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Abstract. We present a new model for the etching and revelation of confined fission tracks in apatite based on variable along-

track etching velocity, vT(x).  Insights from step-etching experiments and theoretical energy loss rates of fission fragments 

suggest two end-member etching structures: Constant-core, with a central zone of constant etching rate that then falls off 

toward track tips; and Linear, in which etching rates fall linearly from the midpoint to the tips.  From these, we construct a 

characterization of confined track revelation that encompasses all relevant processes, including penetration and widening of 10 

semi-tracks etching in from the polished grain surface, intersection with and expansion of confined tracks, and analyst selection 

of which tracks to measure and which to bypass.  Both etching structures are able to fit step-etching data from five sets of 

paired experiments of fossil tracks and unannealed and annealed induced tracks, supporting the correctness of our approach 

and providing a series of insights into the theory and practice of fission-track thermochronology.  Etching rates for annealed 

induced tracks are much faster than those for unannealed induced and spontaneous tracks, impacting the relative efficiency of 15 

both confined track length and density measurements, and suggesting that high-temperature laboratory annealing may induce 

a transformation in track cores that does not occur at geological conditions of partial annealing.  The model quantifies how 

variation in analyst selection criteria, summarized as the ratio of along-track to bulk etching velocity at the etched track tip 

(vT/vB), likely plays a first-order role in the reproducibility of confined length measurements.  It also accounts for and provides 

an estimate of the large proportion of tracks that are intersected but not measured, and shows how length biasing is likely to 20 

be an insufficient basis for predicting the relative probability of detection of different track populations.  The vT(x) model 

provides an approach to optimizing etching conditions, linking track length measurements across etching protocols, and 

discerning new information on the underlying structure of fission tracks. 

 

1 Introduction 25 

Apatite fission-track confined lengths remain of great interest because of their capacity to record detailed thermal histories 

(Malusa and Fitzgerald, 2019; Gallagher 2012; Ketcham et al. 2018).  However, our understanding of them remains incomplete 

in ways that are likely to be consequential for thermal history analysis.  Measurements of laboratory-annealed spontaneous 

and induced fission tracks designed to test the principle of equivalent time, which posits that track annealing behavior is 
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determined by length alone and not prior thermal history (Duddy et al., 1988), indicate that their behavior subtly but certainly 30 

differs (Wauschkuhn et al., 2015).  This divergence leads to continuing uncertainty on the fidelity of induced tracks annealed 

in the laboratory as proxies for spontaneous ones annealed at geological conditions over geological time scales.  Additionally, 

the reproducibility of length measurements among laboratories has been disappointing (Ketcham et al., 2015;Ketcham et al., 

2018).  The first concern questions the theoretical basis for thermal history inversion, the second its practice. 

Fission tracks form due to the transfer of energy from fission fragments into the surrounding crystal lattice, creating a zone 35 

that is up to 9 nm in diameter and ~21 µm long in apatite (Jonckheere, 2003;Paul and Fitzgerald, 1992;Li et al., 2012).  The 

crucial property of fission tracks is their etching structure; the only reason we can detect and measure them at all is that they 

etch differently from surrounding, relatively undamaged material.  The most influential aspect of this structure is the etching 

velocity along the track. 

From the earliest days of fission-track dating (e.g., Fleischer and Price, 1964), the model emerged of a fast etching velocity 40 

along the track (vT) versus a slow etching velocity of the bulk grain (vB, also called vG).  This contrast allows, among other 

things, for the calculation of a counting efficiency to quantify what proportion of surface-intersecting tracks become 

unobservable due to bulk etching of the polished surface obscuring shallow-dipping tracks.  At the same time, it carries the 

implication that vT is constant along a track; the efficiency equation put forth by Fleischer and Price (1964) and repeated many 

times since (e.g., Fleischer et al., 1975;Hurford, 2019;Tagami and O'Sullivan, 2005) presumes single values for vB and vT. 45 

A similar simplification is embedded in the characterization of confined track revelation by Laslett et al. (1984), in which fast 

along-track etching compared to bulk etching leads to track tips being hard to observe or measure reliably, but once the end of 

the track is reached bulk etching allows the tip to widen and become clear.  A linked concept is that of maximum etchable 

length.  Virtually all mathematical treatments of track revelation, biasing, and the relationship between confined track length 

and track density portray latent tracks as line segments in space, and presume that the probability of a track being measured is 50 

equivalent to its probability of being intersected by an etchant pathway (Galbraith and Laslett, 1988;Galbraith et al., 

1990;Laslett et al., 1984;Laslett et al., 1982;Dakowski, 1978;Jonckheere and Van Den Haute, 1999;Ketcham, 2003).  This 

simplification does not consider time, and effectively assumes that all tracks are etched to their full extents, or at least that all 

tracks are equally likely to become fully etched once they are intersected. 

In this contribution, we demonstrate that these assumptions are incorrect, and that this shortcoming impacts apatite fission-55 

track (AFT) thermochronology in multiple ways, from reproducibility of confined track length measurements to the efficiency 

of track revelation that underlies age determinations.  We do this by constructing the first quantitative depiction of confined 

track-in-track (TINT; Lal et al., 1969) revelation, incorporating their along-track etching structure as constrained by a set of 

recently reported step etching experiments (Tamer and Ketcham, 2020a).  The model incorporates both the etching of the 

surface-intersecting semi-track channels and the confined tracks themselves, providing multiple insights into the nature of the 60 

confined track length distributions we measure and interpret. 
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2 Background 

It has long been understood that etching velocity varies along ion tracks.  Fleischer and Price (1964) mention the possibility 

of etching slowing down toward track tips, and Fleischer et al. (1969) used diminishing along-track etching velocity to explain 65 

track geometries in track-recording plastics.  Early work on using ion tracks for identification of cosmic ray particles (e.g., 

Green et al., 1978;Price and Fleischer, 1971;Price et al., 1967;Price et al., 1973) measured etch rates at varying locations along 

implanted tracks, linking them to the ionization rate, or the rate at which an ion transfers energy to the medium it is passing 

through.  These studies established that if vT can be determined with sufficient precision at two points along a particle path, 

the atomic number of the particle can be uniquely identified (Price and Fleischer, 1971). 70 

As fission fragments pass through a solid and lose energy, their ionization rates fall.  Figure 1 shows a sampling of possible 

fission pairs from induced fission of 235U in apatite, calculated using SRIM (Ziegler, 2013).  The ionization rate is a function 

of the ion and its energy, and the enclosing mineral.  The full range of the particle pairs varies from ~21-23 µm, but as the 

ionization rate falls below some limit the etching rate is no longer significantly enhanced, and so the etched track is shorter.  

Although the details of each fission pair vary, with either the heavier or lighter fragment initially losing energy more quickly, 75 

there is a general pattern of relatively slow change in energy loss rate toward the center of a track, and faster as the enhanced 

etching limit is approached.    

The inference that fission-track etching rates should vary along their length has been borne out by observation.  TEM data 

show that ion tracks have diminishing cross-sectional area with increasing distance travelled through apatite and zircon (Li et 

al., 2011), and it is reasonable to infer that etching rate is influenced by the latent channel width.  Jonckheere et al. (2007) 80 

reported evidence for diminishing etching velocity toward confined track tips in apatite.  More recent work has documented 

enhanced but continuously diminishing etching velocity in the region along tracks beyond that reached by a typical 20-second 

etch (Jonckheere et al., 2017).   

Recent step-etching experiments (Tamer and Ketcham, 2020a) demonstrate that variations in etching rates extend well into the 

interiors of tracks, and suggest that etching velocity should be treated as a continuous function, vT(x), where x is along-track 85 

distance, rather than a single value vT >> vB.  Moreover, preliminary analysis of these data suggests that spontaneous tracks in 

Durango apatite have a significantly different etching structure than induced tracks lightly annealed to have a similar mean 

length. 

Converting step-etching measurements of confined tracks into quantitative estimates of vT(x) is challenging, however, because 

TINT revelation is a complex process.  First, surface-intersecting semi-tracks must etch into the solid crystal.  As they penetrate 90 

they also widen, and this widening is the process by which confined tracks are encountered and etched (Galbraith et al., 

1990;Jonckheere et al., 2007;Ketcham, 2003); the latent tracks themselves have a maximum diameter of about 9 nm (Li et al., 

2010;Paul and Fitzgerald, 1992), and thus only intersect when track density is extremely high (Ketcham et al., 2013).  A 

confined track may be intersected by an expanding semi-track anywhere along its length, and its revelation rate will be a 

function of the etching structure in both directions from that point.  Finally, to be measured, a confined track must be etched 95 
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sufficiently to be seen and judged by the analyst as suitable for measuring.  For routine AFT analysis the track tips need to 

“fully etched,” although this evaluation is analyst-specific.  For measuring tracks in early steps of step-etching experiments, 

when all tracks are under-etched, the criterion is simply that a track and its tips be visible enough to make a reasonable 

measurement. 

3 Data 100 

The data analyzed in this study (Figure 2, Table 1) primarily consist of confined fossil and unannealed and annealed induced 

track lengths from a series of step-etch experiments in Durango apatite in which tracks were individually followed through 

each etching step (Tamer and Ketcham, 2020a).  Step etching data of this sort, enabled by automated image capture 

measurement systems (Gleadow et al., 2009), provide much clearer information on track etching than traditional step-etch 

experiments in which tracks are randomly selected after each etching step (Aslanian et al., 2021;Jonckheere et al., 2017).  We 105 

also use one single-etch-step measurement of spontaneous track lengths in Durango apatite from Tamer and Ketcham (2020b).  

The Tamer and Ketcham (2020a) data also include three “etch-anneal-etch” experiments on annealed induced tracks in which 

apatites were fully annealed after an initial etching step and then re-etched to obtain a robust estimate of the average bulk 

etching rate (vB) at track tips of 0.022±0.004 µm/s/tip.  There was no clear indication of vB varying with track orientation in 

these data.  While perhaps unexpected in view of the anisotropy of etch figures (Burtner et al., 1994), this result is consistent 110 

with dissolution theory because confined track tips are concave and thus limited by the slowest crystallographic etching planes, 

as opposed to etch figures, whose boundaries are convex and limited by the fastest (Aslanian et al., 2021).  We only use the 

first step in the etch-anneal-etch experiments in this study, as a 10-second etching experiment for their respective annealing 

states. 

All experiments have been renamed from their original sources to make them easier to follow here.  In the revised naming 115 

scheme, the first symbol (S or I) indicates spontaneous or induced tracks, and the second (U or A) indicates unannealed versus 

annealed by laboratory heating.  For the annealed experiments, the following number indicates the temperature of 24-hour 

isothermal heating (235, 270, 280°C).  The final hyphen and number indicate the duration in seconds of the first etching step 

in a series.  

In addition to generally showing falling etching rates with increasing etch time and etched length for each track type, a cursory 120 

examination of the data in Table 1 and Figure 2 reveals a number of seemingly surprising results.  The bulk etching velocity, 

indicated by the slopes of the dashed lines for the etch-anneal-etch experiments, is only achieved after 25 seconds in experiment 

IU-10, and not even after 30 seconds for IU-20.  For both spontaneous and unannealed induced tracks, mean track lengths are 

0.4 µm longer at 20 seconds in step etch experiments that began at 10 seconds compared to a single 20-second etch.  Measured 

tracks in the three annealed induced experiments are much longer than fossil and unannealed induced tracks after 10 seconds, 125 

even though they are shorter once fully etched.  Tracks annealed for 24 hours at 235 °C are only 0.4 µm longer when measured 

after 15 seconds compared to 10, but then grow by 1.4 µm between 15 and 20 seconds.  In this study, we show that all of these 
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observations can be explained by a simple etching rate structure in the context of a full model of TINT revelation and 

measurement. 

We have added to these data new measurements of the intersection points between the confined tracks and impinging semi-130 

tracks, with the goal of evaluating model predictions for where TINT intersections occur.  These measurements were made 

using the “cross section” tool in FastTracks software (v3), measuring the distance from each intersection to the uppermost tip 

of the confined track, and then converting that to true distance using track dip.  In cases where it was difficult to determine if 

an intersection truly occurred due to interfering features, we included it.  We took this as the conservative choice, as the 

principal mechanism by which our etch rate determinations can be wrong is if multiple intersections lead to artificial, apparent 135 

acceleration of etching due to different parts of the track etching separately, and we wanted to examine the worst possible case. 

4 The Model 

This section describes our model for TINT revelation and measurement.  Figure 3 shows our functional descriptions for vT(x) 

etching structure, and Figure 4 schematically outlines how we incorporate etching structure into our overall model of semi-

track penetration and expansion, followed by revelation, growth, detection, and measurement of confined tracks.  Each aspect 140 

of the model is described in detail below. 

4.1 Etching structure 

The energy loss rates of fission particles (Fig. 1) suggest that etching rates decline continuously toward track tips, with the 

possibility of a region of slower change in the center of the track.  Accordingly, we consider two simple end-member 

possibilities for etching velocity structure (Figure 3), “Constant-core” and “Linear.”  Both are encompassed in Equation 1: 145 

 𝑣𝑇𝑚𝑎𝑥
 𝑥𝑇1

≤ 𝑥 ≤ 𝑥𝑇2
 (1a) 

𝑣𝑇(𝑥) = 𝑣𝑇𝑚𝑎𝑥 − 𝐴|𝑥 − 𝑥𝑇1 𝑜𝑟 𝑇2
|;  𝐴 = |

∆𝑣𝑇𝑚𝑎𝑥−𝐵

∆𝑥𝑇𝑚𝑎𝑥−𝐵

| 𝑥𝐵1
≤ 𝑥 < 𝑥𝑇1

;  𝑥𝑇2
< 𝑥 ≤ 𝑥𝐵2

  (1b) 

 𝑣𝐵 𝑥 < 𝑥𝐵1
;  𝑥𝐵2

< 𝑥 (1c) 

The latent track is defined by a set of etching rates along x, with the starting point for etching, or point where the etchant 

pathway intersects the latent track, denoted as 𝑥𝑖𝑛𝑡 .  In the Constant-core model, the track middle has a constant etching rate 

𝑣𝑇𝑚𝑎𝑥  over length ∆𝑥𝑇𝑚𝑎𝑥 , beyond which etching rate falls at linear rate A over distance ∆𝑥𝑇𝑚𝑎𝑥−𝐵 until it drops by ∆𝑣𝑇𝑚𝑎𝑥−𝐵 

to 𝑣𝐵.  Defining our coordinate system such that the track extends in the positive direction from one tip at x=0, we define 

coordinates 𝑥𝐵1
 and 𝑥𝐵2

 to be the track tips, beyond which etching occurs at the bulk rate; and 𝑥𝑇1
 and 𝑥𝑇2

 demarking the 150 

central zone of maximum track etch rate.  The Linear model is simply the special case where ∆𝑥𝑇𝑚𝑎𝑥 is zero.  We define the 

latent track length as the zone of enhanced etching velocity: 
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 𝐿𝑙𝑎𝑡 = ∆𝑥𝑇𝑚𝑎𝑥 + 2∆𝑥𝑇𝑚𝑎𝑥−𝐵 (2) 

Only simple models are justifiable at this point because of our limited number of experiments.  The Linear model is simpler, 

but the Constant-core model includes the simplest possibility of constant etch rate for the entire track if ∆𝑥𝑇𝑚𝑎𝑥−𝐵 equals zero.  

These models may be considered end-members of a more complex model in which reduction in etch rate slowly accelerates 155 

as the track tips are approached.  For this initial effort, we neglect length and etching anisotropy, as well as other complexities 

such as the asymmetric nature of true tracks due to the unequal energies and masses of the fission particles, and the possibly 

discontinuous structure of tracks toward their tips.  Figure 1 suggests that there are many etching structures depending on 

which atoms were generated by fission, so any single model can only be considered an average.   Additionally, the etching 

structure implied by Figure 1 only strictly applies to unannealed tracks, and we have no indication of how it evolves with 160 

annealing at various conditions, other than overall shortening. 

To convert the etching structure to the time required to etch out to a certain length starting from a given xint, we integrate 

Equation (1).  For simplicity, we do this only for etching in the positive direction toward 𝑥𝐵2
, denoting that semi-length as L2; 

its counterpart L1 is calculated using the same set of equations by changing xint to Llat – xint..  Etching of the grain mount 

commences at time t=0, and the confined track starts to etch at a later time ts, to account for the time necessary to propagate 165 

and widen the impinging semi-track sufficiently to intersect the latent confined track.   There are three cases to consider 

depending on where 𝑥𝑖𝑛𝑡  is: in the tip nearest 𝑥𝐵2
, in the constant-rate core, or in the tip nearest 𝑥𝐵1

.  If 𝑥𝑖𝑛𝑡  is in the constant-

rate core, the second case, then the time required to etch to a semi-length L2 is: 

𝑡(𝐿2) = 

𝑡𝑠 +
𝐿2

𝑣𝑇𝑚𝑎𝑥

 𝐿2 ≤ 𝑥𝑇2
− 𝑥𝑖𝑛𝑡  (3a) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

+ ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑖𝑛𝑡+𝐿2

𝑥𝑇2

 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝐵2

− 𝑥𝑖𝑛𝑡  (3b) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

+ ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝐵2

𝑥𝑇2

+
𝐿2 − (𝑥𝐵2 − 𝑥𝑖𝑛𝑡)

𝑣𝐵

 𝑥𝐵2
− 𝑥𝑖𝑛𝑡 < 𝐿2 (3c) 

After integrating, the solution becomes: 

𝑡(𝐿2) = 

𝑡𝑠 +
𝐿2

𝑣𝑇𝑚𝑎𝑥

 𝐿2 ≤ 𝑥𝑇2
− 𝑥𝑖𝑛𝑡  (4a) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln (1 +

𝑥𝑇2
− (𝑥𝑖𝑛𝑡 + 𝐿2)

𝑣𝑇𝑚𝑎𝑥

𝐴

) 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝐵2

− 𝑥𝑖𝑛𝑡  (4b) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

+
𝐿2 − (𝑥𝐵2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵

 𝑥𝐵2
− 𝑥𝑖𝑛𝑡 < 𝐿2 (4c) 

Solving these equations for semi-length as a function of etching time then gives: 170 
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 0 𝑡 ≤ 𝑡𝑠 (5a) 

 𝑣𝑇𝑚𝑎𝑥
(𝑡 − 𝑡𝑠) 𝑡𝑠 < 𝑡 ≤ 𝑡𝑠 +

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

 (5b) 

𝐿2(𝑡) = 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 +

𝑣𝑇𝑚𝑎𝑥

𝐴
[1 − 𝑒

−𝐴(𝑡−𝑡𝑠−
𝑥𝑇2−𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥
)
] 𝑡𝑠 +

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

< 𝑡 ≤ 𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
𝑙𝑛 (

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

) (5c) 

 𝑥𝐵2
− 𝑥𝑖𝑛𝑡 + 𝑣𝐵 [𝑡 − 𝑡𝑠 −

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

+
1

𝐴
𝑙𝑛 (

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

)] 𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
𝑙𝑛 (

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

) < 𝑡 (5d) 

Solutions to the other two cases are provided in the Appendix.   

Figure 5 illustrates lengthening curves for example Constant-core and Linear structures for unannealed induced tracks.  

Lengthening is mostly nonlinear, accelerating and decelerating depending on local etching structure and asymptotically 

approaching the bulk etch rate toward track tips.  An immediately interesting outgrowth of this model is that etched track 

length after a given amount of time varies depending on where the track is intersected by the etchant pathway.  Figure 5C,D 175 

shows the development of total confined track length with time etching depending on intersection point.  Starting etching from 

the track center is most efficient, as equal etching can occur in both directions, and if intersection occurs toward one end the 

result is a shorter etched track.  Variation in intersection point alone is likely responsible for some component of the observed 

variation in track lengths. 

4.2 Semi-track penetration and confined track revelation 180 

Once the track etching structure is defined, we can then describe how semi-tracks penetrate into the solid grain, etching 

downward and then expanding outward to intersect and reveal confined tracks.  For internal surfaces (i.e. grains mounted and 

polished to remove ~10 µm or more of material), tracks will originate from fission events both above and below the polished 

surface, and will cross the polished surface at all possible angles. Although track orientations are completely random, their 

crossings are subject to two biases (Dakowski, 1978).  First, the relative probability of a track of latent half-length L crossing 185 

the surface plane will depend on track dip  as L sin .  Second, the relative abundance of tracks at dip  will vary as cos , by 

analogy of the area between latitude lines on a globe, which diminishes toward the poles.  Thus, the probability of a semi-track 

occurring will be proportional to L sin  cos .  The xint point at which the track intersects the polished surface is evenly 

distributed along its length.  The semi-track penetration calculation thus consists of randomizing some number (typically 105) 

of lengths, dips, and xint points (Fig. 4A), and then using the etching model to trace each semi-track’s etching downward into 190 

the grain surface (Fig 4B-E). 

We also consider the case of implanted ion tracks, whether from 252Cf or a particle accelerator.  Here the surface intersection 

angles and xint points are not random, but constant.  As 252Cf irradiation was used for our spontaneous track data, we use a 

mean 252Cf semi-track length of 5.9 µm with standard deviation of 1.4 µm, based on unpublished measurements at the 

University of Texas.  We also assume a dip of 75°; Jonckheere et al. (2007) point out that, to maximize etching efficiency, ion 195 

tracks should not be normal to the polished surface. 
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Confined track revelation requires that, once the semi-track has reached a given depth, it then begins to etch outward into the 

undamaged crystal at that depth (Fig. 4B), at the bulk etching rate, even as it continues to propagate downward.  The probability 

of a semi-track encountering a confined track is proportional to the diameter of this etched zone, and increases as the track 

widens.  Thus, the net probability of intersection of a confined track at a given depth z during a given time step t is proportional 200 

to the net growth in semi-track diameters Ds normal to the confined track (Fig. 4C): 

 𝑃(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛|𝑧, 𝑡) ∝  ∑ 𝐷𝑠(𝑧, 𝑡)

𝑠

− ∑ 𝐷𝑠(𝑧, 𝑡 − 1)

𝑠

 (6) 

Revelation is actually anisotropic based on the shape of the etch figures (Galbraith et al., 1990;Ketcham, 2003) or internal 

crystallographic planes (Jonckheere et al., 2019), but we omit this consideration for our simplified initial model, which neglects 

track crystallographic orientation. 

Figure 6 shows examples of calculated penetration and revelation rate.  For randomly oriented tracks on an internal surface 205 

(Fig. 6A, B), net penetration and revelation develop relatively slowly, as the majority of semi-tracks are at intermediate angles 

to the grain surface.  It is also noteworthy that penetration is limited, and that ~10% of semi-tracks reach a depth of only 1 µm 

or less.  Although the 252Cf tracks are shorter and thus penetrate less deeply, as they reflect only one fission particle, penetration 

and revelation are relatively fast because of their consistent and efficient orientation (Fig. 6C, D). 

4.3 Confined track intersection 210 

The relationships represented in Figure 6B or 6D are used to calculate a cumulative distribution function (CDF) for intersecting 

possible confined latent tracks as a function of time and depth.  We generate some number of intersecting tracks with either a 

single length, or a normal distribution defined by a mean and standard deviation ().  Where we include the latter variation, 

the track etching structure scales linearly with length (∆𝑥𝑇𝑚𝑎𝑥
 and ∆𝑥𝑇𝑚𝑎𝑥−𝐵), but 𝑣𝑇𝑚𝑎𝑥 is left unchanged.  For models shown 

here we use  = 0.8 µm.  We generate a distribution of dip angles ranging from 0 to max, weighted as cos .  For this study we 215 

use a max of 25°, near to the maximum measured in the Tamer and Ketcham (2020a) data set.  We also randomize the 

impingement point (xint) along each latent track, but exclude regions near the track ends, which can obscure the etched tip and 

make it unmeasurable.  For the present work we set this exclusion region to be within 2 µm of each latent track tip. 

Based on the length, dip and impingement point, some of the tracks generated intersect the grain surface, or in other words are 

semi-tracks themselves (Fig. 4E).  We thus cull all tracks with an upper endpoint 0.5 µm or less below the surface to account 220 

for bulk etching down from the original surface and vertical widening of the track. 

Figure 7 shows the result from an example model of 107 track intersections generated over 20 s of etching.  The contour plot 

of all intersections (Fig. 7A) shows that tracks are more likely to be intersected near the surface, and more likely to be 

intersected later in the etch than earlier.  This result is a direct outgrowth of the revelation rate calculation (Fig. 6B); as time 

goes on, more semi-tracks are penetrating deeper and getting wider, increasing the probability of intersecting other tracks at 225 

depth.  Because we generate interior tracks with dips, not all tracks intersected are confined tracks, however.  Figure 7B shows 

that 58% of the generated interior tracks remain after surface-intersecting tracks are excluded, though the calculated proportion 
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should not be taken as an absolute, as it varies with max because more strongly-dipping tracks are more likely to not be confined 

(e.g., Li et al., 2018). 

4.4 Confined track selection 230 

Once the impingement time and along-track location (ts and xint) are generated for a confined track, its etched length through 

time is calculated.  Because track intersection occurs continuously, etched lengths will range from negligibly short up to the 

longest track etched.  However, not all of them will be selected for measurement.  In order to test and calibrate the model 

against measured confined track lengths, is it necessary to estimate which confined tracks the analyst will see and measure, 

and which ones the analyst will miss or reject.  We are not aware of any previous work on this topic, and so we created a set 235 

of criteria intended to broadly describe the two modes of track selection used by Tamer and Ketcham (2020a,b).   

For experiments where the first or only etching step lasted 20 seconds, Tamer and Ketcham (2020a,b) measured confined track 

lengths as would be done for normal AFT analysis.  In standard practice, the analyst aims to measure only tracks that are “fully 

etched” or, as proposed by Tamer and Ketcham (2020a), “sufficiently etched” according to the analyst’s judgement.  Making 

this determination is a matter of training and experience, however, and it is to a significant degree arbitrary, although a good 240 

analyst tries to maintain consistent criteria.  It is based primarily on the appearance of the track tips, which will develop as a 

function of the etching velocity along the track, or vT(x). 

For convenience, we define the tip etching state in terms of the ratio vT(x)/vB (or, more briefly, vT/vB) at the etched tip, though 

the actual tip state will also depend somewhat on the slope of vT(x) leading up to the tip.  We further propose that, to first order, 

each analyst has a characteristic vT/vB for tracks that they decide are sufficiently versus insufficiently etched.  In our model 245 

each track is evaluated based on the less-etched tip, with the larger vT/vB value. 

Figure 8 shows a rough approximation of the evolution of a track tip through a series of etching times, using vT(x) for along-

track etching and vB for etching perpendicular to the track.  The calculation is simplified compared to recent work that 

endeavors to incorporate the detailed etching structure caused by internal crystal lattice planes and the angle of the track 

(Aslanian et al., 2021;Jonckheere et al., 2019), but it is a reasonable depiction of a track at ~45° to the c-axis (see. Fig. 9).  As 250 

vT(x) falls along the track, the tip widens and becomes more distinct far before the true end of the track is reached.  When vT/vB 

finally falls to a value of 1.0, the track is bulbous by normal AFT analysis standards, and most, perhaps all, analysts would 

judge the track as sufficiently distinct to measure at some earlier stage.  Given the large length change with even subtle changes 

in track tip shape, more than 2.2 µm as vT/vB goes from 11 to 1, it is evident that analyst judgement in tip evaluation can be a 

first-order factor in explaining inter-analyst variation in track measurement.   255 

For step etching experiments with first steps shorter than 20 s, precise location of the tip is not a prerequisite for track selection, 

which is instead a matter of simple visibility.  In the earliest stages of etching, tracks will be too thin to be observable in visible 

light.  As they grow, they become more efficient at reflecting light, making them more detectable.  However, precisely when 

this occurs in practice is unclear. 
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The photomicrographs of developing etched tracks in Figure 9 illustrate both cases.  After a 10-second etch, most tracks are 260 

barely visible in still images, and are mostly found by careful searching and racking the microscope focus to look for linear 

features with discernible tips (see supplemental information for Tamer and Ketcham, 2020a, for an animation).  Although such 

tracks are prone to a larger measurement uncertainty, our etch-anneal-etch experiments, which found constant etching rates in 

two etch steps after annealing tracks at the 10-s etching stage (Fig. 2), found no significant evidence of a slightly etched but 

still invisible track beyond the visible tips.  At later etching steps, whether a particular track is clear enough to measure is 265 

subject to analyst judgement, although they continue to get significantly longer with each step. 

Lacking a physical basis for determining when briefly-etched tracks begin to become visible, and how likely they are to be 

seen by the analyst, we examined the shortest tracks measured during the initial etching steps, and by trial and error constructed 

an empirical two-component operator bias function for the probability of an etched track being measured.  Etching time must 

be greater than 3 s, after which the probability of selecting a track is ((L - 2)/7)3; no tracks are selected below 2 µm and all 270 

tracks are selected by 9 µm, with a power-law increase in probability between those lengths.  We stress that this latter 

formulation only applies to tracks in their initial stages of etching, and not to truly short tracks that etch for enough time to 

widen. 

Both observability criteria and their outcomes are demonstrated in Figure 10.  Figure 10A shows the short-first-step probability 

of measurement, and Fig. 10B shows the predicted length distributions for unannealed induced tracks after 10 s (corresponding 275 

to experiment IU-10), and the subset of tracks that are selected, which is very similar to the measured distribution (Fig. 10C).  

Figure 10D-F shows the corresponding case of standard track selection after a 20 s etch (experiment IU-20).  The tracks have 

a range of tip development (Fig. 10D), and selecting only those with vT/vB ≤ 12 (Fig. 10E) results in an excellent match to the 

measured data (Fig 10F).  The model histograms (Fig. 10B, E) also provide an indication of how many, or few, confined tracks 

are selected relative to how many are intersected and etched in total. 280 

In addition to lengths, the model also predicts the intersection depth and etching time distribution of selected tracks.  Figure 

11 shows the distribution of modelled track lengths and etching times with depth below the surface of the grain mount for 

unannealed induced tracks.  It is clear that most selected tracks are intersected close to the surface, as that is the area best 

sampled by expanding semi-tracks, and substantial time is required to sufficiently etch a track once it is intersected, which will 

be a function of the along-track etching structure (Fig. 11A).  There is a modest decrease in mean length with depth (Fig. 11B) 285 

owing to deeper tracks on average taking longer to be intersected. 

4.5 Fitting step-etching data 

Finding an etching structure that allows model predictions to match the experimental data consists of posing model parameters 

(𝑣𝑇𝑚𝑎𝑥
, 𝐿𝑙𝑎𝑡 , ∆𝑥𝑇𝑚𝑎𝑥) and using them to construct first a set of penetrating semi-tracks and then a distribution of confined track 

lengths.  For multi-step experiments, confined tracks selected after the first etching step are then allowed to lengthen through 290 

subsequent etching steps.  The resulting mean track lengths are calculated, and compared with the measured mean lengths.  

The reduced chi-squared (2
) value is used to evaluate sets of model results against measurements for a given track type. 
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The step etch experiments only consist of 3-5 steps, making it difficult to meaningfully constrain models with 2-3 variables 

defining etching structure (Eq. 1), in addition to ancillary factors such as analyst selection criteria, with a single experiment.  

Accordingly, we simultaneously fit pairs of data sets with equivalent tracks (e.g., IU-10 and IU-20), so that a single etching 295 

structure would have to explain two etching schedules.  To minimize the effect of the ancillary factors, we used the same ones 

for all model fitting.  After several trials, we settled on a vT/vB of 12, as well as the brief-etch analyst bias function and values 

for minimum tip depth and near-tip exclusion zone for impingement, based on their ability to fit the IU data.  The vT/vB value 

is broadly constrained (range ± ~2) by the mean length measured after the 20-s etch (15.8 µm) versus the length when etching 

rate reaches vB (~17 µm).  The analyst biasing criteria essentially truncate the short part of the track length distribution for the 300 

first etching step, while the etching structure and latent track length standard deviation combine to define the longer part of the 

distribution (Fig. 10B, E).  Both have to fit, or compensate each other, to match the measured mean track length data.  The set 

of tracks selected after the first etching step must then evolve appropriately to match all subsequent etching steps.  Other 

ancillary factors such as xint and max generally have small effects, changing mean confined lengths by 0-0.2 µm when varied 

within reasonable limits. 305 

During fitting of the unannealed induced track data, it became apparent that one pair of data points exerted a disproportionate 

control on the result.  The 15-20-s and 20-25-s steps for experiment IU-10 feature very similar mean length increase (Fig. 2), 

and thus almost the same etching rate, which in turn was much slower than the rate for the 10-15-s etching step.  Because our 

etching structure equations assume that once etching rate begins to fall, it decreases linearly, fits were forced minimize the 

inevitable misfit with these two measurements to the exclusion of closely fitting the rest of the data.  We thus excluded the 15-310 

s measurement for IU-10, effectively making the second etching step go from 10 s to 20 s.  Doing so lowered the fitted 2
 

values for IU from ~7 to ~2, while predicting a mean length 0.8 µm shorter than the omitted measurement.  We also tried 

instead excluding the 10-s measurement for IU-10, but that provided a smaller improvement in 2
 to ~5.6, with a marginally 

higher maximum etching rate of ~2 µm/s. 

Model fitting is complicated by each calculation of predicted track lengths incorporating several randomizations: semi-track 315 

orientation and surface intersection points; internal track dips, depths, and intersection points; and which short tracks are 

observed.  As a result, the same set of model parameters generates slightly different predictions with each model run, and 2
 

values vary by several percent even when simulating 106 tracks.  There is thus no true minimum to converge to, making it 

difficult for iterative search methods to avoid temporary local minima.  We thus fitted the models using the downhill simplex 

method (Press et al., 1988) from multiple starting points, stopping each run after testing 50 models, which by inspection was 320 

a sufficient number for the algorithm to converge toward a local minimum and no longer significantly change parameter values 

being attempted.  For Constant-core models, the three model parameters (latent track length, core zone length, and maximum 

etching velocity) showed a high degree of correlation and broad 2
 minima, requiring running many more simplex instances 

from different starting points to trace out these correlations.   
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The parameter sets we report are those that achieved the lowest 2
 for each data set, but as discussed in the previous paragraph 325 

they are unlikely to be the true optima, and different parameter sets may be able to reach lower scores.  Due to these 

complexities, we define confidence intervals by running 20 repetitions of the lowest-2
 parameter set for each data set, 

determining the mean and relative deviation of 2
.  The confidence intervals include all parameter sets tested during the 

simplex runs with 2
 values within two deviations of the mean.  However, any result with a 2

of around 1 or less can be 

considered a reasonable fit to the data. 330 

5 Results 

Table 2 lists the fitted etching structure model parameters and confidence intervals, along with the mean 2
 values and relative 

deviations, and the right-hand columns of Table 1 provide the model predictions.  The standardized residuals for each fit to 

each data set (Figure 12) show that almost all experimental results were reproduced to within 2 standard errors, and there are 

no indications of any systematic patterns in the misfits.  Figures 13 and 14 show the results of parameter fitting for Constant-335 

core and Linear models, respectively.  Constant-core models tend to support a long stretch of solutions trading off core length 

for maximum etching velocity that in most cases approaches or reaches to a core length of zero, the Linear model case.  

Constant-core model results for latent track length are relatively stable with respect to the other parameters, however, and 

predict ~0-0.1 shorter latent track length than Linear models, with higher divergences for longer cores. Linear model fits show 

a slight correlation between maximum etching velocity and mean latent track length for the unannealed experiments, but little 340 

to no correlation for the annealed experiments. 

Only the fit to the SU data implies significant support for the Constant-core etching structure over the simpler Linear one, and 

even in that case the Linear model still achieves an 2
of 0.5 indicating that it fits the data to well within the measurement 

uncertainties.  We can thus say that, to within the resolution of our data, the Linear structure is adequate for all cases that we 

tested, and that all of our data point to a decline in etching velocity from well into the track interior to the track tips. 345 

The starkest difference in etching structure is evident in Figure 15, showing the best-fit results for both model types.  

Unannealed induced and fossil tracks both have slow-etching central regions, whereas all samples that underwent laboratory 

annealing have roughly double the maximum etching rates in their centers.  Due to their also being shorter, the fall-off in 

etching velocity from track centers to tips occurs at a ~2.5x faster rate for the annealed experiments compared to the unannealed 

ones. 350 

Table 1 also lists the number of impingements per track after the final etching step in each experiment, and supplemental 

Figure S1 shows histograms of their measured depths.  Generally, data corroborate modelling results that most TINT 

intersections occur close to the polished surface, with the mean depths in all cases being less than 5 µm. The number of 

intersections per confined track is unusually high due to the large latent track densities, and Cf irradiation for the SU 

experiments.  We do not know precisely when these intersections occurred, however, and in particular whether a given semi-355 

track intersected a still-latent part of the confined track, or one that was already etched. 
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6 Discussion 

Our model of track revelation incorporating a simple along-track etching structure is able to closely reproduce our step-etching 

data using a consistent set of assumptions about track detectability and selection, and explains the otherwise odd-appearing 

features of the data mentioned previously.  For example, our results show that the 0.4-µm increase in mean track length after 360 

20 seconds of etching in experiment IU-10 versus IU-20, and SU-10 versus SU-20, is a direct result of tracks being selected 

after 10 seconds, leading to the measured tracks being etched an average of ~2 seconds longer than if they are selected after 

20.  Similarly, the unexpected observation that annealed tracks (IA235-10, IA270-10, IA280-10) are longer than unannealed 

ones (IU-10, SU-10) after 10 seconds of etching is explainable by a change in etching rates that is consistent with measurements 

after longer initial etching steps.  The small increase in mean length for IA-235 after a 15-s versus 10-s initial etch, followed 365 

by a much larger increase between 15 and 20 seconds after step etching, is consistent with the analyst selection model employed 

across all experiments.  We take these successes as an indication of the overall validity of our characterization of confined 

track etching.   

The primary mechanism by which our derived etching rates may be grossly incorrect is the possibility that multiple 

impingements to the same tracks caused faster etching.  While this is a concern, we do not believe that our derived etching 370 

rates are significantly affected.  Our slowest-etching sample, SU, has about that same number of impingements per track as 

the 10-second experiments that help establish the fast early etching rates for the annealed experiments, and more impingements 

per track than the faster-etching IU.  For an additional impingement to accelerate track revelation substantially, it would 

probably need to intersect an as-yet-unetched part of the track, and thus must happen within a few seconds of the first one, 

whereas impingements with no effect can occur at any time.  Impingements also become more likely when both the semi-track 375 

and confined track are widening, in essence growing to meet each other.  Additionally, our intersection numbers are probably 

high, as we counted all likely impingements, but limited optical data resolution can make it difficult to determine whether 

there is a true impingement or a near miss.  When we regress the number of intersections against mean track length (Fig. S2), 

the annealed experiments range from 0.04 to 0.21 µm/intersection; even after removal of such an effect, our annealed track 

measurements would be significantly longer than unannealed ones after 10 seconds of etching.  In sum, our high intersection 380 

numbers may have resulted in some over-estimation of the etch rates of our annealed track experiments, but not enough to 

change the broad conclusions we draw from those data. 

Another possible weakness in our results is that the 10-s measurements by Tamer and Ketcham (2020a) are more likely to be 

erroneous due to the tracks’ poor visibility, as the true etched ends of the tracks may not have been wide enough to be visible.  

In the experiments with annealed induced tracks that underwent etch-anneal-etch examination, we are confident that this was 385 

not an issue: only a handful showed evidence of enhanced etching after the annealing step, which were not enough to affect 

the average bulk etch rates.  However, the longer unannealed induced and fossil tracks could have had a greater incidence of 

this effect; such a phenomenon might partially underlie our removal of the 15-s experiment from fitting, although we tested 
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for this by trying to remove the 10-s result instead.  Even in this case, the result remains consistent with all of the outcomes 

discussed below. 390 

6.1 Etching structure model form 

The success of both the Constant-core and Linear etching structures in fitting the data clearly indicates that etching rates start 

diminishing well before the tips are reached.  For both unannealed and annealed induced-track experiments, there is little to 

no improvement of fit with the more complex Constant-core structure, whereas for fossil tracks the Constant-core structure 

provides a better fit, but a Linear one still fits to well within the uncertainty of the measurements.  We take these results as an 395 

indication the Linear structure adequately describes our data, but further or better measurements may reveal an etching 

structure similar to that implied by the theoretical energy loss profiles (Fig. 1) for some track types.  Etching rate may be linked 

similarly to latent track cross section diameter, which gradually shrinks from the fission site to the tips (Li et al., 2012).  The 

TEM data suggest the existence of an inflection point from slower to faster diameter reduction, which a linear combination of 

the Linear and Constant-core models would roughly approximate.  However, such a model would take four parameters to 400 

define (maximum etch rate, etch rate at inflection point, width of interior zone, latent length), which is too complex for the 

limited amount of data we have, and thus we prefer simple models at this stage.  Smooth functions are of course also possible, 

and arguably preferable, but would also require as many or more degrees of freedom.   We finally note that the variety of 

fission products implies that there will also be a variety of etching structures (Fig. 1), so any single structure can only represent 

an average.  It is possible that such variation is responsible for our poorer IU data fit, and that annealing leads to a convergence 405 

of etching structure. 

It is also possible that falling directly to our measured vB is an oversimplification of the latent track tip, and that etching velocity 

has a sigmoidal form that asymptotically approaches a limiting and lower bulk value due to sporadic damage remnants, as 

postulated by Jonckheere et al. (2017) and Aslanian et al. (2021).  We cannot rule this possibility out, but consider it likely to 

have at most a minor influence on practical observations, as they needed to etch for more than 40 seconds to reach inferred 410 

etching rates for Durango apatite lower than our value for vB. 

6.2 Fossil versus induced tracks 

Fossil and unannealed induced tracks have slow core etching rates, while all of our annealed induced experiments feature far 

higher rates.  This implies that the high temperatures used for laboratory annealing experiments may reorganize the atoms in 

the track core in a way that does not occur during geological low-temperature annealing.  Such a phenomenon could be 415 

responsible for some component of the mismatch in annealing fossil versus induced track annealing behavior in laboratory 

experiments (Wauschkuhn et al., 2015), although we do not yet have data to gauge whether high-temperature annealing of 

fossil tracks has the same effect as on induced ones.  Additionally, insofar as the annealing that affects lengths takes place at 

track tips, the significance of what happens in the core region is unclear.  Nevertheless, our result corroborates that there are 

differences between fossil and annealed induced tracks, which may imply a violation of the principle of equivalent time, that 420 
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“a track which has been annealed to a certain degree behaves during further annealing in a manner which is independent of the 

conditions that led to the prior annealing” (Duddy et al., 1988). 

 Although Duddy et al. (1988) experimentally validated the principle of equivalent time, they could only do so on annealed 

induced tracks.  Contemporaneous experiments (Green, 1988) also supported the equivalency of track types and annealing 

modes, by providing evidence that spontaneous track lengths should be normalized against induced ones, to in turn provide a 425 

normalization for spontaneous track density.  Contrary to these studies, the more specifically designed experiment by 

Wauschkuhn et al. (2015) documented a case that demonstrates non-independence of prior annealing conditions – tracks 

annealed geologically to ~14 µm do not behave during further annealing equivalently to tracks annealed in the laboratory to 

~14 µm.  However, this observation has only been made in a single apatite type, and the degree of disagreement is limited to 

1 µm or less.  Thus, the extent to which such a departure affects practical usage is unknown, and the generally observed 430 

agreement between interpretations based on apatite fission track and other thermal history indicators suggests it is minor, or 

within the noise of the method as it is currently practiced.  As the community works to improve the method and reduce the 

noise, as well as to develop a better physical understanding of fission-track annealing, however, this divergence will deserve 

continued attention. 

6.3 The line segment model and length bias 435 

Mathematical treatments of fission-track lengths are all based on a line segment model (Laslett et al., 1982;Parker and Cowan, 

1976;Galbraith, 2005), which posits latent tracks as line segments within a volume that are detected and become fully etched 

when intersected. One outgrowth of the line segment model is length biasing; the probability of intersecting and thus detecting 

and measuring a latent track is proportional to its length.  This study shows this to be an oversimplification.  Many more tracks 

are intersected than measured (Fig. 10), because of the significant time required for a track to etch.  The controlling parameter 440 

on detectability then becomes how quickly they become sufficiently etched to be accepted by the analyst, which in turn depends 

on length, etching velocity structure, and analyst criteria.  Figure 16 shows example model prediction of tracks based on IU 

(unannealed) and IA-280 (most highly annealed) induced tracks, both modeled as being revealed using Cf semi-tracks to give 

a common baseline for track revelation.  Only 19% of the confined unannealed tracks end up being selected, due to slow 

etching requiring at least 8 s and on average 14 s for tips to be sufficiently revealed (for vT/vB = 12).  Because the annealed 445 

tracks etch more quickly and don’t have as far to etch, requiring as little as 4 s and averaging 11 s, 59% of confined tracks 

intersected are sufficiently etched to be selected.  If we take into account the 2-µm exclusion zones at each track tip, the line 

segment model states that the annealed tracks are only 65% as likely to be intersected as the unannealed ones.  This remains a 

source of bias, but even after incorporating this intersection probability, the annealed confined tracks are approximately twice 

as likely to be selected for measurement as the unannealed ones.   450 

This is an extreme example, as we have no data yet that indicates that fossil tracks with varying levels of annealing have this 

degree of etching rate variation, but it demonstrates that etching properties can be far more influential than length biasing in 

determining the relative probability of track measurement.  Length biasing is a central assumption embedded into track length 



16 

 

modeling (Green et al., 1989;Ketcham, 2005;Willett, 1997), as it determines how to construct a combined track length 

distribution from individual populations of tracks generated throughout a geologic history.  A substantial change in inter-455 

population biasing will alter the shape of time-temperature paths by changing the proportion of time spent at different 

temperatures required to generate a given observed track length distribution.    A thorough re-evaluation of this biasing based 

on measurements of fossil track etching structure is thus a necessity for setting such modeling on a firmer foundation. 

6.4 Sources of analyst variability 

Our model illustrates how the measured length distribution for a single population of tracks is controlled on the long side by 460 

the maximum extent of etching, and on the short side by the analyst’s selection criteria.  This idea leads to a very compelling 

explanation for the observed variability in inter-laboratory studies: different judgement of track tips.  In their international, 

inter-laboratory exercise, Ketcham et al. (2015) reported variation in measured track length for unannealed induced tracks in 

Durango apatite across all levels of analyst experience, and without any obvious linkage to specific etching protocol (Fig. 18).  

Table 3 and the histograms at the bottom of Figure 17 show the corresponding model predictions, varying only vT/vB.  Virtually 465 

the entire range of the data can be explained by this one parameter; 68% of results lie between the predictions for 16 and 4, 

and 30% between 12 and 8.  The median track length measurement was 15.9 µm, which corresponds to a vT/vB value of ~11. 

As vT/vB rises, the proportion of accepted tracks increases, and the mean track length falls; essentially, relaxing tip selection 

criteria makes it easier to measure a large number tracks.  Conversely, using restrictive criteria can strongly reduce the number 

of tracks measured, but also reduces scatter, making the information in the individual tracks lengths less ambiguous.  Figure 470 

18A shows the observed relationship of mean length to standard deviation for the Ketcham et al. (2015) exercise.    The increase 

in standard deviation predicted by the model matches the data quite well.  The model prediction, and the data, also indicate 

that scatter does not start increasing quickly until the mean length falls below 16 µm, or a vT/vB value of about 8.  Figure 18B 

and Table 3 show that the predicted number of tracks that meet a given vT/vB standard begins to rapidly rise as the standard is 

relaxed; for example, a vT/vB standard of 12 provides ~2x as many tracks as a vT/vB of 8, and ~14x as many as a vT/vB of 4. 475 

Because having a high number of confined tracks is better for thermal history modeling, there is a practical incentive to adopt 

criteria that will provide reasonable numbers of tracks for a reasonable amount of effort.  This may create a tension between 

having demanding tip criteria to ensure tracks are all “fully etched,” versus accepting a lower level of etching that provides 

more tracks.  One way to ameliorate this tension is with 252Cf or ion track irradiation, which makes it easier to achieve high 

numbers while retaining very demanding tip criteria.  However, we note that even the longest measurements reported by 480 

Ketcham et al. (2015), likely reflecting the most rigid criteria, still do not reach the full mean latent track length of 17 µm 

indicated by our data and model. 

Another option is to maintain very consistent criteria, even at a diminished level of tip etching.  The considerable variation 

observed among even experienced analysts in the Ketcham et al. (2015) exercise likely represents this occurring, but at 

differing degrees of etching, in various lab groups.  The model introduced here potentially provides the capability to evaluate 485 
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the trade-offs between efficiency and dispersion.  However, to do so, more information is required to better document effects 

of track angle, apatite solubility, and etching rates of fossil tracks. 

Yet another avenue to improvement may be to utilize other measurements that can be made on tracks, such as tip shape (through 

image analysis) or track thickness (Aslanian et al., 2021), to evaluate degree of etching, and construct a suitable compensation 

factor.  Indeed, ultimately it may be possible to use image analysis or machine learning to evaluate degree of track etching, 490 

and by so doing extract more precise length and thus thermal information.  Again, many more measurements will be required, 

and the context provided by an etching model will be important to any such effort. 

Analyst variability in tip evaluation may also underlie the different trends seen in length versus c-axis angle () distributions 

among analysts (Ketcham et al., 2015;Ketcham et al., 2007a).  Because etched track morphology changes with c-axis angle, 

and because tip visibility diminishes in low-angle and very high-angle tracks, different choices made by analysts on which of 495 

these tracks to accept versus reject may be responsible for the different observed trends in Lc vs. La (the c-axis and a-axis 

intercepts for ellipses fit to length versus ).  Moreover, changes in etching structure and thus tip revelation between annealed 

induced and fossil tracks could shift the appropriate c-axis projection between these track types. 

What is the best way to overcome analyst variability?  One avenue may be improved training and community consultation so 

all agree on what a sufficiently etched track is.  Such a prescription may be tricky, however, as tip appearance depends on 500 

multiple factors, especially apatite composition but also including mount preparation, polishing, and cleaning technique, 

etching protocol, microscope optics, and captured image quality, which will vary over the community and can be expected to 

slowly improve over time.  An alternative may be to use measurements of standards to determine an analyst’s vT/vB (or some 

other indicator quantifying selection criteria), and use that as a more informative renormalization parameter than simply the 

unannealed induced track length.  Whereas length normalization consists of simply dividing mean lengths by an initial length, 505 

utilizing vT/vB may provide a means to account for how different tip evaluation criteria affect measurements differently at 

various levels of annealing.   

There is also the question of whether and how etching procedure matters.  Etchant strength affects etch figure shape, and must 

affect both along-track and bulk etching rates, perhaps by different factors for each.  We note that the overall schema that we 

are proposing contradicts some aspects of our own recent interpretation of why two major etching protocols (5.5 M HNO3, 510 

21°C, 20 s vs. 5.0 M HNO3, 20 °C, 20 s) produced different results in a detailed comparison by two analysts (Tamer et al., 

2019).  We interpreted this to reflect that the weaker etchant and lower temperature resulted in more under-etched tracks, 

leading to shorter mean track lengths.  However, the vT(x) model makes clear that under-etched tracks are always present; it is 

merely a question of whether they are selected.  Whether more under-etched tracks were chosen because better-etched tracks 

were more uncommon, or because the different etchant subtly affected their appearance, or because of some other factor, we 515 

cannot establish at this time.  It may be reasonable to infer, however, that maintaining consistent selection criteria is more 

important than consistent etching procedures for making reproducible measurements. 
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6.5 Normalization and annealing models 

Ideally, divergences in analyst measurements can be overcome by normalizing them to some standard, usually the 

measurements that underlie the annealing model used to interpret their data (Barbarand et al., 2003;Carlson et al., 1999).  520 

Typically, this normalization consists of dividing by a determination of initial track length (L0; unannealed induced tracks) by 

the analyst, employing the same procedures used for unknowns (e.g., Green et al., 1986).  The results of this study, however, 

suggest that this approach may be oversimplified and in need of improvement.  Table 4 contains model predictions for three 

track types across three vT/vB selection criteria.  The predicted mean track length for unannealed induced tracks (IU) ranges 

from 15.7 to 16.3 µm after 20 s of etching as selection criteria grow more strict.  Using these values to normalize the unannealed 525 

spontaneous track measurements works very well (L/L0 = 0.912-0.915).   However, due to their faster etching rates, the 

predicted lengths of annealed sample IA280 are much more stable (12.4-12.5 µm), and the normalization actually destabilizes 

them (L/L0 = 0.766-0.790).  There is some indication of this phenomenon in the sample from the Ketcham et al. (2015) inter-

laboratory study with the most similar level of annealing, DUR-1.  Agreement in raw length measurements was arguably best 

for that sample among the four in that study, and normalizing by initial length alone actually increased the scatter among 530 

several laboratories (compare Fig. 3B and 7B in Ketcham et al., 2015).  Convergence was maximized only after also 

normalizing for track angle using c-axis projection (and omitting results for which no angle measurements were provided). 

It may be that etching rates remain low in annealed fossil tracks, reducing this divergence in behavior and improving the 

performance of regular normalization for geological investigations.  However, this remains to be established via measurements.  

Even so, an improvement in cross-normalization of measurements of annealed induced tracks would be valuable, as a means 535 

of increasing the inter-compatibility of length measurements across different experimental annealing studies.  Mostly minor 

but occasionally consequential differences in annealing temperatures predicted by the Ketcham et al. (1999) annealing model 

based on Carlson et al. (1999) measurements, versus the Ketcham et al. (2007b) model which combined these with the 

Barbarand et al. (2003) results, may be due to oversimplified normalization.  

The clearer picture of track structure provided by the vT(x) model may improve our understanding of annealing and annealing 540 

models in other ways as well.  Our derived true mean latent track lengths in Durango apatite (~17.0 µm induced and ~15.6 µm 

fossil) are significantly longer than measurements obtained with 20-second protocols; more than 1 µm for fossil and 

unannealed induced tracks measured in this study, and 0.7-1.2 µm in Durango apatite measurements in the experimental data 

sets used for annealing models.  

These differences in latent versus measured lengths in unannealed and lightly geologically annealed track populations highlight 545 

a potential shortcoming in the etching procedures employed for the past few decades.  Few if any such tracks are fully etched, 

as etching is halted when track revelation is still somewhere in the decelerating zone.  This in turn amplifies the consequences 

of analyst disagreement about etching extent.  By stopping etching as soon as the curve of length versus time in step-etch 

experiments is passed and a linear zone assumed to reflect the bulk etch rate is reached, the community has essentially set up 
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camp on the edge of a cliff.  A change in etching procedure to allow tracks at all levels of annealing to etch more completely 550 

may be worth considering. 

6.6 Optimizing the etching protocol 

The vT(x) model provides a quantitative framework for evaluating whether the etching procedures used today are the most 

effective for the goal of providing high numbers of reproducible and informative confined length measurements to constrain 

thermal histories.  For example, the model makes clear that the longer the etch, the more tracks that fulfill a given tip clarity 555 

criterion.  As etching continues, fully-etched tracks may become over-etched, though at a rate defined by vB, which may be 

obtainable from etch figure measurements parallel and perpendicular to the c axis, Dpar and Dper (Tamer and Ketcham, 2020a). 

For vB=0.022 µm/s, five extra seconds of etching leads to only a 0.22 µm increase in length for a previously fully-etched track, 

which is close to the resolution limit of individual track length measurements.  Non-fully-etched tracks will lengthen somewhat 

more, depending on the etching rates toward the tips.  However, because the “short side” of the track length distribution is 560 

defined by analyst selection criteria, if these criteria are held consistent, the change in mean length will always be diminished.  

This suggests that over-etching may not be a significant concern, except to the extent that it makes a grain more difficult to 

measure due to the enlargement of multiple etched features, and that it has the advantage of increasing the number of well-

etched confined tracks available.  

We test this proposition using the modeling shown in Table 4 and Figure 19 to estimate what occurs with 25 s of etching rather 565 

than 20 s, for various annealing states and selection criteria.  Using the same selection criterion (vT/vB = 12), mean unannealed 

track lengths rise by up to 0.3 µm, but the number of selectable tracks more than doubles for the slowest-etching tracks 

(spontaneous).  Standard deviations rise by less than 0.1 µm. One can even become more restrictive with etching criteria (vT/vB 

= 8) and still have more tracks to measure.  Of course, changes in etching protocol cannot be considered from the standpoint 

of length measurements alone; possible effects on track density measurements would also need to be considered.  In particular, 570 

it would necessitate a change in zeta calibration factor, and could also impact the ability to measure tracks in apatite with 

higher solubility and larger etch figures. 

The proportion of selectable annealed induced tracks (IA-280) increases only modestly with additional etching time, because 

the faster etching rate and shorter lengths combine to make the baseline selection efficiency much higher.  However, if the 

faster etch rates are a result of laboratory annealing, and naturally annealed tracks have low etching rates more similar to SU, 575 

then the potential benefit of increasing etching time will be larger.  Furthermore, if that is indeed the case, the fact that a 

thermal treatment may significantly increase etching rates and thus revelation efficiency suggests that a carefully controlled 

preheating step might also be a means of greatly increasing confined track numbers, potentially without affecting lengths and 

thus paleothermal information. 
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6.7 Counting efficiency 580 

The semi-track penetration component of the vT(x) model (Fig. 6A) also provides some insights into track counting efficiency, 

and thus age determination.  Efficiency in this context is the measured track density divided by the true track density, or the 

proportion of tracks crossing the polished surface that are detected.  Jonckheere and Van den Haute (1996) denote efficiency 

with two variables, q, to reflect that it contains both geometric () and observer (q) components that are difficult to 

disentangle.  Generally, track etching rates relative to bulk etching rates are too high in apatite to apply the geometric critical 585 

angle equation of Fleischer and Price (1964), c = sin-1(vB/vT), where c is the dip below which tracks become undetectable 

because surface etching is faster than track etching.  The implied efficiency,  = 1 - sin2c ≈ 1 for vT >> vB, is far higher than 

the generally observed factor of ~0.9.  Jonckheere and Van Den Haute (2002) propose instead the concept of a critical depth, 

zc, defining the degree of penetration into the polished surface a track must achieve to be observed, distinguished from other 

features, and counted with confidence by the analyst.  They estimate zc values of 0.8 µm for apatite and 0.5 µm for muscovite 590 

detectors in their data, and propose that efficiency may vary with track length in a way that compounds the effect of length in 

the first-principles fission track age equation. 

The vT(x) model corroborates and extends these conclusions.  Figure 20 shows the near-surface portion of the penetration 

model for fossil and unannealed and annealed induced tracks, and compares penetration after 20 seconds for the three.  The 

rapid falloff in penetration reflects the tracks that originated above the polished surface, and only extend a short distance into 595 

the grain below it.  The spacing of the one-second contours reflects the mean etching rate of track tips at depth through time; 

the slower etching unannealed tracks (Fig. 20A, B) penetrate more slowly than the fast-etching annealed tracks (Fig. 20C, D), 

but eventually all cases converge to closely-spaced contours reflecting bulk etching.  The divergence of the 20-second lines 

reflects a combination of the different mean track lengths and the etching velocities.  If we assume a zc of 0.8 µm, the implied 

q factors are 0.918 for IU and IA235 (�̅� = 15.8 µm and 15.0 µm, respectively), 0.912 for SU (�̅� = 14.4 µm), and 0.902 for 600 

IA280 (�̅� = 12.3 µm).  With further annealing the disparity in efficiency will grow, with estimated q falling to 0.8 at 7.7 µm 

mean track length (Jonckheere and Van Den Haute, 2002).  Essentially, shorter track lengths are less efficiently counted 

because a higher proportion of those that cross the polished surface do not penetrate it sufficiently to be detected reliably.  This 

effect is superimposed on the already understood reduction in track density due to shorter tracks being less likely to cross the 

polished surface in the first place (e.g., Fleischer et al., 1975). 605 

Variable etching rates further affect this picture.  The faster etch rates of IA235 and IA280 increase their track detection 

efficiencies by allowing the tracks to penetrate more deeply.  This is why the q for IA235 matches IU at 0.8 µm despite 

lengths being shorter, and is even larger than IU at shallower depths.  Likewise, if rates for IA280 were more comparable to 

IU and SU, as may be the case for geologically annealed tracks, the discrepancy in penetration between them, and thus q, 

would be larger.  On the other hand, when etching continues after tracks have reached bulk etching rates, as reflected by the 610 

closely spaced lines in the latter stages of etching (Fig. 20C,D), shallow etched features may begin to widen and become less 
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distinct, possibly becoming less likely to be recognized as tracks.  Deeper penetration might then be required for detection, 

essentially increasing zc for faster-etching tracks, which would have a similar effect on efficiency. 

In practice, lower counting efficiency for shorter tracks could mean that the ages of older, more annealed grains may be under-

estimated because more tracks are missed.  Insofar as zeta calibration is based on measurement of standards with low levels 615 

of annealing (Durango, Fish Canyon), this effect may make old samples appear younger, leading, for example, to an increased 

possibility of inversion of apatite fission-track and (U-Th)/He ages (e.g., Flowers et al., 2009).  It may also affect the way such 

samples are quantitatively interpreted using thermal history modeling.  The currently used relationship between length and 

density is based on the data and normalizations put forward by Green (1988), and attempts at first principles derivations of this 

relationship are ground-truthed against those data (e.g., Ketcham, 2003).   If, for example, geological annealing results in 620 

different etching rates than laboratory annealing, the laboratory-measured relation may be biased. 

Finally, we note the relatively steep slopes of the depth versus penetration curves (Fig. 20E), which under the zc model 

correspond to about 1% efficiency (0.01 relative penetration) per 0.1 µm depth.  This highlights the critical role of consistency 

in mount preparation and polishing, and short semi-track identification, in achieving reproducible ages. 

6.7 Outlook 625 

Although the vT(x) model provides a range of insights into the fission track revelation and measurement process, these results 

should be only viewed as preliminary, and far more data are required to construct a complete picture that can fully inform 

practical apatite fission track analysis.  Detailed step-etching measurements of fossil tracks at various stages of natural 

annealing, and induced tracks at more advanced stages of annealing, are required to ascertain how etching velocities evolve, 

including the advent of unetchable gaps.  We particularly note that apatites have a range of solubilities, which will affect both 630 

etching rates and tip appearances and thus selection biases; work on apatites beyond Durango is thus a necessity.   In addition, 

the effects of track c-axis angle need to be incorporated into the modeling, which would be aided by larger step-etching data 

sets better documenting a range of angles.   

Such efforts can be combined with further community-level work to verify the extent to which analytical procedure and analyst 

criteria are responsible for the disappointing lack of consistency in fission-track length data between research groups.  If vT/vB 635 

or something like it can be established as the primary driver of divergence, it will empower the community to make its data 

both more reproducible and more plentiful.  It is likely that etching procedures can be optimized to provide more abundant 

confined tracks, while creating an improved, quantitative link to the experimental data sets that underlie annealing models.  

Follow-on rewards will also include quantitative linkages between experimental data sets across laboratory groups, etching 

protocols, and even apatite varieties, as well as a more complete picture of track structure, all of which will improve our 640 

understanding of annealing.   

Ultimately, as image capture, storage, and processing become more commonplace and more powerful, the possibility of using 

image analysis to evaluate the degree of track etching will grow.  Development of the requisite capabilities promises to not 
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only make length data more consistent, but also more information-rich by characterizing etching extent, and thus true 

underlying latent length, on an individual track level. 645 

7 Conclusions 

A new, comprehensive model of confined fission track etching successfully fits a range of detailed step-etching data for 

Durango apatite, and illuminates details of track structure and the nature of the measurement process.  Specific findings 

include: 

 Along-track etching velocity, vT(x), varies within and among fission tracks, and affects all length measurements as 650 

executed with current protocols. 

 Fission tracks that have only experienced relatively low, near-Earth-surface temperatures etch more than twice as 

slowly than tracks that have been subjected to high temperatures in the laboratory (≥ 235°C, 24 h). 

 For many track populations, especially at low levels of annealing, only a small proportion of tracks that are intersected 

are seen and selected for measurement.  Etching extent and analyst decision-making are more influential than length 655 

biasing in determining which track populations are more likely to be measured, which in turn affects the fidelity of 

thermal history modeling using track lengths. 

 The fall-off in track etching velocity toward track tips, and variability among analysts in how they judge fission tracks 

to be sufficiently etched for measurement, is likely to be the major factor underlying poor reproducibility.  Most 

variation in a major inter-laboratory measurement experiment can be explained by varying only the threshold for 660 

track selection, characterized as the ratio of along-track and bulk etching velocities at the etched track tip (vT/vB). 

 A normalization procedure that accounts for analyst decision-making (e.g., vT/vB), in the context of an overall etching 

model, will be more robust than one based on mean track length measurements alone. 

 The vT(x) model has the potential to allow optimization of etching protocols to maximize both confined track yield 

and information content, while retaining a quantitative link to the experimental annealing data sets that underlie 665 

thermal history modeling. 

 Variable along-track etch rates may also influence the efficiency of semi-track counting for age determinations, and 

our understanding of the length-density relationship that underlies thermal history modeling. 

 

 670 
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Appendix: vT(x) Etching Model Equations 

We characterize the latent track as a set of etching rates along the track central axis, x, with the starting point for etching, or point where the 

impinging etchant pathway intersects the latent track, denoted as 𝑥𝑖𝑛𝑡 .  In the Constant-core model, the track middle section is assumed have to a 

constant etching rate 𝑣𝑇𝑚𝑎𝑥 over length extent ∆𝑥𝑇𝑚𝑎𝑥, beyond which etching rate falls at linear rate A over distance ∆𝑥𝑇𝑚𝑎𝑥−𝐵 until it drops by 

∆𝑣𝑇𝑚𝑎𝑥−𝐵 to 𝑣𝐵.  In the Linear model, ∆𝑥𝑇𝑚𝑎𝑥−𝐵 = 0.  Defining our coordinate system such that the track extends in the positive direction from one 675 

tip at x=0, we define coordinates 𝑥𝐵1
 and 𝑥𝐵2

 to be the track tips, beyond which etching occurs at the bulk rate; and 𝑥𝑇1
 and 𝑥𝑇2

 demarking the 

central zone of maximum track etch rate (see Figure 1): 

 𝑣𝑇𝑚𝑎𝑥
 𝑥𝑇1

≤ 𝑥 ≤ 𝑥𝑇2
 (A1a) 

𝑣𝑇(𝑥) = 𝑣𝑇𝑚𝑎𝑥 − 𝐴|𝑥 − 𝑥𝑇1 𝑜𝑟 𝑇2
|;  𝐴 = |

∆𝑣𝑇𝑚𝑎𝑥−𝐵

∆𝑥𝑇𝑚𝑎𝑥−𝐵
| 𝑥𝐵1

≤ 𝑥 < 𝑥𝑇1
;  𝑥𝑇2

< 𝑥 ≤ 𝑥𝐵2
  (A1b) 

 𝑣𝐵 𝑥 < 𝑥𝐵1
;  𝑥𝐵2

< 𝑥 (A1c) 

 

The full latent length is 

 𝐿𝑙𝑎𝑡 = ∆𝑥𝑇𝑚𝑎𝑥 + 2∆𝑥𝑇𝑚𝑎𝑥−𝐵 (A2) 

 680 

We next derive the time required to etch a confined semi-track starting at point 𝑥𝑖𝑛𝑡  and going toward one end.  To begin, we etch in the positive 

direction toward 𝑥𝐵2
, and denote the etched semi-length L2.  To solve for the other half-length, L1, we use the same set of equations and simply 

change the value of xint to Llat – xint.  Etching of the grain mount commences at time t=0, and the confined track starts to etch at a later time ts, to 

account for the time necessary to etch the impinging semi-track and then widen it sufficiently to intersect the confined track.  We back-step though 

the three possible zones where etching may begin.  If 𝑥𝑖𝑛𝑡  is in the right-hand zone between 𝑥𝑇2
 and 𝑥𝐵2

, then the time required to etch to a half-685 

length L2 is: 
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𝑡(𝐿2) = 

𝑡𝑠 + ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑖𝑛𝑡+𝐿2

𝑥𝑖𝑛𝑡

 𝐿2 ≤ 𝑥𝐵2
− 𝑥𝑖𝑛𝑡 (A3a) 

𝑡𝑠 + ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝐵2

𝑥𝑖𝑛𝑡

+
𝐿2 − (𝑥𝐵2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 < 𝐿2 (A3b) 

 

Expanding the integral term: 

∫
𝑑𝑥

𝑣𝑇(𝑥)
= ∫

𝑑𝑥

[𝑣𝑇𝑚𝑎𝑥
− 𝐴(𝑥 − 𝑥𝑇2

)]
=

1

𝐴
∫

𝑑𝑥

𝑣𝑇𝑚𝑎𝑥
𝐴⁄ + 𝑥𝑇2

− 𝑥
=

−1

𝐴
ln (

𝑣𝑇𝑚𝑎𝑥

𝐴
+ 𝑥𝑇2

− 𝑥) (A4) 

 

using 690 

−1

𝐴
∫

𝑑𝑢

𝑢
=

−1

𝐴
ln(𝑢) 𝑤𝑖𝑡ℎ 𝑢 = 𝑎 − 𝑥; 𝑎 =

𝑣𝑇𝑚𝑎𝑥

𝐴
+ 𝑥𝑇2

; 𝑑𝑢 = −𝑑𝑥 

leads to the solution: 

𝑡(𝐿2) = 

𝑡𝑠 −
1

𝐴
ln (1 −

𝐿2

𝑣𝑇𝑚𝑎𝑥

𝐴 + 𝑥𝑇2
− 𝑥𝑖𝑛𝑡

) 𝐿2 ≤ 𝑥𝐵2
− 𝑥𝑖𝑛𝑡 (A5a) 

𝑡𝑠 −
1

𝐴
ln (

𝑣𝑇𝑚𝑎𝑥

𝐴 + 𝑥𝑇2
− 𝑥𝐵2

𝑣𝑇𝑚𝑎𝑥

𝐴 + 𝑥𝑇2
− 𝑥𝑖𝑛𝑡

) +
𝐿2 − (𝑥𝐵2 − 𝑥𝑖𝑛𝑡)

𝑣𝐵
 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 < 𝐿2 (A5b) 
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If 𝑥𝑖𝑛𝑡  is in the central zone with maximum etching rate, then: 

𝑡(𝐿2) = 

𝑡𝑠 +
𝐿2

𝑣𝑇𝑚𝑎𝑥

 𝐿2 ≤ 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 (A6a) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

+ ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑖𝑛𝑡+𝐿2

𝑥𝑇2

 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 (A6b) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

+ ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝐵2

𝑥𝑇2

+
𝐿2 − (𝑥𝐵2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 < 𝐿2 (A6c) 

 695 

After integrating, the solution becomes: 

𝑡(𝐿2) = 

𝑡𝑠 +
𝐿2

𝑣𝑇𝑚𝑎𝑥

 𝐿2 ≤ 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 (A7a) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln (1 +

𝑥𝑇2
− (𝑥𝑖𝑛𝑡 + 𝐿2)

𝑣𝑇𝑚𝑎𝑥

𝐴

) 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 (A7b) 

𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

+
𝐿2 − (𝑥𝐵2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 < 𝐿2 (A7c) 
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Finally, if 𝑥𝑖𝑛𝑡  is in the left-hand zone between 𝑥𝑇1
 and 𝑥𝐵1

: 

𝑡(𝐿2) = 

𝑡𝑠 + ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑖𝑛𝑡+𝐿2

𝑥𝑖𝑛𝑡

 𝐿2 ≤ 𝑥𝑇1
− 𝑥𝑖𝑛𝑡 (A8a) 

𝑡𝑠 + ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑇1

𝑥𝑖𝑛𝑡

+
𝐿2 − (𝑥𝑇1

− 𝑥𝑖𝑛𝑡)

𝑣𝑇𝑚𝑎𝑥

 𝑥𝑇1
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝑇2

− 𝑥𝑖𝑛𝑡 (A8b) 

𝑡𝑠 + ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑇1

𝑥𝑖𝑛𝑡

+
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

+ ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑖𝑛𝑡+𝐿2

𝑥𝑇2

 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 (A8c) 

𝑡𝑠 + ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝑇1

𝑥𝑖𝑛𝑡

+
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

+ ∫
𝑑𝑥

𝑣𝑇(𝑥)

𝑥𝐵2

𝑥𝑇2

+
𝐿2 − (𝑥𝐵2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 < 𝐿2 (A8d) 

 

Integrating leads to: 700 

𝑡(𝐿2) = 

𝑡𝑠 +
1

𝐴
ln (1 +

𝐿2

𝑣𝑇𝑚𝑎𝑥

𝐴 + 𝑥𝑖𝑛𝑡 − 𝑥𝑇1

) 𝐿2 ≤ 𝑥𝑇1
− 𝑥𝑖𝑛𝑡 (A9a) 

𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] +
𝐿2 − (𝑥𝑇1

− 𝑥𝑖𝑛𝑡)

𝑣𝑇𝑚𝑎𝑥

 𝑥𝑇1
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝑇2

− 𝑥𝑖𝑛𝑡 (A9b) 

𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] +
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln (1 +

𝐴(𝑥𝑇2
− 𝑥𝑖𝑛𝑡 − 𝐿2)

𝑣𝑇𝑚𝑎𝑥

) 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 < 𝐿2 ≤ 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 (A9c) 

𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] +
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

+
𝐿2 − (𝑥𝐵2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
 𝑥𝐵2

− 𝑥𝑖𝑛𝑡 < 𝐿2 (A9d) 
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Solving each set of equations for length as a function of etching time, and transforming the length boundaries to time boundaries, in the right-hand 

zone: 

𝐿2(𝑡) = 

0 𝑡 ≤ 𝑡𝑠 (A10a) 

(
𝑣𝑇𝑚𝑎𝑥

𝐴
+ 𝑥𝑇2

− 𝑥𝑖𝑛𝑡) [1 − 𝑒−𝐴(𝑡−𝑡𝑠)] 𝑡𝑠 < 𝑡 ≤ 𝑡𝑠 +
1

𝐴
ln (

𝑣𝑇𝑚𝑎𝑥
+ 𝐴(𝑥𝑇2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
) (A10b) 

𝑣𝐵 [𝑡 − 𝑡𝑠 −
1

𝐴
ln (

𝑣𝑇𝑚𝑎𝑥
+ 𝐴(𝑥𝑇2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
)]

+ (𝑥𝐵2 − 𝑥𝑖𝑛𝑡) 

𝑡𝑠 +
1

𝐴
ln (

𝑣𝑇𝑚𝑎𝑥
+ 𝐴(𝑥𝑇2

− 𝑥𝑖𝑛𝑡)

𝑣𝐵
) < 𝑡 (A10c) 

 

In the central zone: 705 

 0 𝑡 ≤ 𝑡𝑠 (A11a) 

 𝑣𝑇𝑚𝑎𝑥
(𝑡 − 𝑡𝑠) 𝑡𝑠 < 𝑡 ≤ 𝑡𝑠 +

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

 (A11b) 

𝐿2(𝑡) = 𝑥𝑇2
− 𝑥𝑖𝑛𝑡 +

𝑣𝑇𝑚𝑎𝑥

𝐴
[1 − 𝑒

−𝐴(𝑡−𝑡𝑠−
𝑥𝑇2−𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥
)
] 𝑡𝑠 +

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

< 𝑡 ≤ 𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
𝑙𝑛 (

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

) (A11c) 

 𝑥𝐵2
− 𝑥𝑖𝑛𝑡 + 𝑣𝐵 [𝑡 − 𝑡𝑠 −

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

+
1

𝐴
𝑙𝑛 (

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

)] 𝑡𝑠 +
𝑥𝑇2

− 𝑥𝑖𝑛𝑡

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
𝑙𝑛 (

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

) < 𝑡 (A11d) 
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And in the left-hand zone: 

 0 𝑡 ≤ 𝑡𝑠 (A12a) 

 (
𝑣𝑇𝑚𝑎𝑥

𝐴
+ 𝑥𝑖𝑛𝑡 − 𝑥𝑇1

) [𝑒𝐴(𝑡−𝑡𝑠) − 1] 𝑡𝑠 < 𝑡 ≤ 𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] (A12b) 

𝐿2(𝑡) = 

𝑥𝑇1
− 𝑥𝑖𝑛𝑡 + 𝑣𝑇𝑚𝑎𝑥

{𝑡 − 𝑡𝑠

+
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

]} 

𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] < 𝑡

≤ 𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

]

+
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

 

(A12c) 

 

𝑥𝑇2
− 𝑥𝑖𝑛𝑡

−
𝑣𝑇𝑚𝑎𝑥

𝐴
(𝑒

−𝐴{𝑡−𝑡𝑠+
1
𝐴

ln[1+
𝐴(𝑥𝑖𝑛𝑡−𝑥𝑇1)

𝑣𝑇𝑚𝑎𝑥
]−

𝑥𝑇2−𝑥𝑇1
𝑣𝑇𝑚𝑎𝑥

}
− 1) 

𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] +
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

< 𝑡

≤ 𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

]

+
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

 

(A12d) 

 

𝑥𝐵2
− 𝑥𝑖𝑛𝑡 + 𝑣𝐵 {𝑡 − 𝑡𝑠 +

1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

]

−
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

+
1

𝐴
ln

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

} 

𝑡𝑠 −
1

𝐴
ln [1 +

𝐴(𝑥𝑖𝑛𝑡 − 𝑥𝑇1
)

𝑣𝑇𝑚𝑎𝑥

] +
𝑥𝑇2

− 𝑥𝑇1

𝑣𝑇𝑚𝑎𝑥

−
1

𝐴
ln

𝑣𝐵

𝑣𝑇𝑚𝑎𝑥

< 𝑡 

(A12e) 

 

To solve for the other half-length, L1, we use the same set of equations and simply change the value of xint to Llat – xint.
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Table 3: Constant-core model predictions of induced unannealed fission track length measurements in Durango apatite based 

on user selection criterion 

vT/vB 
lm 

(µm) 
  

(µm) 
%sel 

ts 

(s) 

zint  

(µm) 

40 14.1 1.8 51% 9.9 4.2 

30 14.6 1.4 41% 9.1 4.0 

20 15.3 1.0 28% 7.9 3.8 

16 15.6 0.9 22% 7.3 3.6 

12 15.9 0.8 15% 6.5 3.4 

10 16.0 0.8 11% 5.9 3.3 

8 16.2 0.8 7.5% 5.2 3.0 

4 16.6 0.8 1.03% 3.3 2.3 

2 16.8 0.8 0.003% 1.2 1.0 

 

 845 

 

 

Table 4: Predicted changes in confined track length, standard deviation, and selection efficiency with etching time, selection 

criteria 

  vT/vB = 12 vT/vB = 8 vT/vB = 4 

Sample 
Etch 

time (s) 

lm 

(µm) 
  

(µm) 
%sel 

ts  

(s) 

zint  

(µm) 

lm 

(µm) 
  

(µm) 
%sel 

ts 

(s) 

zint  

(µm) 

lm 

(µm) 
  

(µm) 
%sel 

ts 

(s) 

zint  

(µm) 

SU-201 
20 14.3 0.8 13% 6.5 3.0 14.6 0.7 6.3% 5.4 2.6 14.7 0.7 0.9% 3.7 2.0 

25 14.7 0.8 28% 9.4 3.6 14.9 0.8 19% 8.3 3.4 15.1 0.8 8.1% 6.4 2.9 

IU-20 
20 15.7 0.8 15% 6.5 3.4 16.0 0.8 7.7% 5.3 3.1 16.1 0.7 1.2% 3.5 2.4 

25 16.1 0.9 30% 9.3 4.1 16.4 0.8 21% 8.2 3.8 16.5 0.8 9.1% 6.2 3.3 

IA280-20 
20 12.4 0.8 65% 8.8 3.9 12.4 0.8 60% 8.4 3.9 12.5 0.8 52% 7.7 3.9 

25 12.5 0.8 72% 11.4 4.1 12.5 0.8 69% 11.0 4.0 12.6 0.8 63% 10.4 4.0 

1Model does not include Cf-irradiation, making predictions different from Table 1. 850 
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Figure 1: Energy loss profiles from electronic and nuclear interactions for a sampling of possible products from induced 

fission of 235U in apatite, calculated using SRIM (Zeigler 2008).  For each fission pair, the left curve segment is the 

heavier, lower-energy fragment.  The shaded horizontal line represents the approximate limit below which energy loss 855 

no longer results in enhanced etching rates.   
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Figure 2: Mean track length data used in this study, from Tamer and Ketcham (2020a,b); see Table 1.  Error bars show 

1 SE.  Only the first step of etch-anneal-etch experiments are used here, but post-complete-annealing etching steps at 860 

20 and 25 seconds, connected by dashed lines, indicate bulk etching rate, vB.  
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Figure 3: Model schemas for fission-track etching structure.  A. Constant-core; B. Linear.  vTmax is maximum along 

track etching velocity and vB is bulk grain etching velocity.  xTmax is the width of the constant-etching-rate core, and 

xTmax-B is the width of the zone from the core to the track tip.  A is the track etch rate gradient as it falls toward the 865 

tip, and Llat is the full latent track length.  The intersection point of the etchant pathway with the latent track, xint, can 

occur anywhere along its length; the etching of the track will begin from that point, and follow the etching structure in 

each direction. 
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  870 

Figure 4: Schematic overview of TINT revelation model, through successive etching times of 0 through 20 seconds (A-

E).  Semi-tracks are shown in gray, and confined tracks are shown in colors to facilitate matching tracks in side view 

versus overhead section view.  Overhead sections are in the sometimes-oblique plane of the confined track, as it is the 

expansion of the semi-track in that plane that leads to intersection. Variations in latent track brightness indicate relative 

etching velocity.  Etchant pathways in overhead view are depicted as anisotropic prisms, but the present model 875 

effectively simplifies them as circles because track orientation is not considered.   
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Figure 5:  Top row: lengthening along unannealed induced fission tracks (latent length 17 µm) starting from midpoint 

and near each tip, etching from etchant pathway intersection point toward one tip. A. Constant-core etching structure 880 

with 8-µm core and 1 µm/s maximum vT. B. Linear model with a 1.55 µm/s maximum vT.  Bottom row: evolution of 

total track length as a function of time, depending on intersection point, at 2-second intervals after etching of the latent 

track commences; C. Constant-core model, D. Linear model. 
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Figure 6: Semi-track penetration and confined track revelation calculated at time steps of 0.2 s and depth steps of 0.2 885 

µm.  Lines correspond to relative penetration of semi-tracks and revelation of confined tracks at etching times every 

second from 1 to 20 s, with the upper left line in each diagram being 1 s and the lower right line being 20s.  A, B: 

Penetration and revelation based on randomly oriented unannealed induced tracks.  C, D: Penetration and revelation 

based on 252Cf tracks oriented at 75° to the grain surface. 

 890 
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Figure 7: Track intersection results for 107 unannealed induced tracks after 20 s of etching, using the Constant-core 

model for unannealed induced tracks.  A. Contour diagram of all intersections; B. contour diagram of intersections 

after excluding tracks that reach the surface (semi-tracks). 895 

 

 

 

 

Figure 8: Approximate model of tip evolution and vT/vB for constant-core model of an unannealed induced fission track.  900 

Each profile starts at the track center, starting from 5 s after the beginning of etching for the innermost profile and 

proceeding in 5 s increments to 25 s for the outermost profile. 
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Figure 9: Transmitted-light microscope images of tips of three unannealed induced fission tracks at different 905 

crystallographic angles through progressive etching steps.  Scale and orientation in top left applies to all images.  Etch 

times are since the beginning of etching, although it is unknown exactly when each track was intersected and began to 

etch. 
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Figure 10: Illustration of how selection criteria for confined fission tracks affects length distributions.  In all histograms, 910 

faded bars show all etched tracks, and darkened bars show tracks that pass selection criteria.  A. Empirical probability 

function for track selection when first etching step is below 20 s, when analyst is accepting most tracks found.  B. Model 

histogram for all etched tracks after 10 s (unannealed induced).  C. Measured track lengths after 10 s of etching 

(experiment IU-10).  D. Model vT/vB distribution of unannealed induced tracks after 20 s of etching, with darker bars 

showing tracks with vT/vB ≤ 12.  E. Model histogram of all etched tracks after 20 s, when analyst is using selection 915 

criteria employed for standard fission-track analysis.  F. Measured track lengths after a single 20s etch (experiment 

IU-20). 
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Figure 11. Contour diagrams of model predictions of unannealed induced fission tracks selected by the analyst for 

measurement etching the grain mount for 20 seconds.  The selected tracks are the subset of the total population of 920 

confined tracks shown in Fig. 7B that have sufficiently-etched tips according to analyst criteria.  The time-depth 

contours (A) indicate that, for this model, selected tracks began etching an average of ~6.5 seconds after etching 

commenced, and thus etched for an average of ~13.5 seconds before being measured.  The contours of length versus 

depth (B) indicate that etched tracks are on average slightly shorter with increasing depth below the polished surface, 

as on average they have had less time to etch. 925 
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Figure 12: Standardized residuals (�̅� − �̅�𝒆𝒔𝒕) 𝝈⁄  of model fits to each data set. 

 930 
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Figure 13: Constant-core model parameter fits for each track type, showing correlations between variables.  Each point 

represents a set of parameters tested during the fitting process, and colors indicate goodness of fit as 1/2
. Warmer 

colors indicate better fits, and any value near or above 1 indicates a fit to within the resolution of the measurements.  
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 935 

Figure 14: Linear model parameter fits; see Figure 13 caption for explanation. 
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 940 

Figure 15: Best-fit results for (A) Constant-core and (B) Linear etching structure models, showing that laboratory-

annealed experiments feature maximum etching velocities ~2x higher than tracks without heat treatment.  Error bars 

only shown for the maximum etching velocity in the Linear models, owing to the complex correlation between 

maximum velocity and core length in the Constant-core ones (Fig. 13). 
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 950 

Figure 16: Comparison of the relative efficiency of selecting different track types using a 20-second etching protocol.  

In histograms (A and B), lighter bars show all etched tracks, and darker bars show tracks that pass selection criteria.  

For unannealed induced tracks, the great majority of confined tracks intersected have not been etched fully enough to 

be selected for measurement (A); those that are selected have etched for at least 8 seconds after being intersected (B).  

Annealed induced tracks are both shorter and faster-etching, leading to a much higher proportion of intersected tracks 955 

being selectable and smaller required etching times (C, D). 
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Figure 17: Upper graphs (based on Ketcham et al., 2015, Figure 2C,D) show results of inter-laboratory exercise 

measuring unannealed induced tracks in Durango apatite, against etching procedure (upper graph) and years since 960 

trained in fission-track analysis (middle graph).  Histograms below show prediction of Constant-core vT(x) model, 

varying only required vT/vB for track selection; light bars are unselected tracks, dark bars are selected tracks. 
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 965 

Figure 18: Model relationship between analyst selection criteria (approximated as vT/vB at the track tips) and dispersion 

and efficiency for unannealed induced tracks in Durango apatite.  A. Points show the relationship between mean track 

lengths and standard deviation.  Line shows prediction of vT(x) model assuming only variation in vT/vB, and a baseline 

0.8 µm standard deviation of latent track length.  B. Curve of efficiency (percent of all confined tracks intersected that 

are accepted) versus mean track length as it varies with vT/vB (values above points). 970 
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Figure 19: Model predictions of effects of etching for 25 versus 20 seconds, for various track types, assuming selection 975 

criterion vT/vB = 12.  Histograms show confined (light bars) and selected (dark bars) tracks for each point, and 

percentages reflect proportion of confined tracks selected.  Note that SU model predictions do not presume Cf-

irradiation, reducing selection efficiency compared to result reported in Table 1. 

 

 980 
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Figure 20: Penetration of randomly oriented semi-tracks into the polished interior grain surface, for various track 

types: A. SU Unannealed spontaneous; B. IU Unannealed induced; C. IA235 Annealed induced (235°C, 24h); D. IA280 

Annealed induced (280°C, 24h).  In A-D, each line represents penetration in 1-second increments from upper left to 

bottom right, from 1 to 20 seconds after etching begins.  E. 20-second lines for each model, showing estimated degree 985 

of semi-track penetration after a standard 20-second etch.  Gray bar shows zc, the estimated critical depth that a semi-

track must penetrate to be confidently observed and counted (Jonckheere and Van Den Haute 2002). 

 


