁷ Gd ¹⁵⁹ Tb ¹⁶³ Dy ¹⁶⁵ Ho ¹⁶⁶ Er ¹⁶⁹ Tm ¹⁷² Yb ¹⁷⁵ Lu ²⁰² Hg ²⁰⁴ Pb ²⁰⁶ Pb ²⁰⁷ Pb ²⁰⁸ Pb ²³² Th ²³⁸ U [total = 29]

ESOlution [™] Laurin Technic <i>S</i> -155
esonetics RESOlution [™] LPX Pro
3 nm (Excimer ArF)
Hz
J/cm ²
ot diameter of 60 µm

Note: MAD – "First mine Discovery" U–Pb apatite standard from Madagascar; DUR – Durango
apatite from Cerro de Mercado mine (Mexico); apt – unknown apatite crystals. (*) Laser pulse
energy of 4 J/cm², which was measured directly on target with a Coherent[™] laser energy meter.