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 8 

Abstract 9 

The same unetched and chemically etched apatite grains from five rock samples were dated with 10 

U–Pb via laser ablation inductively-coupled plasma mass spectrometry (LA–ICP-MS). The 11 

objective of this study is to assert whether chemical etching required for apatite fission track 12 

analysis impacts the precision and accuracy of same-grain U–Pb ages. The results of our 13 

experiment suggest that etching has no significant effect on the accuracy of apatite U–Pb ages 14 

obtained by LA–ICP-MS. Thus, LA–ICP-MS can be used safely for apatite fission track and U–15 

Pb double dating. 16 

 17 

 18 

Short summary 19 

Unetched and etched apatite grains from five samples were dated with U–Pb using laser ablation 20 

inductively-coupled plasma mass spectrometry. Our experiment indicates that etching needed for 21 

apatite fission track dating has no effect on the obtaining accurate U–Pb ages; therefore, the laser 22 

ablation-based technique may be used for apatite fission track and U–Pb double dating. 23 
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 24 

1 Introduction 25 

 26 

Apatite, Ca5(PO4)3[F,Cl,OH], is the most common phosphate mineral in the Earth’s crust and can 27 

be found in practically all igneous and metamorphic rocks, in many ancient and recent sediments 28 

as well as in certain mineral deposits (Piccoli and Candela, 2002; Morton and Yaxley, 2007; 29 

Webster and Piccoli, 2015). This accessory mineral is often used as a natural thermochronometer 30 

for fission track, He, U–Th and U–Pb dating (e.g., Zeitler et al., 1987; Wolf et al., 1996; Ehlers 31 

and Farley, 2003; Hasebe et al., 2004; Donelick et al., 2005; Chew and Donelick, 2012; Chew et 32 

al., 2014; Cochrane et al., 2014; Liu et al., 2014; Spikings et al., 2015; Glorie et al., 2017). 33 

Presently, apatite fission track (AFT) ages can be obtained rapidly by using laser ablation 34 

inductively-coupled plasma mass spectrometry (LA–ICP-MS) for direct measurement of “parent 35 

nuclides”, i.e., 238U contents (Cox et al., 2000; Svojtka and Košler, 2002; Hasebe et al., 2004,; 36 

Donelick et al., 2005; Vermeesch, 2017). LA–ICP-MS technique may be used to obtain 238U for 37 

AFT dating, together with isotope ratios needed for U–Pb dating (e.g., Chew and Donelick, 38 

2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et al., 2020; Nieto-Samaniego et al., 2020). 39 

Hasebe et al. (2009) previously performed an important experimental study, during which 40 

they demonstrated that chemical etching required for fission track dating has no significant effect 41 

on the accuracy of U measurement by LA–ICP-MS method. After chemical etching of apatites, a 42 

smaller volume of ablated material is analyzed by LA–ICP-MS. The influence of etching needed 43 

for AFT dating on the precision and accuracy of same-grain U–Pb dating analyzed via LA–ICP-44 

MS remains to be quantified. To investigate this issue, the same unetched and etched apatite 45 

grains extracted from five rock samples were analyzed using LA–ICP-MS for U–Pb dating. The 46 
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chosen rock samples have either emplacement or metamorphic ages ranging from the Cretaceous 47 

to the Neoproterozoic (see Table 1 for further details). 48 

--- Table 1 --- 49 

 50 

 51 

 52 

2 Sample descriptions 53 

 54 

2.1 OV-0421 (Tres Sabanas Pluton, Guatemala) 55 

 56 

This sample is a two mica-bearing deformed granite belonging to the Tres Sabanas Pluton, which 57 

is located NW of Guatemala City, Guatemala. For sample OV-0421, an emplacement age of 115 58 

± 4 (2σ) Ma was proposed based on zircon U–Pb data (Torres de León, 2016). A cooling age of 59 

102 ± 1 (2σ) Ma, obtained with K–Ar (on biotite), has also been reported by the same author. 60 

 61 

2.2. MCH-38 (Chiapas Massif Complex, Mexico) 62 

 63 

MCH-38 is an orthogneiss from the Permian Chiapas Massif Complex. This rock was sampled to 64 

the west of Unión Agrarista, the State of Chiapas, southeastern Mexico. There is no reported age 65 

for this sample. Some zircon U–Pb dates obtained for the Chiapas Massif Complex (Weber et al., 66 

2007, 2008; Ortega-Obregón et al., 2019) suggest that a Lopingian (260–252 Ma) crystallization 67 

or metamorphic age may be assumed for sample MCH-38. 68 

 69 
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2.3 TO-AM (Totoltepec Pluton, Mexico) 70 

 71 

TO-AM is a granitic rock, sampled ca. 5 km west of Totoltepec de Guerrero, the State of Puebla, 72 

southern Mexico. There is no reported radiometric data for sample TO-AM. Previous geological 73 

studies indicate that the Pennsylvanian–Cisuralian Totoltepec Pluton was emplaced over a ca. 23 74 

million year period (from ca. 308 to ca. 285 Ma; e.g., Kirsch et al., 2013). 75 

 76 

2.4 CH-0403 (Altos Cuchumatanes, Guatemala) 77 

 78 

CH-0403 was collected 5 km ESE of Barillas, in the Altos Cuchumatanes, Guatemala. It consists 79 

of a gray to green granodiorite. Five zircon aliquots of sample CH-0403 were dated using isotope 80 

dilution thermal-ionization mass spectrometry, yielding a lower intercept date of 391 ± 8 (2σ) 81 

Ma that is interpreted as its approximate crystallization age (Solari et al., 2009). 82 

 83 

2.5 OC-1008 (Oaxacan Complex, Mexico) 84 

 85 

This sample is a paragneiss from the Grenvillian Oaxacan Complex, southern Mexico. OC-1008 86 

was collected in the federal road which connects Nochixtlán to Oaxaca. It was demonstrated that 87 

this sample underwent granulite facies metamorphism at 1000–980 Ma (Solari et al., 2014). 88 

 89 

 90 

 91 

 92 
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3 Analytical procedures 93 

 94 

Accessory minerals were concentrated using conventional mineral separation techniques such as 95 

rock crushing, sieving, Wilfley table, Frantz magnetic separator, and bromoform. Approximately 96 

300 apatite grains were extracted from each rock sample and mounted with their surfaces parallel 97 

to the crystallographic c-axis in a 2.5 cm diameter epoxy mount. Mounted crystals were polished 98 

to expose their internal surfaces (i.e., up to 4π geometry). For this experiment, complete crystals 99 

lacking visible inclusions and other defects, such as cracks, were carefully selected for analysis. 100 

Sample preparation was performed at Taller de Molienda and Taller de Laminación, Centro de 101 

Geociencias (CGEO), Campus Juriquilla, Universidad Nacional Autónoma de Mexico (UNAM). 102 

Single spot analyses were performed with a Resonetics RESOlution™ LPX Pro (193 nm, 103 

ArF excimer) laser ablation system, coupled to a Thermo Scientific iCAP™ Qc quadrupole ICP-104 

MS at Laboratorio de Estudios Isotópicos (LEI), CGEO, UNAM. During this experimental work, 105 

LA–ICP-MS-based sampling was performed in central parts of the selected apatite grains before 106 

and after chemical etching (in 5.5M HNO3 at 21 °C for 20 s to reveal spontaneous fission tracks), 107 

as shown schematically in Fig. 1. The LA–ICP-MS protocol used for apatite analyses, as given in 108 

Table 2, was established on the basis of numerous experiments carried out at LEI during the past 109 

five years, and can be used for U–Pb and fission track double dating plus multielemental analysis 110 

(Abdullin et al., 2018; Ortega-Obregón et al., 2019). Corrected isotopic ratios and errors were 111 

calculated using Iolite 3.5 (Paton et al., 2011) and the VizualAge data reduction scheme (Petrus 112 

and Kamber, 2012). UcomPbine (Chew et al., 2014) was used to model 207Pb/206Pb initial values 113 

and thus force a 207Pb correction that considers the common Pb (non-radiogenic Pb) incorporated 114 

by apatite standards at the moment of their crystallization (see also Ortega-Obregón et al., 2019). 115 
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The “First Mine Discovery” apatite from Madagascar, with a mean U–Pb age of ca. 480 Ma 116 

(Thomson et al., 2012; Chew et al., 2014), was used as a primary reference material. The results 117 

for measured isotopes using NIST-612 (Pearce et al., 1997) were normalized using 43Ca as an 118 

internal standard and taking an average CaO content of 55% (i.e., for F-apatites). 119 

Tera and Wasserburg Concordia diagrams (T–W; Tera and Wasserburg, 1972) are used in 120 

apatite U–Pb dating, because the LA–ICP-MS-derived U–Pb results are generally discordant. 121 

The lower intercept in the T–W plot is considered as a mean apatite U–Pb age that should have 122 

geological significance (crystallization or cooling age, the age of mineralization or metamorphic 123 

event). Apatite U–Pb ages were calculated with IsoplotR (Vermeesch, 2017, 2018) and described 124 

below. Detailed information on our U–Pb experiments is given in Table S1 in the Supplement. 125 

--- Figure 1 --- 126 

--- Table 2 --- 127 

 128 

 129 

4 Results 130 

 131 

4.1 OV-0421 132 

 133 

For rock sample OV-0421, 41 unetched apatites yielded a lower intercept age of 106 ± 4 (2σ) Ma 134 

with a mean square weighted deviation (MSWD) of 1.07, passing the chi-squared test with the 135 

P(χ2) value of 0.35 (see in Fig. 2). Virtually the same U–Pb date, 107 ± 5 (2σ) Ma, was obtained 136 

after chemical etching of the same apatite grains, yielding a MSWD of 1.13 and a P(χ2) of 0.27. 137 

Both these apatite U–Pb ages lie between the zircon U–Pb date of 115 ± 4 (2σ) Ma (i.e., 138 
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crystallization age) and the biotite K–Ar age of 102 ± 1 (2σ) Ma (i.e., cooling age), which were 139 

previously obtained for the same granite sample by Torres de León (2016). 140 

 141 

4.2. MCH-38 142 

 143 

For orthogneiss sample MCH-38, the lower intercept in T–W yielded a U–Pb age of 245 ± 6 (2σ) 144 

Ma (obtained from 41 unetched apatites) with a MSWD of 0.28 and a P(χ2) of 1. Etched apatite 145 

grains from MCH-38 yielded an age of 240 ± 4 (2σ) Ma with a MSWD of 0.36 and a P(χ2) of 1 146 

(Fig. 2). Our U–Pb results are in close agreement with geochronological data reported from the 147 

Chiapas Massif Complex in previous studies (Damon et al., 1981; Torres et al., 1999; Schaaf et 148 

al., 2002; Ortega-Obregón et al., 2019). For instance, Torres et al. (1999) compiled biotite K–Ar 149 

ages, most of which lie within Early–Middle Triassic period. Triassic cooling ages in the Chiapas 150 

Massif Complex were also detected by Rb–Sr in mica–whole rock pairs that range from 244 ± 12 151 

(2σ) Ma to 214 ± 11 (2σ) Ma (Schaaf et al., 2002). 152 

 153 

4.3 TO-AM 154 

 155 

Unetched apatites (32 crystals; Fig. 2) from granite TO-AM yielded a lower intercept date of 303 156 

± 5 (2σ) Ma with a MSWD of 0.6 and a P(χ2) of 0.96. After etching, a slightly younger age of 157 

299 ± 3 (2σ) Ma was obtained, with a MSWD of 0.89 and a P(χ2) of 0.65. These apatite U–Pb 158 

ages are in line with the zircon U–Pb ages of 306 ± 2 (2σ) Ma to 287 ± 2 (2σ) Ma reported for 159 

the Pennsylvanian–Cisuralian Totoltepec Pluton (e.g., see details in Kirsch et al., 2013). 160 

 161 
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4.4 CH-0403 162 

 163 

36 unetched apatite grains from sample CH-0403 yielded a lower intercept U–Pb age of 345 ± 10 164 

(2σ) Ma with a MSWD of 0.7 and a P(χ2) of 0.9, whereas etched grains yielded an age of 334 ± 8 165 

(2σ) Ma with a MSWD of 1.37 and a P(χ2) of 0.08 (Fig. 2). These cooling dates are considerably 166 

younger if compared to the CH-0403 emplacement age of 391 ± 8 (2σ) Ma (Solari et al., 2009). 167 

 168 

4.5 OC-1008 169 

 170 

41 unetched apatites belonging to the sample OC-1008 yielded a U–Pb age of 839 ± 12 (2σ) Ma 171 

with a MSWD of 0.98 and a P(χ2) of 0.50. After etching, the same apatite crystals yielded an age 172 

of 830 ± 10 (2σ) Ma with a MSWD of 1.24 and a P(χ2) of 0.14 (Fig. 2). Both these apatite U–Pb 173 

ages are significantly younger than the age of granulite facies metamorphism in the Grenville-174 

aged Oaxacan Complex (1 Ga to 980 Ma, Solari et al., 2014), and thus, should be considered as 175 

cooling ages. 176 

--- Figure 2 --- 177 

 178 

 179 

5 Discussion and concluding remarks 180 

 181 

Most rock samples, except OV-0421, yielded slightly younger apatite U–Pb ages after chemical 182 

etching (up to 3.3% in sample CH-0403). However, the lower intercept U–Pb ages obtained from 183 

unetched apatite grains are identical within errors to the U–Pb ages obtained on the same etched 184 



 9 

grains (see diagram in Fig. 3). The results of our experimental study demonstrate that the 185 

chemical etching, required for the AFT analysis, has no important effect on the accuracy of 186 

apatite U–Pb ages determined via LA–ICP-MS. Thus, as a main conclusion of this experimental 187 

study, LA–ICP-MS can be used safely to obtain simultaneously AFT and U–Pb ages (i.e., double 188 

dating), as it was already done in some studies without previous proof (e.g., Chew and Donelick, 189 

2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et al., 2020; Nieto-Samaniego et al., 2020). 190 

--- Figure 3 --- 191 
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 217 

Figure caption 218 

 219 

Figure 1 220 

Illustration displaying the LA–ICP-MS-based U–Pb dating of the same apatite crystal before and 221 

after chemical etching (i.e., etched in 5.5M nitric acid at 21 °C for 20 s). Spot diameter of 60 µm. 222 

 223 

Figure 2 224 

Tera–Wasserburg Concordia diagrams for the U–Pb results of unetched and etched apatites from 225 

samples OV-0421, MCH-38, TO-AM, CH-0403, and OC-1008. MSWD – mean square weighted 226 

deviation, Ngr – number of grains dated. Errors are given in 2σ. 227 

 228 

Figure 3 229 

Plot showing the lower intercept U–Pb ages obtained on unetched and etched apatite grains. 230 
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Figure 3 429 
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 436 

Table 1 437 

 438 

Lithology, locality, and zircon U–Pb data for the selected experimental rock samples. 439 

Sample Unit and locality Rock type Zircon U–Pb age References 

OV-0421 Tres Sabanas Pluton, Guatemala deformed granite 115 ± 4 Ma Torres de León (2016) 

MCH-38 Chiapas Massif Complex, Mexico orthogneiss ca. 260 to ca. 252 Ma (?) Weber et al. (2007, 2008) 

TO-AM Totoltepec Pluton, Mexico granite ca. 308 to ca. 285 Ma (?) Kirsch et al. (2013) 

CH-0403 Altos Cuchumatanes, Guatemala granodiorite 391 ± 8 Ma Solari et al. (2009) 

OC-1008 Oaxacan Complex, Mexico paragneiss 990 ± 10 Ma Solari et al. (2014) 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 
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 455 

Table 2 456 

 457 

LA–ICP-MS protocol established at LEI to be applied for simultaneous apatite U–Pb and fission-458 

track in-situ double dating plus multielemental analysis (REEs, Y, Sr, Mn, Mg, Th, U, and Cl). 459 

ICP-MS operating conditions 

Instrument Thermo Scientific™ iCAP™ Qc 

Forward power 1450 W 

Carrier gas flow rate ~1 L/min (Ar) and ~0.35 L/min (He) 

Auxiliary gas flow rate ~1 L/min 

Plasma gas flow rate ~14 L/min 

Nitrogen ~3.5 mL/min 

Data acquisition parameters 

Mode of operating STD (standard mode) 

Sampling scheme –2NIST-612–2MAD–1DUR–10apt– 

Background scanning 15 s 

Data acquisition time 35 s 

Wash-out time 15 s 

Measured isotopes 

 

26Mg  31P  35Cl  43Ca  44Ca  55Mn  88Sr   

 
89Y  139La  140Ce  141Pr  146Nd  147Sm   

 
153Eu  157Gd  159Tb  163Dy  165Ho  166Er   
 
169Tm  172Yb  175Lu  202Hg  204Pb  206Pb   

 
207Pb  208Pb  232Th  238U    [total = 29] 

  

Laser ablation system  

Ablation cell RESOlution™ Laurin Technic S-155 

Model of laser Resonetics RESOlution™ LPX Pro 

Wavelength 193 nm (Excimer ArF) 

Repetition rate 4 Hz 

Energy density *4 J/cm2 

Mode of sampling spot diameter of 60 µm 

 460 

Note: MAD – “First mine Discovery” U–Pb apatite standard from Madagascar; DUR – Durango 461 

apatite from Cerro de Mercado mine (Mexico); apt – unknown apatite crystals. (*) Laser pulse 462 

energy of 4 J/cm2, which was measured directly on target with a Coherent™ laser energy meter. 463 

 464 


