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Abstract 

Artificial intelligence techniques such as deep neural networks and computer vision have been trained to detect fission surface 

semi-tracks. The deep neural networks can be used in an open source computer program for semi-automated fission track 

dating called “AI-Track-tive”. Our custom-trained deep neural networks use YOLOv3 object detection algorithm, which is 

currently one of the most powerful and fastest object recognition algorithms. The developed program successfully finds most 10 

of the fission tracks in the microscope images, however, the user still needs to supervise the automatic counting. The presented 

deep neural networks have high precision for apatite (97%) and mica (98%). Recall values are lower for apatite (86%) than 

for mica (91%).  

Introduction 

Fission track dating is a low-temperature thermochronological dating technique applicable on several minerals (mainly apatite 15 

and zircon) and glass, and was first described in detail by Fleischer et al. (1975). Since the discovery of the potential of apatite 

fission track dating for reconstructing thermal histories (e.g. Gleadow et al., 1986; Green et al., 1986; Wagner, 1981), apatite 

fission track dating has been utilized in order to reconstruct thermal histories of basement rocks and apatite-bearing 

sedimentary rocks (e.g. Malusà and Fitzgerald (2019); Wagner and Van den haute, (1992)). As of 2020, more than 200 

scientific papers with apatite fission track dating results are published every year. Hence, apatite fission track dating currently 20 

is a widely applied technique in tectonic and other studies.   

Fission track dating techniques are labour-intensive and are highly dependent on accurate semi-track recognition using optical 

microscopy. Automation of the track identification process and counting could decrease the analysis time and increase 

reproducibility. Several attempts have been undertaken in order to develop automatic counting techniques (Belloni et al., 2000; 

Gold et al., 1984; Kumar, 2015; Petford et al., 1993). The Melbourne Thermochronology Group in collaboration with Autoscan 25 

Systems Pty was the first to provide an automatic fission track counting system in combination with Zeiss microscopes. The 

currently only available automatic fission track recognition software package is called FastTracks. It is based on the patented 

technology of “coincidence mapping” (Gleadow et al., 2009). This procedure includes capturing microscopy images with both 

reflected and transmitted light. After applying a threshold to both images, a binary image is obtained. Fission tracks are 

automatically recognized where the binary image of the transmitted light source and reflected light source coincide (Gleadow 30 
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et al., 2009). Recently, potential improvements for discriminating overlapping fission tracks were also proposed (de Siqueira 55 

et al., 2019).  

Despite promising initial tests and agreement between the manually and automatically counted fission track samples reported 

in Gleadow et al. (2009), challenges remain for the track detection strategy (Enkelmann et al., 2012). The automatic track 

detection technique from Gleadow et al. (2009) incorporated in earlier versions of FastTracks (Autoscan) did not work well in 

the case of (1) internal reflections (Gleadow et al., 2009), (2) surface relief (Gleadow et al., 2009), (3) over- or underexposed 60 

images (Gleadow et al., 2009), (4) shallow-dipping tracks (Gleadow et al., 2009) and (5) very short tracks with very short tails. 

More complex tests of the automatic counting software (FastTracks) undertaken by two analysts from University of Tubingen 

(Germany) showed that automatic counting without manually reviewing leads to severely inaccurate and dispersed counting 

results which are less time-efficient than manual counting using the “sandwich technique” (Enkelmann et al., 2012). However, 

the inventors continuously developed the system and solved the aforementioned problems. This has resulted in fission track 65 

software that is acquired by most of the fission-track labs and it is generally assumed as the one and only golden standard for 

fission-track dating.  

This paper presents a completely new approach for automatic detection of fission tracks in both apatite and muscovite. 

Normally, fission tracks are detected using segmentation of the image into a binary image (Belloni et al., 2000; Gleadow et 

al., 2009; Gold et al., 1984; Petford et al., 1993). Here, in our approach, segmentation strategies are abandoned and replaced 70 

by the development of computer vision (so-called Deep Neural Networks) capable of detecting hundreds of fission tracks in a 

1000x magnification microscope image. It will be shown later in this paper that artificial intelligence techniques such as 

computer vision can be a solution for the labour-intensive manual counting, as already recognized by the pioneering work of 

Kumar (2015). Kumar (2015) was the first to successfully apply one machine learning technique (support vector machine) on 

a dataset of high quality single (?) semi-track images (30x30µm).This paper reports results of deep neural networks that can 75 

detect one to hundreds of semi-tracks in an individual image of 117.5 µm width and 117.5 µm height. This new potential 

solution for apatite fission track dating is currently available as an executable program (.exe) and Python source code with the 

name “AI-Track-tive”. The deep neural networks and the method to train a deep neural network are also available to the 

scientific community.   

1 Methods 80 

1.1 System requirements 

AI-Track-tive uses two deep neural networks capable of detecting fission tracks in apatite and in muscovite mica. The deep 

neural networks have been trained on microscope images taken on 1000x magnification. Using the deep neural networks, 

unanalyzed images can be analysed automatically after which it is possible to apply manual corrections. Although it is tested 

on output from a Nikon Ni-E Eclipse microscope with Nikon-TRACKFlow software (Van Ranst et al., 2020), AI-Track-tive 85 

is certainly platform-independent. The only required input for AI-Track-tive are .jpg microscopy images from both transmitted 

Verwijderd: oes

Verwijderd: the

Verwijderd: the 

Verwijderd: mineral90 

Verwijderd: Below, it will be shown that a custom-trained deep 

neural network can detect almost all tracks in apatite and muscovite 
external detectors. 

Verwijderd: for apatite and mica 

Verwijderd: custom-trained 95 

Verwijderd: based on 

Verwijderd: training data of high-quality output 

Verwijderd: these

Verwijderd: analyzed

Verwijderd: automatically 100 

Verwijderd: system 



3 

Verwijderd: ¶

and reflected light with an appropriate size (e.g 1608x1608px or 804x804px). AI-Track-tive contains a Graphical User 

Interface (GUI) from which it is easy to choose the appropriate analysis settings and the specific images. The only requirements 

to train a custom-made DNN is a good internet connection and a Google account. For Windows users it is possible to download, 

subsequently open the folder and execute the .exe file from which the AI-Track-tive program will open. For Apple and Linux 105 

users, it is necessary to install some freeware Spyder IDE, Python 3.8 and some specific Python modules (OpenCV and PyQt) 

before they can run the program. The executable file, Python source code, DNN’s and specific instructions can be downloaded 

(“cloned”) on the code repository https://github.com/SimonNachtergaele . 

1.2 Development 

The software makes use of a self-trained deep neural network based on the Darknet-53 backbone (Redmon and Farhadi, 2018) 110 

which has become extremely popular in object recognition for all kinds of purposes. The Darknet-53 backbone in combination 

with YOLOv3 head configuration can be combined and trained to be used as an automatic object detection tool. This deep 

neural network can be trained to recognize multiple classes, for example cats or dogs. The deep neural network presented in 

this paper is trained on only one class, i.e. etched semi-tracks. Two deep neural networks were trained specifically for semi-

tracks in apatite and in mica. They were both trained on a manually annotated dataset of 50 images for apatite and 50 images 115 

for mica. AI-Track-tive has been developed in Python v3.8 (Van Rossum and Drake Jr, 1995) using several Python modules, 

such as an open source computer vision module called OpenCV (Bradski, 2000). The GUI is constructed using Tkinter (Lundh, 

1999). The easy-to-handle GUI with multiple interactive windows should make it possible to use the platform on any computer 

without knowledge of Python programming language (Figure 1).  

1.2.1 Sample preparation 120 

In order to create suitable images for DNN training, we converted the z-stacks .nd2 files acquired by Nikon Ni-E Eclipse 

microscope to single-image .tiff images of 1608 pixels by 1608 pixels using the Nikon Advanced Research software package. 

It is assumed that the microscopy software rotates and horizontally flips the mica images before exporting to .tiff files. 

Subsequently, we converted these images to “smaller” .jpg format using freeware Fiji (Schindelin et al., 2012). In Fiji we 

converted the .tiff images to .jpg using no compression, resulting in 1608px on 1608px images (2.59 MP). We then also 125 

implemented a 0.5 factor compression which resulted in smaller 804px on 804px .jpg images (0.64 MP). 

1.2.2 Deep Neural Networks: introduction  

Our Deep Neural Network (DNN) consists of two parts: a “backbone” combined with a “head” which detects the class and 

object of interest. As mentioned, we opted for a Darknet-53 backbone (Redmon and Farhadi, 2018) combined with a YOLOv3 

head (Redmon and Farhadi, 2018). The Darknet-53 backbone consists of 53 convolutional layers and some residual layers in 130 

between (Redmon and Farhadi, 2018). The Darknet-53 backbone in combination with a YOLOv3 “head” can be trained so 

that it recognizes an object of choice. The training process is a computer-power demanding process requiring the force of high-
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end GPU’s that would take several days on normal computers. In order to shorten this training process, it is possible to use 155 

powerful GPU units from Google Colab. Using the hosted runtime from Google, it is possible to use the available high-end 

GPU’s for several hours while executing a Jupyter Notebook.    

While many other alternatives are available, we chose for YOLOv3 with Darknet-53 pre-trained model, because it is one of 

the fastest and most accurate convolutional neural networks (Redmon and Farhadi, 2018) at the time of developing this 

software. With YOLOv3 it is possible to perform real-life object detection using a live camera or live computer screen 160 

(Redmon and Farhadi, 2018). From a geologist’s perspective it seems that Artificial Intelligence’s object detection is a very 

rapidly evolving field in which several new DNN configurations are created every year (e.g. YOLOv4 in 2020). The chances 

are high that the presented YOLOv3 DNN could already be outdated in some years. Therefore, we will provide all necessary 

steps to train a DNN which could potentially be more efficient than our current DNN. For these future DNN’s it should be 

possible to use AI-Track-tive in which DNN’s can be utilized other than YOLO. OpenCV 4.5 can handle other DNN’s than 165 

YOLO such as Caffe (Jia et al., 2014), Google’s TensorFlow (Abadi et al., 2016), Facebook’s Torch (Collobert et al., 2002), 

DLDT Openvino (https://software.intel.com/openvino-toolkit) and ONNX (https://onnx.ai/).  

1.2.3 Deep Neural Networks: training and configuration  

DNN training includes two steps. The first step includes annotating images with LabelImg 

(https://github.com/tzutalin/labelImg) or AI-Track-tive. These training images were each square-sized images with a width 170 

and height of 117.5µm taken with a Nikon Ni-E Eclipse optical light microscope on 1000x magnification. This first step 

includes manually drawing thousands of rectangles covering every semi-track. It is advisable to train the DNN on a difficult 

dataset in which (1) several tracks are overlapping with one another, (2) light exposure varies, (3) images are slightly out- and 

in-focus. For apatite, we drew a total of 4734 rectangles indicating 4734 semi-tracks in 50 images. For mica, a total of 6212 

semi-tracks were added in 50 images. The arithmetic mean of track densities was in this case 7.9 ∗ 105  
𝑡𝑟𝑎𝑐𝑘𝑠

𝑐𝑚²
 (Figure 2).  175 

The second step is executing a Jupyter notebook and connecting it to Google Colab (https://colab.research.google.com). 

Google Colab is a free platform where one can execute their Python code using Google’s Graphical Processing Unit (GPU) 

resources. This gives the possibility to train a DNN in a few hours using much more GPU power than normally available. 

Google Colab provides a maximum of 8 hours of working time using very powerful (but expensive) GPU’s such as Nvidia 

Tesla K80, T4, P4 or P100. These GPU’s are utilized to adapt the Darknet53 (.weights) file to the training dataset using a 180 

configuration file (.cfg) through an iterative training process during which it will progressively recognize the tracks better. 

This iterative training process creates for every 100 iterations a new .weights file. The “average loss” is a value that expresses 

the accuracy of track recognition of the trained .weights file. This average loss value is high in the beginning of the training 

process (~103) but decreases to <10 after a few hours of training. The speed of the iterative training process depends on many 

factors that are specified in the YOLOv3 head. It is possible to change the training process by adapting the configuration of 185 

the YOLOv3 head in the .cfg file. In the .cfg file, several configuration parameters of the DNN are specified such as for 

https://software.intel.com/openvino-toolkit)
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example the learning rate and network size. The network size is in our case was 416 × 416, implying that it will resize our 

images of 804 × 804 to 416 × 416. We experienced that increasing the network size from 416 × 416 to 608 × 608 or increasing 

image size from 804 × 804px to 1608 × 1608px strongly decreases the iteration speed. Hence, we chose to train a DNN with 

416 × 416 network size using pictures of 804 × 804px. 190 

1.2.4 Deep Neural Networks: testing  

The efficiency of every trained DNN can be tested using images (“test images”) that are not part of the training dataset. When 

YOLOv3 configuration is used to find the object of interest (semi-tracks), it predicts a high number of bounding boxes with 

each a different place, width, height and confidence value in the image. The confidence value is normally high (>95%) for the 

easy recognisable tracks and rather low for the less obvious semi-tracks, as illustrated in Figure 3. A user-defined threshold 195 

value defines the threshold value (e.g. 50%) above which rectangles are drawn on test image.  

For one semi-track, YOLOv3 predicts several overlapping bounding boxes (Redmon et al., 2016). Therefore, an essential non-

maximum suppression step leads to one rectangle surrounding the semi-track. In the often occurring scenario that several semi-

tracks coincide or overlap, it is highly likely that only one rectangle is drawn after a conservative non-maximum suppression 

filtering. AI-Track-tive sometimes struggles with identifying multiple tracks even though we adapted the “nms_treshold” value 200 

in order to allow the drawing of multiple boxes for coinciding tracks.  

2 Results 

2.1 AI-Track-tive: new software for semi-automatic fission track dating 

The result of the unique strategy for automated fission track identification is embedded in the “AI-Track-tive” program. It is 

an interactive program useful for analysing several types of samples, such as (1) an apatite and external detector couple, (2) 205 

an external detector (mica) covering a Uranium-doped glass and (3) only apatite (Figure 1), e.g. for LAFT analysis. The user 

can import one or two transmitted light images with different z-level in AI-Track-tive from which it will create a blended 

image through which the focal level can be changed manually. This way, the analyst gets a 3D impression of the image 

containing the tracks. The user also needs to import reflected light images from which it is possible to change rapidly using 

the computer mouse wheel function.  210 

The user can optionally choose for a region of interest in which the fission tracks will be sought. The user can choose between 

a square-shaped 100µm by 100µm grids, a user-defined polygonal, or a user-defined circular window with an adaptable 

diameter (Figure 1). Due to the very rapid YOLOv3 algorithm (Redmon et al., 2016; Redmon and Farhadi, 2018), it is possible 

to instantaneously detect the semi-tracks in the loaded images. The result of the track recognition is an image in which every 

detected fission track is indicated with a rectangle comprising the detected fission track. Every rectangle located with more 215 

than half of its surface inside the polygon (or region of interest) is counted. Each track has a certain confidence score, as 

illustrated on Figure 3. This confidence score is close to 1 for easily recognisable tracks and much lower for overlapping tracks. 
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This confidence score is shown on Figure 3 for illustration, but normally it is not displayed. Currently, track detection is not 

100% successful for every image. Therefore, manually reviewing is absolutely necessary and essential to obtain useful data. 

While reviewing the track detection results, it is possible to switch between reflected and transmitted light images by scrolling 

the computer mouse wheel. Unidentified semi-tracks can be manually added and mistakenly added tracks can be removed 235 

using the computer mouse buttons following the instructions written in the instructions window. These manual corrections will 

be displayed immediately in a different colour on the microscope image.  

The adjusted image is saved as a .png file after the manual revision process is completed. Track counting results are exported 

in .csv files together with all useful information. Hence, performing your own zeta-calibration (Hurford and Green, 1983) or 

GQR calibration (Jonckheere, 2003) is possible.  240 

2.1.1 AI-Track-tive: live fission track recognition 

Due to the accurate and fast nature of the YOLOv3 object detection algorithm, it is possible to do real-time object detection 

(Redmon and Farhadi, 2018). In AI-Track-tive it is possible to let a DNN detect fission tracks on live images from your 

computer screen. The only drawback for the “live fission track recognition” is the computer processing time of approximately 

0.3 to 0.5 seconds, depending on the hardware of the computer system. Real-time object detecting neural networks are much 245 

more useful in environments in which the detected objects are dynamic. Obviously, etched semi-tracks are static, so it is not 

so helpful to detect fission tracks on live images. The usefulness of this “live recognition” function might be twofold. The first 

application lies in the fast evaluation of the trained Deep Neural Networks. The second application relates to an implementation 

into microscope software. “Smart” microscopes using live semi-track track recognition could distinguish apatite (containing 

semi-tracks) from other minerals which are in between the apatite grains.  250 

2.1.2 AI-Track-tive: DNN training 

It is possible to use AI-Track-tive to construct a training dataset for further DNN training based on a custom dataset. This 

training dataset can be created by loading images in AI-Track-tive and highlighting the tracks manually. This way, an 

unexperienced programmer potentially uses this software instead of other dedicated (and more widely-tested) software 

(LabelImg) to create a training dataset comprising images (.jpg) and accompanying annotations (.txt) files. In AI-Track-tive it 255 

is also possible to use AI assistance when creating training images, although this is not recommended because of the possibility 

of copying the AI’s mistakenly identified semi-tracks.  

2.1.3 AI-Track-tive: etch pit diameter size (Dpar) measurement  

AI-Track-tive also has the possibility to determine the Dpar value (Donelick, 1993) which is the size of the semi-track’s etch 

pits measured in the c-axis direction (Figure 4). For this step, AI-Track-tive does not use DNN’s (yet) but instead it uses color 260 

thresholding. Color thresholding is the most used technique used for image segmentation. This color thresholding is sensitive 

to unequal light exposure, but this is solved by a gamma correction. AI-Track-tive filters the Dpar values using a threshold 
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based on minimum and maximum size of the etch pits. After the size discrimination step, AI-Track-tive uses another 2 filters 

based on elongation factor (width-to-height ratio) and directions (or angles) of the etch pits. The threshold values for these 270 

filters can be changed when advancing through the Graphical User Interface.  

2.2 Semi-track detection efficiency 

A series of analyses were undertaken in order to evaluate the efficiency of the semi-track track identification in apatite and 

mica. Several apatite and mica samples with varying areal fission track densities were analysed. The efficiency tests are 

performed on 50 mica and 50 apatite images that were not included in the training dataset for the DNN development (Figure 275 

5). For almost all images we opted to use a 100µm by 100µm square-shaped region of interest with tens or even hundreds of 

tracks in the image. Apatite grains with varying Uranium zoning and spontaneous track densities were analysed. The results 

of these experiments are listed in Table 1 (apatite) and Table 2 (mica). Widely used metrics for evaluating object recognition 

success are calculated using the correctly recognized semi-tracks (True Positives or TP), unrecognized semi-tracks (False 

Negatives or FN) and mistakenly recognized semi-tracks (False Positives or FP). Typical metrics to evaluate the performance 280 

of object detection software are precision (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) and recall or true positivity rate (

𝑇𝑃

𝑇𝑃+𝐹𝑁
).  

2.2.1 Apatite 

For apatite, the arithmetic mean of the precision equals 97% and for recall it is 86%. The precision is very high and indicates 

that very few false positives are found. Only for very low track densities it occurs that precision is lower than 0.8, probably 

because a few false positives have a relatively high impact in an image where only 20 tracks are supposed to be recognized. 285 

The true positivity rate (=recall) value is 86% and lower compared to the average precision. Despite the overall high scores 

for recall (Figure 5), it sometimes occurs that recall is lower than 0.8. Hence, it is essential that the unrecognized tracks (false 

negatives) are manually added.  

2.2.2 External detector 

For muscovite, the arithmetic mean of the precision equals 98% compared to 91% recall. These metrics are both higher than 290 

the ones obtained for apatite. The precision is very high indicating that false positives are scarce. Recall is above 90% and only 

drops below 80% for a handful of samples with low track densities (Figure 5). The frequency-histogram of the recall values 

and precision values are less skewed compared to the histograms of apatite (Figure 5).  

2.3 Analysis time 

One small experiment was undertaken in which fission tracks were counted in both apatite and external detector. The results 295 

of these experiments are summarized in Table 3 and compared to previous results using FastTracks reported in Enkelmann et 

al. (2012) and more up-to-date values of FastTracks (A. Gleadow, 2020). For our time analysis experiment, 25 coordinates in 
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a pre-annealed Durango sample (A-DUR) and its external mica detector were analysed by the first author. Selecting and 360 

imaging 25 locations in the Durango sample and its external detector took 25-35 min using Nikon-TRACKFlow (Van Ranst 

et al., 2020). Counting fission tracks in 25 locations in one pre-annealed and irradiated Durango sample and its external detector 

(including manual reviewing) using AI-Track-tive took 30 minutes in total. It is expected that fission track counting would 

take some more time for samples with track densities higher than (~4 ∗ 105 𝑡𝑟/𝑐𝑚²).  

3 Discussion 365 

3.1 Automatic semi-track recognition 

The success rate of automatic track recognition has been tested for several (~50) different images of apatite and external 

detector (mica) images. The automatic track recognition results show that the computer vision strategy is (currently) not 

detecting all semi-tracks in apatite (Table 1) and mica (Table 2). Hence, manual reviewing the results and indicating the 

“missed” tracks (false negatives) is essential.  370 

The precision and recall of both the apatite and mica fission track deep neural networks is compared to the areal track densities 

in scatter plots shown in Figure 5. The upper limit of 107 tracks/cm² was defined as the upper limit for fission track 

identification using optical microscopy (Wagner, 1978). The lower limit of 105 tracks/cm² was chosen arbitrarily based on the 

fact that apatite fission track samples in most studies have track densities within the range of 105 to 107 tracks/cm². For track 

densities lower than the arbitrarily set limit of 105 tracks/cm², it is still possible to apply fission track analysis but it is more 375 

time-consuming with respect to sample scanning and image acquisition (i.e. finding a statistical adequate number of countable 

tracks in large surface areas and/or high number of individual apatite grains).  

The precision and recall values discussed earlier are high and indicate that the large majority of the semi-tracks can be detected 

in all images. However, coinciding semi-tracks are difficult to detect for both humans and computers. Therefore, the trained 

deep neural networks were trained on 50 images (Table 1) in which the track densities were high and the individual tracks 380 

were sometimes hard to identify due to spatial overlap (Figure 2).  

3.2 Current state and outlook 

With the development of AI-Track-tive it was possible to successfully introduce artificial intelligence techniques (i.e. computer 

vision) into fission track dating. The program presented here has comparable analysis speed with other automatic fission track 

recognition software such as FastTracks from Autoscan systems (Table 3). With the current success rates of the program, we 385 

think already a significant gain is to be made. However, manually reviewing the automatic track recognition results is still (and 

will perhaps always be) necessary. In the near future it seems likely that computer power and artificial intelligence techniques 

will inevitably improve. Therefore, smarter deep neural networks with higher precision and recall values will likely be 

developed in the (near) future. Although we did only work with YOLOv3 algorithms, we expect that other deep neural 

networks can also be used in AI-Track-tive. AI-Track-tive is an open source initiative without any commercial purpose. It is 390 
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written in Python, a popular programming language for scientists, so that it can be continuously developed by others in the 

future. We would appreciate voluntarily bug reporting to the developers. Future software updates will be announced on 420 

https://github.com/SimonNachtergaele  .  

4 Conclusions 

In this paper we present a free method to train deep neural networks capable of detecting fission tracks using any type of 

microscope. Secondly, we also presented open-source Python-based software called “AI-Track-tive” on which the trained 

neural networks can be tested. These neural networks can be either tested on acquired images (split z-stacks) or live images 425 

coming from the microscope camera. It is possible to use AI-Track-tive for apatite fission track dating of samples and/or 

standards. Thirdly, we provided our two deep neural networks and their training dataset which is calibrated or trained on a 

Nikon Ni-E Eclipse setup.  

AI-Track-tive is: 

- unique because it is, to our knowledge, the first geological dating procedure using artificial intelligence. 430 

- using artificial intelligence (deep neural networks) in order to detect fission tracks automatically. 

- capable of successfully finding almost all fission tracks in a sample. The unrecognised tracks can be manually added 

in an interactive window. 

- reliable and robust because it is not really sensitive to changes in optical settings.  

- future-oriented since it is software in which other, potentially smarter deep neural networks can be implemented. 435 

- Python-based open source in order to give the opportunity to all scientists to improve their software for free through 

time.   

- a platform on which custom-made DNN’s can be tested on live images or gathered dataset. 

- potentially of use when determining the etch pit diameter (Dpar). 

Code availability 440 

All presented software can be downloaded for free on GitHub using the link: https://github.com/SimonNachtergaele   

Video supplement 

Tutorial AI-Track-tive v2: https://youtu.be/CRr7B4TweHU 
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Figures 550 

 

Figure 1: Visual representation of the presented AI-Track-tive software and its functionalities 
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Figure 1: Flow chart of555 
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Figure 2: frequency histograms illustrating the areal track density of the training datasets. The horizontal axis expresses the 10-

based log of the areal track density of the training dataset.    

 

Figure 3: fission track recognition in muscovite (external detector). Blue squares indicate automatically recognized semi-tracks. The 560 
percentage displayed above every blue box indicates the confidence score for that particular group of pixels to be recognized as semi-

track. The small fraction of unrecognized tracks (“false negatives”) is manually indicated with green squares. Red squares indicate 

erroneously indicated tracks (“false positives”). The two track bars above the image indicate the possibility to compare different 

focal levels or change between reflected and transmitted light.  

Verwijderd:  AI-Track-tive ¶565 

¶
Figure 2: fission track recognition results in apatite (scale: image is 
100 µm on 100 µm)  of AI-Track-tive. Panel A shows a pre-annealed 

Durango apatite (A-DUR) in which 23 out of 29 tracks were found 

automatically (success rate = 79%). Panel B shows a sample with a 570 
track density of 𝟏. 𝟐𝟔 ∗ 𝟏𝟎𝟔  𝒕𝒓𝒂𝒄𝒌𝒔/𝒄𝒎² in which only 43 out of 59 
tracks (73% success rate) were found and 1 was mistakenly added by 

the computer vision track identifier. Panel A and B show a custom-

chosen polygonal counting window and panel C shows a circular 
window of 80 µm diameter on a Durango apatite in which all tracks 575 
were found automatically. ¶
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Figure 4: example of semi-automatic Dpar measurement result obtained on a part of an image taken on 1000x magnification. The 

green ellipses are the remainders from a segmentation process. The values written next to the ellipses stand for length in µm (black), 

elongation factor (red) and angle (blue). Some green ellipses show no values because they have been excluded by the elongation fil ter, 585 
direction filter, minimum size filter or maximum size filter.  

 

 

Figure 5: Performance metrics of the deep neural networks obtained on a dataset containing 50 “test images”. The precision (true 

positives/(true positives + false positives)) and recall (true positives/(true positives + false negatives)) of the automatic fission track 590 
recognition deep neural network are shown for apatite and muscovite mica (external detector). The 10-based log of areal track 

density (tracks/cm²) is shown on the horizontal axis of the upper scatter plots. The frequency-histograms below show the distribution 

of the performance metrics. 
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Tables 

Table 1: test results of the automatic fission track recognition in apatite (confidence threshold = 0.1). Areal track density is expressed 

in tracks/cm². The number of correctly automatically detected tracks (True Positives), manually detected tracks (False Negatives) 610 
and erroneously detected tracks (False Positives) are indicated by nauto and nmanual and nauto false, respectively.  

Testing Area (µm²) Track density Total n auto n manual n auto false precision  recall 

BC-04 X12 10000 9.10E+05 91 80 13 2 98% 86% 
BC-04 X16 10000 2.73E+06 273 225 51 3 99% 82% 
BC-04 X18 10000 3.62E+06 362 271 92 1 100% 75% 
BC-04 X19 10000 1.73E+06 173 150 23 0 100% 87% 
BC-04 X21 4280 1.21E+06 52 36 16 0 100% 69% 
BC-04 X24 2745 1.46E+06 40 27 13 0 100% 68% 
DUR-G2 X21 10000 1.50E+05 15 12 3 0 100% 80% 
DUR-G2 X22 10000 2.00E+05 20 18 2 0 100% 90% 
DUR-G2 X23 10000 2.00E+05 20 16 4 0 100% 80% 
DUR-G2 X24 10000 2.30E+05 23 21 2 0 100% 91% 
DUR-G2 X25 10000 1.70E+05 17 11 6 0 100% 65% 
DUR-G2 X26 10000 1.70E+05 17 14 3 0 100% 82% 
DUR-G2 X27 10000 2.00E+05 20 13 7 0 100% 65% 
DUR-G2 X28 10000 2.00E+05 20 17 3 0 100% 85% 
DUR-G2 X29 10000 2.10E+05 21 13 8 0 100% 62% 
DUR-G2 X30 10000 2.60E+05 26 22 4 0 100% 85% 
DUR-G2 X31 10000 2.20E+05 22 20 2 0 100% 91% 
DUR-G2 X32 10000 9.00E+04 9 8 1 0 100% 89% 
DUR-G2 X33 10000 1.90E+05 19 11 8 0 100% 58% 
DUR-G2 X35 10000 2.50E+05 25 20 5 0 100% 80% 
DUR-G2 X41 10000 1.60E+05 16 14 3 1 93% 82% 
F115 X03 10000 1.98E+06 198 170 28 1 99% 86% 
F115 X04 10000 1.73E+06 173 149 24 0 100% 86% 
F115 X05 10000 1.28E+06 128 105 23 0 100% 82% 
F115 X07 10000 1.63E+06 163 147 17 1 99% 90% 
F115 X08 10000 1.99E+06 199 186 14 1 99% 93% 
F115 X09 10000 1.68E+06 168 147 22 1 99% 87% 
F115 X10 10000 1.51E+06 151 130 21 0 100% 86% 
BC-04 X3 10000 7.00E+05 70 64 6 0 100% 91% 
BC-04 X6 10000 1.52E+06 152 120 32 0 100% 79% 
BC-04 X7 10000 2.00E+06 200 162 38 0 100% 81% 
BC-04 x14 10000 8.80E+05 88 89 7 8 92% 93% 
BC-04 X17 10000 1.02E+06 102 91 13 2 98% 88% 
BC-04 X20 10000 1.80E+05 18 26 2 10 72% 93% 
BC-04 X22 10000 2.69E+06 269 245 24 0 100% 91% 
A-DUR-G1 X21 10000 4.60E+05 46 45 3 2 96% 94% 
A-DUR-G1 X22 10000 3.40E+05 34 32 2 0 100% 94% 
A-DUR-G1 X23 10000 4.30E+05 43 40 3 1 98% 93% 
A-DUR-G1 X24 10000 3.70E+05 37 42 0 5 89% 100% 
A-DUR-G1 X25 10000 4.80E+05 48 53 1 6 90% 98% 
A-DUR-G1 X26 10000 4.00E+05 40 43 1 4 91% 98% 
A-DUR-G1 X27 10000 3.80E+05 38 48 0 10 83% 100% 
A-DUR-G1 X28 10000 5.30E+05 53 55 4 6 90% 93% 
A-DUR-G1 X29 10000 4.70E+05 47 52 1 6 90% 98% 
A-DUR-G1 X30 10000 4.50E+05 45 48 3 6 89% 94% 
A-DUR-G1 X31 10000 4.00E+05 40 40 2 2 95% 95% 
A-DUR-G1 X32 10000 3.80E+05 38 40 0 2 95% 100% 
A-DUR-G1 X33 10000 4.30E+05 43 37 6 0 100% 86% 
A-DUR-G1 X34 10000 4.90E+05 49 47 2 0 100% 96% 
A-DUR-G1 X35 10000 3.90E+05 39 44 1 6 88% 98% 
A-DUR-G1 X36 10000 5.00E+05 50 48 3 1 98% 94% 

Arithmetic mean       97% 86% 
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Table 2: test results of the automatic fission track recognition in muscovite mica (confidence threshold = 0.3). Areal track density is 620 
expressed in tracks/cm². The number of correctly automatically detected tracks (True Positives), manually detected tracks (False 

Negatives) and erroneously detected tracks (False Positives) are indicated by nauto and nmanual and nauto false, respectively.   

Testing 
Area 
(µm²) 

Track density Total n auto n manual n auto false precision recall 

GL 16 X31 10000 5.20E+05 52 47 5 0 100% 90% 
GL 16 X32 10000 3.60E+05 36 33 4 1 97% 89% 
GL 16 X33 10000 5.30E+05 53 48 7 2 96% 87% 
GL 16 X34 10000 4.50E+05 45 33 12 0 100% 73% 
GL 16 X35 10000 5.10E+05 51 48 5 2 96% 91% 
GL 16 X36 10000 4.00E+05 40 36 4 0 100% 90% 
GL 16 X37 10000 4.70E+05 47 36 11 0 100% 77% 
GL 16 X38 10000 3.90E+05 39 34 6 1 97% 85% 
GL 16 X39 10000 4.20E+05 42 36 8 2 95% 82% 
GL 16 X40 10000 5.90E+05 59 60 5 6 91% 92% 
GL 16 X41 10000 3.90E+05 39 34 5 0 100% 87% 
GL 16 X42 10000 6.10E+05 61 60 2 1 98% 97% 
GL 16 X43 10000 4.40E+05 44 35 9 0 100% 80% 
GL 16 X44 10000 4.10E+05 41 35 6 0 100% 85% 
GL 16 X45 10000 5.40E+05 54 47 8 1 98% 85% 
GL 16 X46 10000 5.10E+05 51 48 5 2 96% 91% 
GL 16 X47 10000 4.20E+05 42 35 7 0 100% 83% 
F115 X28 10000 1.48E+06 148 145 6 3 98% 96% 
F115 X29 10000 1.61E+06 161 148 15 2 99% 91% 
F115 X30 10000 7.90E+05 79 77 3 1 99% 96% 
F115 X31 10000 1.17E+06 117 113 6 2 98% 95% 
F115 X32 10000 1.41E+06 141 140 8 7 95% 95% 
F115 X33 10000 1.13E+06 113 98 18 3 97% 84% 
F115 X34 10000 8.60E+05 86 82 4 0 100% 95% 
F115 X35 10000 2.02E+06 202 193 14 5 97% 93% 
F115 X36 10000 6.80E+05 68 68 2 2 97% 97% 
F115 X37 10000 1.25E+06 125 118 7 0 100% 94% 
F115 X38 10000 1.28E+06 128 126 7 5 96% 95% 
F115 X39 10000 5.60E+05 56 53 4 1 98% 93% 
F115 X40 10000 1.17E+06 117 111 8 2 98% 93% 
FCTG4 X31 10000 5.00E+05 50 50 1 1 98% 98% 
FCTG4 X32 10000 5.00E+05 50 45 6 1 98% 88% 
FCTG4 X34 10000 6.30E+05 63 63 1 1 98% 98% 
FCTG4 X35 10000 6.10E+05 61 58 4 1 98% 94% 
FCTG4 X36 10000 3.60E+05 36 42 3 9 82% 93% 
FCTG4 X37 10000 1.90E+05 19 16 3 0 100% 84% 
FCTG4 X38 10000 5.80E+05 58 54 6 2 96% 90% 
FCTG4 X39 10000 5.20E+05 52 54 3 5 92% 95% 
FCTG4 X40 10000 3.10E+05 31 26 5 0 100% 84% 
FCTG4 X41 10000 4.30E+05 43 39 4 0 100% 91% 
ADURG1x1 10000 3.00E+05 30 28 2 0 100% 93% 
ADURG1x2 10000 4.80E+05 48 45 3 0 100% 94% 
ADURG1x3 10000 4.30E+05 43 48 2 7 87% 96% 
ADURG1x4 10000 4.90E+05 49 49 1 1 98% 98% 
ADURG1x5 10000 3.60E+05 36 32 5 1 97% 86% 
ADURG1x6 10000 4.60E+05 46 46 1 1 98% 98% 
ADURG1x7 10000 4.80E+05 48 48 1 1 98% 98% 
ADURG1x8 10000 5.70E+05 57 56 1 0 100% 98% 
ADURG1x9 10000 2.90E+05 29 26 3 0 100% 90% 
ADURG1x10 10000 3.30E+05 33 32 1 0 100% 97% 

Arithmetic mean       98% 91% 
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muscovite (external detector). Areal track density (ρ) is expressed 
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Table 3: estimated time for 20-30 grains/polygons using different automated track recognition software packages and manual 

counting results from Enkelmann et al. (2012). Non-specified information is indicated with ns.  

 Type 
Alignment 

(min) 
Grain selection + 

imaging (min) 
Counting 

(min) 

Analysis/comput
er conversion 

(min) 

Total time 
(min) 

Enkelmann et 
al. (2012) 

Analyst 1 FastTracks 
(Enkelmann et al. 2012) 

20 40-60 180-240 40-90 240-410 

Analyst 2 FastTracks 
(Enkelmann et al. 2012) 

20-30 30-60 120-240 90-180 260-510 

Manual (sandwich 
technique, analyst 1) 

10 - 30-45 
20 (digitizing 

data) 
60-75 

Manual (sandwich 
technique, analyst 2) 

5-15 - 30-90 
20 (digitizing 

data) 
55-125 

A. Gleadow 
(pers. com. 

2020) 
FastTracks 2020 ns 15-17 10-20 ns ns 

This paper 
AI-Track-tive (Durango 

sample) 
10-20 25-35 30 5 70-90 
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