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We thank Dr Mudelsee for offering his valuable perspective on this topic,
and spending the time to share these comments. We take up his points in turn:

On uncertainty

We wholeheartedly agree that chronological uncertainties are only one of many
types of uncertainty affecting paleoenvironmental timeseries. Indeed, we prac-
tice this every day in our own research. We agree that it is important to place
chronological uncertainties in this broader context, and will do so in the revised
paper.

On correlations

We thank Dr Mudelsee for bringing BINCOR [Polanco-Martinez et al., 2019] to
our attention, as we were not aware of it. It seems like a useful and comple-
mentary way of going about the problem, and we will investigate incorporating
it and its concepts in geoChronR in upcoming releases. The reason why this
cannot be done quickly is that it makes several deep assumptions that may or
may not be consistent with others that we make, and we need to think this over
carefully.

We agree wholeheartedly with points 1, 2, 3, and 4. A confidence interval
may be derived from the histogram of correlations, but we will work to export
its summary as a a 95% CI, say. We agree that non-gaussianity can be an
issue, which is why geoChronR’s default behavior is to transform input data
to a standard normal (via quantile mapping [van Albada and Robinson, 2007;
Emile-Geay and Tingley, 2016]). Lastly, it is true that we could make it easier
for users to use other formulations of the correlation coefficient, like Spearman’s.
We will incorporate rank-based correlation methods into the package on revision
of the manuscript. The impact on significance estimates will be the same for the
non-parametric tests (isopersistent, isospectral) implemented in geoChronR, so
we expect this to be an easy transition.

1



Fig. 1. Benchmarling the Lomb-Scargle implementations in lomb::lsp() (orange
curve), REDFIT (via the dplR package, [Bunn, 2008, green curve]) and SciPy [Vir-
tanen et al., 2020, blue curve], as implemented in Khider et al. [2018]. The sample
signal is a 20-year sinusoid sampled yearly over 1000 years.

On regression

We are aware that OLS is a biased estimator in the presence of timescale er-
rors. One can imagine extensions like truncated total least squares [Van Huffel
and Vandewalle, 1991; Van Huffel, 2004; Markovsky et al., 2010], or the ones
suggested in “the book” [Mudelsee, 2013]. We will flag in the revised version of
the paper that timescale uncertainties strongly interact with other uncertainties
here, in a way that needs to be more rigorously assessed.

On spectral analysis

We disagree with the statement that “the Lomb-Scargle (LSP) method is su-
perior to other spectrum estimation methods since it is regression-based and
therefore can be directly applied to unevenly spaced series.”

LSP is appropriate in many circumstances VanderPlas [2018], and we’ve
used it in our own work [e.g., Khider et al., 2014], but there are many applica-
tions where it can be problematic. First, let us note that the weighted wavelet Z
transform [WWZ Foster, 1996; Kirchner and Neal, 2013; Zhu et al., 2019] shares
many of these characteristics, and performs very similarly on analytical bench-
marks [Khider et al.]. However, there is an important difference between the
implementation of the Lomb-Scargle algorithm in R (as used in GeoChronR)
and Python (specifically, the SciPy package). This comparison was carried out
on a simple, 20-year harmonic in Khider and Emile-Geay [2020], and is summa-
rized in Fig. 1.

For such a simple and abundantly sampled harmonic signal, any good es-
timator should return something close to a delta function peaked at the f0
frequency. We see that the SciPy implementation of LS achieves this, but the
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the R and REDFIT implementations are extremely noisy, detecting many spu-
rious peaks at high frequencies. Indeed, the signal to noise ratio is 4 to 15
orders of magnitude smaller in those implementations than in SciPy’s, though
REDFIT’s spectrum is (by virtue of averaging) quite a bit smoother than the
standard lomb implementation. This is quite a substantial difference, for which
we cannot find an easy explanation. Indeed, the algorithm is the same, only the
numerical implementation differs. In the revised paper, geoChronR users will
be alerted to this important limitation.

We do agree that interpolation has serious downsides, but disagree with the
blanket statement that it is always “dangerous”. Indeed, in our tests, Lomb-
Scargle detects many spurious features. The example from section 5.5 is one
where the spacing is nearly equal, so the effects of interpolation are minimal.
On benchmarks using synthetic data, the multitaper method (MTM) is far su-
perior to LSP with WOSA on evenly-spaced series, and interpolation – used
sparingly – provides a way to access these important features of MTM. Thus,
we do not agree with a blanket condemnation of interpolation, though we agree
that it must be used very carefully to avoid raising the sample size to spuriously
high levels; in our practice, typically err on the side of coarse-graining the time-
series to avoid this effect, and only use linear interpolation to avoid introducing
spurious oscillations. We do agree that sanity checks of robustness are essential.

On age modeling

We agree with Dr Mudelsee that the proliferation of chronology modeling meth-
ods is problematic. This is why geoChronR only considers methods based on
explicit statistical models, so that the assumptions may be examined on their
scientific merits. Unfortunately, this is not the case for many of the other meth-
ods you bring up (e.g. StalAge), and we thus refrain from using those in the
package or elsewhere.

Age model intercomparison would indeed an important application of
geoChronR, as it provides a standardized platform upon which methods can be
readily tested and compared. Although a thorough intercomparison is beyond
the scope of this article, we very much hope to pursue it in future investigations,
or to facilitate this task for other investigators. We will revise our discussion
to mention recent work on this topic. While Scholz et al. [2012] have indeed
performed a comparison of some methods, Parnell et al. [2011] had published on
some of the same methods the year before, coming to somewhat different conclu-
sions as Scholz et al. [2012]. More recently, Trachsel and Telford [2016] compared
several of the methods included in geoChronR (including OxCal, BChron, and
Bacon) on a reference, varved lake chronology. They conclude that “All meth-
ods produce mean age–depth models that are close to the true varve age, but
the uncertainty estimation differs considerably among models.” In particular,
BChron is found to overestimate uncertainties in this context. There is thus
plenty more to be done to document, benchmark and understand the effects of
these various modeling choices, and our revised paper will point to the existing
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work.
In regards to “whether or not a 95% confidence interval for an age at a

certain depth does indeed include the true (and known, since it is prescribed)
age in 95% of the simulations” this is called coverage rate in the statistical
literature, and is indeed a property that paleoscientists should try to constrain
for the various methods.

“I am optimistic that the paper by McKay et al. (2020) and the supplied
GeoChronR tool can help to achieve this “Timescale Monte Carlo Comparison
Experiment”. We share your optimism and thank you for these valuable
comments, which helped improve the package and the paper.
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