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Having myself worked for over thirty years in the scientific area targeted by this in-
teresting paper – age-uncertain paleoscientific data analysis – it is my pleasure and
privilege to add some remarks. Geochronology Discussions is one of the EGU’s family
of discussion journals, which are important to have since they allow our students to get
a more intimate understanding of how the science of the paleoclimate and other disci-
plines evolves, how we paleoclimate researchers struggle for the truth. Inevitably, my
contribution is biased towards own work, in particular my book on climate time series
analysis (Mudelsee, 2014), to which for the sake of brevity here I sometimes refer to
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as “Book”, and of which – this is for those people interested in the history and also in
who wrote first on a subject – the first edition appeared in 2010.

I find the paper well written, easy to read and understand, despite (because of?) the
fact that nearly no equations are given. It shows that still one can speak in a rational
manner about quantitative methods of data analysis. What I like most is the empha-
sis the paper puts on the usefulness of having available, in addition to a timescale,
{t(i)}n

i=1, where t is time or age, i is a counter, and n the sample size, also a set of
simulated timescales {t∗(i)}n

i=1. This set of simulation results is useful to have for the
determination of the full errors of statistical estimations on paleoclimatic time series.
That means, we have to take into account not only (1) measurement error of a climate
proxy variable, {x(i)}n

i=1, and (2) proxy error (which usually exceeds the measurement
error by far), but also (3) timescale errors. The software GeoChronR presented by
McKay et al. (2020) serves well those meticulous researchers embarking on a full
error determination, since GeoChronR (1) comprises several timescale construction
algorithms and (2) is written in the R language, which is gaining much popularity now
in geosciences.

However, the meticulous researcher should be informed that the supply of {t∗(i)}n
i=1 by

GeoChronR is just the first of two milestones she or he has to reach. The second mile-
stone – the development and utilization of statistical methods for processing {t∗(i)}n

i=1

– this is in my view the major one. It has to be mentioned that, unfortunately, method
development and theoretical derivations for uncertain timescales has never been high
on the agenda of statistical science – at least this is my impression from the study of
the literature in this science and from the news for members of the Royal Statistical
Society (to which I belonged for about 20 years). In what follows I will mention some
statistical estimation methods, which are described by McKay et al. (2020: Section 3
therein). It is the privilege of an external commenter in this discussion journal to not
having to perform an exhaustive review but be allowed to pick out what is deemed in-
teresting. I may add that I fail to find exhaustive the other comments in the interactive
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discussion (date of writing, 17 October 2020).

1 Correlation

A major problem imposed by uncertain ages occurs only if the timescales for X and Y
are not completely dependent. A minor problem for completely dependent timescales
may be that autocorrelation estimates, such as the persistence time for an AR(1) pro-
cess on an unevenly spaced time grid (Mudelsee, 2002), may be influenced – but this
can be safely ignored since this affects only block length selection in the bootstrap
resampling for uncertainty determination, and block length selection is not very influ-
ential here (Mudelsee, 2014: Table 7.2 therein). A practical example for completely
dependent (although uncertain) timescales is a marine sediment core, where on sam-
ple material from identical depths proxy measurements are done, such as oxygen (X)
and carbon (Y ) isotopic compositions.

For the case of not completely dependent timescales, McKay et al. (2020) present
the binning approach. It should be mentioned that this works only in the presence of
autocorrelation in the data (X, Y ) generating process because then also time-distant
points may “know” to some degree about the current point. In my Book (Mudelsee,
2014: Section 7.5 therein), I give bin width selection rules based on the persistence
time estimates (for X and Y ) and I show Monte Carlo simulation results obtained on
artificial data in order to test the method. One results is that binning outperforms inter-
polation. A recent implementation of “my” binning approach for correlation estimation
is the R software BINCOR (Polanco-Martinez et al., 2019).

As regards the assessment of the significance of the correlation coefficient (which,
after all, is an estimate of the true but unknown population correlation coefficient),
McKay et al. (2020) are correct in their assessment that the standard way is via a
statistical test (of the null “population correlation coefficient equals zero”) that assumes
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normal shapes (for X and Y ) and serial independences (of X and Y ) – unfortunately!
What the Monte Carlo experiments on correlation estimation, summarized in the Book
(Mudelsee, 2014: Section 7.3 therein), teach us is sobering.

1. A confidence interval as uncertainty measure is superior to a P -value of a sig-
nificance test because it bears more quantitative information. It allows you to
compare two correlations, whether or not one association is stronger than an-
other. A practical example is when you wish to construct a rank list of surface-air
temperature measurement stations in Europe in terms of the strength of the cor-
relation with the North Atlantic Oscillation.

2. Serial dependence can be taken into account by pairwise block bootstrap resam-
pling (Mudelsee, 2014: p. 279 therein). The resampling preserves the distribu-
tional shapes, and the pairwise manner preserves (over the block length) the
serial dependence or autocorrelation structures. Serial dependence can also be
taken into account in a “classical” manner (i.e., using formulas instead of employ-
ing resampling or simulation approaches) via the effective number of degrees of
freedom, as mentioned by McKay et al. (2020: Section 3.1 therein) as the first
approach of GeoChronR.

3. The presence of non-Gaussian shapes completely invalidates determined classi-
cal uncertainty measures. Then you cannot trust at all a P -value or a confidence
interval obtained in a classical manner. (This is what you get if you press the
button in standard “office software”.) The only remedy that yields acceptably ac-
curate uncertainty measures is pairwise block bootstrap resampling enhanced
by computing-intensive calibration (Mudelsee, 2014: Chapter 7 therein). There
is a Fortran 90 software on this that employs parallel computing (Ólafsdóttir and
Mudelsee, 2014).

4. Spearman’s (1904, 1906) rank correlation coefficient is more robust (i.e., it de-
livers more accurate uncertainty measures in the presence of violations of made
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distributional assumptions) than Pearson’s (1896) coefficient. (By the way, it is
interesting from a philosophy-of-science viewpoint to see how Pearson reacted
when he became aware of Spearman’s papers.)

2 Regression

First, the observation by McKay et al. (2020: Section 3.2 therein) that age-uncertainties
plague also the calibration of proxy variables is important. GeoChronR’s error propaga-
tion into a set of calibration curves is useful. However, a problem with proxy calibration
is that here both variables (the proxy and the indicated climate variable) do show mea-
surement uncertainties – and this leads in ordinary least squares regression (as done
by GeoChronR) to a down-biased slope estimate. What is needed is a bias correction,
and the Book (Mudelsee, 2014: Chapter 8 therein) gives two ways to perform this.

As regards regression, one may also mention trend estimation, for example, change-
point detection on time series (Mudelsee, 2000; Mudelsee, 2009). Also this estima-
tion target becomes noisier in the presence of timescale errors. However, using a
hybrid resampling approach (block bootstrap for obtaining {x∗(i)}n

i=1, parametric for
{t∗(i)}n

i=1), for which GeoChronR can be utilized, reliable uncertainty determination
can be achieved, as Monte Carlo simulations demonstrate (Mudelsee, 2014: Chap-
ter 4 therein). One may further mention nonparametric regression, where this hybrid
approach also works; as an example, the paper by Mudelsee et al. (2012) is entitled
“Effects of dating errors on nonparametric trend analyses of speleothem time series.”
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3 Spectral Analysis

The estimation of the true (but unknown) spectrum of the random component in a
climate-data generating process is important for reasons also McKay et al. (2020)
give: you can study peaks versus background noise; external drivers; leads and lags;
and so forth – a spectrum allows you to learn about the physics of the system. Typical
records from paleoclimate archives are unevenly spaced since the accumulation pro-
cess of an archive usually is not constant over time and constant depths are sampled
because of material requirements for the measurements. The various timescale con-
struction algorithms, implemented in GeoChronR or elsewhere, can be used to study
accumulation in detail. Even in the “untypical” situation of even spacing, it is then the
age-uncertainty that introduces uneven spacing into the {t∗(i)}n

i=1. In any way, spectral
estimation for paleoclimate time series has to deal with uneven temporal spacing.

In my view, the Lomb-Scargle method is superior to other spectrum estimation methods
since it is regression-based and therefore can be directly applied to unevenly spaced
series. However, the raw periodogram (GeoChronR’s first spectral approach) is bad to
employ since it renders estimates with 100% relative error and also is an inconsistent
estimator (i.e., the estimation error does not decrease with n), as we know for decades,
see for example the Book (Chapter 5 therein) and the references cited therein. The
periodogram therefore has to be combined with a segmenting approach, which trades
spectral resolution for reduced estimation error. This advantage, not mentioned by
McKay et al. (2020), combined with a test against AR(1) red noise, is the reason
of the success of the REDFIT implementation (Schulz and Mudelsee, 2002); which
constitutes GeoChronR’s second spectral approach. It may be noted that there exists
a version called REDFIT-X for cross-spectral analysis (Ólafsdóttir et al., 2016). For the
purpose of studying timescale error effects on spectral estimates, I made experiments
with adaptations of the REDFIT code (Mudelsee et al., 2009; Mudelsee, 2014: Section
5.2.8 therein) to quantify (1) how much wider spectral peaks get and (2) how much
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higher the red-noise upper pertenciles get, but there is not yet a publishable code on
this.

The other two spectral approaches mentioned by McKay et al. (2020) are wavelet de-
composition and Thomson’s (1982) multitaper. To the best of my knowledge, for both
approaches there is (yet) no reliable implementation or code that is directly applica-
ble to uneven temporal spacing. Likely it is this situation that led McKay et al. (2020:
p. 11, line 8–9 therein) to advocate and put into GeoChronR the data pretreatment
of “efficient linear interpolation”. As many authors before me or Michael Schulz have
demonstrated (e.g., Horowitz, 1974), and what I also regularly teach in my courses
on climate time series analysis – interpolation means a step away from the original
data. It is a dangerous activity. It introduces autocorrelation where there has been
none before. If researchers are not trained, then some of them may be even entrapped
to employ interpolation in order to boost up the sizes of the samples. This leads to
too small uncertainty measures of estimations, to overstatements about the climate
system, it damages the credibility of climate research. On top of that, there do exist
various interpolation methods (linear, cubic spline, Akima spline, etc.). Which interpo-
lation method to use? Just the “most efficient one”? – Dangerous. In my view the
only way of having interpolation (to even spacing) in the arsenal of methods is if a
meticulous researcher does embark on coding and performing extensive Monte Carlo
simulations. In such experiments, the true properties of a data generating process can
be prescribed. The properties (e.g., spectrum, n, spacing, noise level) should be close
to what data you have, what the prior knowledge about the data indicates or what the
geological–physical intuition tells you, the researcher. Then the distorting effects of the
various interpolation methods can be quantified and compared. And only if the distort-
ing effects can be shown as negligible, then one may safely proceed with interpolation
and present results that are robust in the original statistical sense.
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4 Outlook

It is great to see that the engagement of professional statisticians in paleoclimate re-
search is growing. Certainly they can contribute to the issue of the statistical analysis
of age-uncertain paleoscientific data.

However, it appears that the various climatological communities, who partly tend to
associate themselves with the employed type of paleoclimate archive, are developing
a tendency towards using timescale construction algorithms that have been designed
within their own community: Oxcal (Ramsey, 2008) or BChron (Haslett and Parnell,
2008) for the radiocarbon community; Wheatley et al.’s (2012) method or BAM (Com-
boul et al., 2014) for the layered archives such as corals or ice cores; StalAge (Scholz
and Hoffmann, 2011), iscam (Fohlmeister, 2012) or MOD-AGE (Hercman and Pawlak,
2012) for the speleothem community. This tendency is unhealthy for scientific progress
because it reduces the open exchange among researchers about the optimal way of
timescale construction.

Certainly specific archives have their own peculiarities (e.g., about whether hiatuses
may occur, whether there exists prior geological-physical knowledge about minimum
or maximum accumulation rates) – however, the situation could be improved if the vari-
ous methods are allowed to be compared against each other (in terms of bias, standard
error, etc.) within a Monte Carlo experiment. Scholz et al. (2012) have already done a
comparison of methods, but a step beyond that work would be achieved if also the de-
livered uncertainty bands (around the age–depth curve) could be tested. For example,
whether or not a 95% confidence interval for an age at a certain depth does indeed in-
clude the true (and known, since it is prescribed) age in 95% of the simulations (within
simulation noise). We paleoclimate researchers, as all applied researchers, should
apply robust tools that yield reliable estimations and reliable error bars also in the pres-
ence of (1) non-Gaussian distributions, (2) autocorrelation and (3) age-uncertainties. I
am optimistic that the paper by McKay et al. (2020) and the supplied GeoChronR tool
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can help to achieve this “Timescale Monte Carlo Comparison Experiment”.
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