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Technical note: LA-ICP-MS U-Pb dating of unetched and etched apatites
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Abstract

The same unetched and chemically etched apatite crystals from five rock samples were dated by
the U-Pb method via laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-
MS). The objective of this study is to test whether chemical etching required for apatite fission
track analysis impacts the precision and accuracy of apatite U-Pb geochronology. The results of
this experiment suggest that etching has insignificant effects on the accuracy of apatite U-Pb
ages obtained by LA-ICP-MS. Therefore, LA-ICP-MS is reliable for U-Pb analysis as part of

apatite fission track and U-Pb double dating.

Short summary
Unetched and etched apatite grains from five samples were dated by U-Pb method using laser
ablation inductively-coupled plasma mass spectrometry. Our experiment indicates that etching

needed for apatite fission track dating has insignificant effects on obtaining accurate U-Pb ages;
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thus, the laser ablation-based technique may be used for apatite fission track and U-Pb double

dating.

1 Introduction

Apatite, Cas(PO4)3[F,CI,OH], is the most common phosphate mineral in the Earth’s crust and can
be found in practically all igneous and metamorphic rocks, in many ancient and recent sediments
as well as in certain mineral deposits (Piccoli and Candela, 2002; Morton and Yaxley, 2007;
Webster and Piccoli, 2015). This accessory mineral is often used as a natural thermochronometer
for fission track, helium, U-Th and U-Pb dating (e.g., Zeitler et al., 1987; Wolf et al., 1996;
Ehlers and Farley, 2003; Hasebe et al., 2004; Donelick et al., 2005; Chew and Donelick, 2012;
Chew et al., 2014; Cochrane et al., 2014; Liu et al., 2014; Spikings et al., 2015; Glorie et al.,
2017). Presently, apatite fission track (AFT) ages can be obtained rapidly by using laser ablation
inductively-coupled plasma mass spectrometry (LA-ICP-MS) for direct measurement of “parent
nuclides”, i.e., 28U contents (Cox et al., 2000; Svojtka and Kosler, 2002; Hasebe et al., 2004,
2009; Donelick et al., 2005; Abdullin et al., 2014, 2016, 2018; Vermeesch, 2017). The LA-ICP-
MS technique may be used to measure 228U for AFT dating, together with Pb isotopes needed for
U-Pb dating (e.g., Chew and Donelick, 2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et al.,
2020; Nieto-Samaniego et al., 2020).

Hasebe et al. (2009) previously performed an important experimental study, during which
they demonstrated that chemical etching required for apatite/zircon fission track dating does not
interfere with U analysis by LA-ICP-MS. The influence of etching needed for AFT dating on the

precision and accuracy of dating the same crystals by U-Pb using LA-ICP-MS remains to be
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quantified. To investigate this issue, the same unetched and etched apatite grains extracted from
five rock samples were analyzed via LA-ICP-MS for U-Pb dating. The chosen samples have
either emplacement or metamorphic ages ranging from the Cretaceous to the Neoproterozoic (see
Table 1 for further details).

- Table 1 ---

2 Sample descriptions

2.1  OV-0421 (Tres Sabanas Pluton, Guatemala)

This sample is a two mica-bearing deformed granite belonging to the Tres Sabanas Pluton, which
is located northwest of Guatemala City, Guatemala. For sample OV-0421, an emplacement age
of 115 * 4 (26) Ma was proposed based on zircon U-Pb data (Torres de Ledn, 2016). A cooling

age of 102 + 1 (20) Ma, obtained with K—Ar (on biotite), was also reported by the same author.

2.2.  MCH-38 (Chiapas Massif Complex, Mexico)

MCH-38 is an orthogneiss from the Permian Chiapas Massif Complex. This rock was sampled to
the west of Unidn Agrarista, the State of Chiapas, southeastern Mexico. There is no reported age
for this sample. Some zircon U-Pb dates obtained for the Chiapas Massif Complex (Weber et al.,
2007, 2008; Ortega-Obregon et al., 2019) suggest that a Lopingian (260-252 Ma) crystallization

or metamorphic age may be assumed for sample MCH-38.
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2.3  TO-AM (Totoltepec Pluton, Mexico)

TO-AM is a granitic rock, sampled ca. 5 km west of Totoltepec de Guerrero, the State of Puebla,
southern Mexico. There is no reported radiometric data for sample TO-AM. Previous geological
studies indicate that the Pennsylvanian—Cisuralian Totoltepec Pluton was emplaced over a ca. 23

million year period (from ca. 308 to ca. 285 Ma; e.g., Kirsch et al., 2013).

2.4  CH-0403 (Altos Cuchumatanes, Guatemala)

CH-0403 was collected 5 km ESE of Barillas, in the Altos Cuchumatanes, Guatemala. It consists
of a gray to green granodiorite. Five zircon aliquots of sample CH-0403 were dated using isotope
dilution thermal-ionization mass spectrometry, yielding a lower intercept date of 391 + 8 (20)

Ma that is interpreted as its approximate crystallization age (Solari et al., 2009).

2.5  0C-1008 (Oaxacan Complex, Mexico)

This sample is a paragneiss from the Grenvillian Oaxacan Complex, southern Mexico. OC-1008

was collected in the federal road which connects Nochixtlan to Oaxaca. It was demonstrated that

this sample underwent granulite facies metamorphism at 1000-980 Ma (Solari et al., 2014).
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3 Analytical procedures

Accessory minerals were concentrated using conventional mineral separation techniques such as
rock crushing, sieving, Wilfley table, Frantz magnetic separator, and bromoform. Approximately
300 apatite grains were extracted from each rock sample and mounted with their surfaces parallel
to the crystallographic c-axis in a 2.5 cm diameter epoxy mount. Mounted crystals were polished
to expose their internal surfaces (i.e., up to 4w geometry). For this experiment, complete crystals
lacking visible inclusions and other defects, such as cracks, were carefully selected for analysis.
Sample preparation was performed at Taller de Molienda and Taller de Laminacion, Centro de
Geociencias (CGEO), Campus Juriquilla, Universidad Nacional Autonoma de Mexico (UNAM).

Single spot analyses were performed with a Resonetics RESOlution™ LPX Pro (193 nm,
ArF excimer) laser ablation system, coupled to a Thermo Scientific iCAP™ Qc quadrupole ICP-
MS at Laboratorio de Estudios Isotépicos (LEI), CGEO, UNAM. During this experimental work,
LA-ICP-MS-based sampling was performed in central parts of the selected apatite grains before
and after chemical etching (in 5.5M HNOz at 21 °C for 20 s to reveal spontaneous fission tracks),
as shown schematically in Fig. 1. The LA-ICP-MS protocol used for apatite analyses, as given in
Table 2, was established on the basis of numerous experiments carried out at LEI during the past
five years, and can be used for U-Pb and fission track double dating plus multielemental analysis
(Abdullin et al., 2018; Ortega-Obregén et al., 2019). Corrected isotopic ratios and errors were
calculated using lolite 3.5 (Paton et al., 2011) and the VizualAge data reduction scheme (Petrus
and Kamber, 2012). UcomPbine (Chew et al., 2014) was used to model 2°’Pb/?%Pb initial values
and thus force a 2°’Pb correction that considers the common Pb (non-radiogenic Pb) incorporated

by apatite standards at the moment of their crystallization (see also Ortega-Obregon et al., 2019).
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The “First Mine Discovery” apatite from Madagascar, with a mean U-Pb age of ca. 480 Ma
(Thomson et al., 2012; Chew et al., 2014), was used as a primary reference material. The results
for measured isotopes using NIST-612 (Pearce et al., 1997) were normalized using “*Ca as an
internal standard and taking an average CaO content of 55%.

Tera—Wasserburg Concordia diagrams (T-W; Tera and Wasserburg, 1972) are used in
apatite U-Pb dating, because the LA-ICP-MS-derived U-Pb results are generally discordant.
The lower intercept in the T-W plot is considered as a mean apatite U-Pb age that should have
geological significance (crystallization or cooling age, the age of mineralization or metamorphic
event). Apatite U-Pb ages were calculated with IsoplotR (Vermeesch, 2017, 2018) and described
below. Detailed information on U-Pb experiments is given in Table S1 in the Supplement.

--- Figure 1 ---

~--Table 2 -

4 Results

41 0OV-0421

For rock sample OV-0421, 41 unetched apatites yielded a lower intercept age of 106 + 4 (20) Ma
with a mean square weighted deviation (MSWD) of 1.07, passing the chi-squared test with the
P(y?) value of 0.35 (see in Fig. 2). Practically the same U-Pb date, 107 + 5 (26) Ma, was
obtained after chemical etching of the same apatite grains, yielding a MSWD of 1.13 and a P(y?)

of 0.27. Both these apatite U-Pb ages lie between the zircon U-Pb date of 115 + 4 (26) Ma (i.e.,
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crystallization age) and the biotite K—Ar age of 102 + 1 (26) Ma (i.e., cooling age), which were

previously obtained for the same granite sample by Torres de Leon (2016).

42. MCH-38

For orthogneiss sample MCH-38, the lower intercept in T-W yielded a U-Pb age of 245 + 6 (20)
Ma (obtained from 41 unetched apatites) with a MSWD of 0.28 and a P(y?) of 1. Etched apatite
grains from MCH-38 yielded an age of 240 * 4 (26) Ma with a MSWD of 0.36 and a P(yx?) of 1
(Fig. 2). Our U-Pb results are in close agreement with geochronological data reported from the
Chiapas Massif Complex in previous studies (Damon et al., 1981; Torres et al., 1999; Schaaf et
al., 2002; Ortega-Obregdn et al., 2019). For instance, Torres et al. (1999) compiled biotite K-Ar
ages, most of which lie within Early—Middle Triassic period. Triassic cooling ages in the Chiapas
Massif Complex were also detected by Rb—-Sr in mica—whole rock pairs that range from 244 + 12

(20) Mato 214 + 11 (26) Ma (Schaaf et al., 2002).

43 TO-AM

Unetched apatites (32 crystals; Fig. 2) from granite TO-AM vyielded a lower intercept date of 303
+ 5 (206) Ma with a MSWD of 0.6 and a P(x?) of 0.96. After etching, a slightly younger age of
299 + 3 (26) Ma was obtained, with a MSWD of 0.89 and a P(x?) of 0.65. These apatite U-Pb
ages are in line with the zircon U-Pb ages of 306 + 2 (20) Ma to 287 + 2 (20) Ma reported for

the Pennsylvanian—Cisuralian Totoltepec Pluton (e.g., see details in Kirsch et al., 2013).
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44  CH-0403

36 unetched apatite grains from sample CH-0403 yielded a lower intercept U-Pb age of 345 + 10
(20) Ma with a MSWD of 0.7 and a P(y?) of 0.9, whereas etched grains yielded an age of 334 + 8
(20) Ma with a MSWD of 1.37 and a P(y?) of 0.08 (Fig. 2). These cooling dates are considerably

younger if compared to the CH-0403 emplacement age of 391 + 8 (26) Ma (Solari et al., 2009).

45  0OC-1008

41 unetched apatites belonging to sample OC-1008 yielded a U-Pb age of 839 + 12 (26) Ma with
a MSWD of 0.98 and a P(x?) of 0.50. After etching, the same apatite crystals yielded an age of
830 + 10 (20) Ma with a MSWD of 1.24 and a P(y?) of 0.14 (Fig. 2). Both these apatite U-Pb
ages are significantly younger than the age of granulite facies metamorphism in the Grenville-
aged Oaxacan Complex (1 Ga to 980 Ma, Solari et al., 2014), and thus, should be considered as
cooling ages.

--- Figure 2 ---

5 Discussion and concluding remarks

Most rock samples, except OV-0421, yielded slightly younger apatite U-Pb ages after chemical

etching (up to 3.3% in sample CH-0403). However, the lower intercept U-Pb ages obtained from

unetched apatite grains are indistinguishable within error from the U-Pb ages obtained on the
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same etched grains (see diagram in Fig. 3). The results of this experiment demonstrate that
chemical etching required for AFT analysis has negligible effects on the accuracy of apatite U-
Pb ages determined via LA-ICP-MS. Thus, as a main conclusion of this study, LA-ICP-MS can
be used for simultaneous AFT and U-Pb double dating, as it was already done in some previous
studies (e.g., Chew and Donelick, 2012; Liu et al., 2014; Glorie et al., 2017; Bonilla et al., 2020;
Nieto-Samaniego et al., 2020).

--- Figure 3 ---

Supplement

The supplement related to this article is available online at: https://...
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Figure caption

Figure 1
Illustration displaying the LA-ICP-MS-based U-Pb dating of the same apatite crystal before and

after chemical etching (i.e., etched in 5.5M nitric acid at 21 °C for 20 s). Spot diameter of 60 um.

Figure 2
Tera—Wasserburg Concordia diagrams for the U-Pb results of unetched and etched apatites from
samples OV-0421, MCH-38, TO-AM, CH-0403, and OC-1008. MSWD — mean square weighted

deviation, Ngr — number of grains dated. Errors are given in 2c.

Figure 3

Plot showing the lower intercept U-Pb ages obtained on unetched and etched apatite grains.
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Table 1

Lithology, locality, and zircon U-Pb data for the selected experimental rock samples.

Sample

Unit and locality

Rock type

Zircon U-Pb age

References

0OV-0421

MCH-38

TO-AM

CH-0403

0OC-1008

Tres Sabanas Pluton, Guatemala
Chiapas Massif Complex, Mexico
Totoltepec Pluton, Mexico

Altos Cuchumatanes, Guatemala

Oaxacan Complex, Mexico

deformed granite

orthogneiss

granite

granodiorite

paragneiss

115+ 4 Ma
ca. 260 to ca. 252 Ma (?)
ca. 308 to ca. 285 Ma (?)
391+8Ma

990 + 10 Ma

Torres de Ledn (2016)
Weber et al. (2007, 2008)
Kirsch et al. (2013)
Solari et al. (2009)

Solari et al. (2014)
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445

446  Table 2
447
448  LA-ICP-MS protocol established at LEI to be applied for simultaneous apatite U-Pb and fission-
449  track double dating plus multielemental analysis (REEs, Y, Sr, Mn, Mg, Th, U, and CI).
ICP-MS operating conditions
Instrument Thermo Scientific™ iCAP™ Q¢
Forward power 1450 W
Carrier gas flow rate ~1 L/min (Ar) and ~0.35 L/min (He)
Auxiliary gas flow rate  ~1 L/min
Plasma gas flow rate ~14 L/min
Nitrogen ~3.5 mL/min
Data acquisition parameters
Mode of operating STD (standard mode)
Sampling scheme —2NIST-612-2MAD-1DUR-10apt—
Background scanning 155
Data acquisition time 35s
Wash-out time 155
ZGMg 31P 35Cl 43Ca 44Ca SSMn BSSr
89Y 139La 140Ce 141Pr 146Nd 147Sm
Measured isotopes 3Ry 157G 19T 163Dy 185Ho 65T
169Tm 172Yb 175Lu ZOZHg ZOAPb ZOEPb
27pp 208pp 232Th 238y [total = 29]
Laser ablation system
Ablation cell RESOlution™ Laurin Technic S-155
Model of laser Resonetics RESOlution™ LPX Pro
Wavelength 193 nm (Excimer ArF)
Repetition rate 4 Hz
Energy density *4 Jlcm?
Mode of sampling spot diameter of 60 um
450
451  Note: MAD - “First mine Discovery” U-Pb apatite standard from Madagascar; DUR — Durango
452  apatite from Cerro de Mercado mine (Mexico); apt — unknown apatite crystals. (*) Laser pulse
453  energy of 4 J/cm?, which was measured directly on target with a Coherent™ laser energy meter.
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