

5

Uranium incorporation in fluorite and exploration of U-Pb dating

Louise Lenoir¹, Thomas Blaise¹, Andréa Somogyi², Benjamin Brigaud¹, Jocelyn Barbarand¹, Claire Boukari¹, Julius Nouet¹, Maurice Pagel¹

¹Université Paris-Saclay, CNRS, GEOPS, Orsay, 91405, France

²Université Paris-Saclay, Synchrotron SOLEIL, Saint-Aubin, 91190, France

Correspondence to: Louise Lenoir (louise.lenoir@universite-paris-saclay.fr)

Abstract. The age of ore deposits constitutes a decisive element in understanding their formation. Deciphering their precise chronology may be a challenge in the absence of mineral phases that can be dated by conventional geochronometers.

- 10 Fluorite is very common either as the major or accessory mineral in a wide variety of ores and may provide information regarding the origin and timing of mineralizing fluid flows. In this contribution, we explore U-Pb dating on fluorite crystals from the world-class carbonate strata-bound fluorite ore of Pierre-Perthuis in Burgundy (Morvan massif, France). Uranium distribution within fluorite is mapped using induced fission-track and Synchrotron radiation X-Ray Fluorescence nano-imaging, showing that higher uranium content is measured in an overgrowth of fluorite (Flog) as a discrete band. Preservation
- of a micrometer-thick zonation in U, associated with other substituted elements such as Sr, Y, Fe and Zr implies that neither solid-state diffusion nor dissolution-recrystallization did occur. These U-bearing external fluorite overgrowths contain solid inclusions of about 30 μ m globular pyrite crystals with a mean δ^{34} S of $-23.6 \pm 0.4\%$ v-cDT. We propose that the U incorporation in the fluorite lattice results from its reduction mediated by H₂S release during bacterial sulphate reduction. Flog generation sampled and analyzed by LA-ICP-MS on four different crystals provides identical U-Pb ages within the
- 20 limits of analytical uncertainty. Considered altogether, these four crystals yield an age estimate of 40.0 ±1.7 Ma, not corrected for matrix-related elemental fractionation. Our results show that fluorite LA-ICP-MS U-Pb geochronology has potential for dating distinct crystal growth stages, although further research should be conducted to evaluate its accuracy.

1 Introduction

Sedimentary rocks lying unconformably upon a crystalline basement may host large concentrations of authigenic F, Ba, Pb, Zn and U minerals that are of economic interest (Boiron et al., 2002; Gigon et al., 2020; Gigoux et al., 2015; Leach et al., 25 2005; Sizaret, 2006). These unconformity-related deposits are usually the result of multiple fluid flows inducing mineral dissolution-recrystallization, remobilization and precipitation (Chi et al., 2018; Walter 1, 2018). Knowing the timing of these successive fluid flows is essential for building robust genetic models for mineral deposition. Fluorite, one of the 27 critical raw materials defined as crucial for the economy of the European Union (European Commission, 30 2017), is commonly associated mineral assemblages in veins or strata-bound deposits. Fluorite Sm-Nd in

geochronology (Galindo et al., 1994; Dill et al., 2011) might help to reconstitute the geological scenario which led to the mineral deposition, together with other direct radiometric dating of authigenic phases, either by bulk dissolution (e.g., Rb-Sr on sphalerite (Nakai et al., 1993), Re-Os on molybdenite (Markey et al., 1998; Stein et al., 2001) and Re-Os on pyrite (Cardon, 2007; Mathur et al., 2000)) or by in situ sampling and analysis (e.g., Ar-Ar on adularia (Cathelineau et al., 2012; Mark et al., 2005) Ar-Ar on Mn oxides (Deng and Li, 2017) or U-Pb on uraninite (Alexandre et al., 2009; Martz et al.,

35

2019)

However, it is frequent that fluorite Sm-Nd geochronology produces errorchrons, and additionally, when the age estimation is considered as geologically consistent, results may be unreliable due to poor analytical precision. Moreover, it is sometimes difficult to interpret Sm-Nd ages when they are obtained from the bulk dissolution of a crystal fragment that may be

- 40 composed of several growth stages. To overcome these issues, a non-radiometric method based on the acquisition of chemical remnant magnetization in fluorite has been developed and employed to date fluorite deposits in areas where the geodynamic evolution and the apparent polar wander path are well documented (Kawasaki and Symons, 2008; Symons, 1994; Symons et al., 2017). Along with other elements, fluorite accepts the incorporation of uranium and lead in its crystal lattice in substitution for Ca²⁺ (typically at low concentrations, from a few ppm to a few ‰, (Piccione et al., 2019)). As a
- 45 result, fission-track (Grønlie et al., 1990) and (U-Th)/He (Evans et al., 2005; Wolff et al., 2015) thermochronology have been tested in fluorite. Wolff et al., (2016) show that He diffusion in fluorite varies depending on metal substitution in the crystal lattice.

In recent years, in situ U-Pb geochronology has been successfully applied to a growing number of mineral matrices, including calcite and dolomite (Burisch et al., 2017), hematite (Walter et al., 2018), opal (Nuriel et al., 2019), cassiterite

- 50 (Moscati and Neymark, 2020), Mn-rich chrysocolla and pseud achite (Kahou et al., 2020), epidote (Peverelli et al., 2020), nacrite and fluorite (Piccione et al., 2019). Piccione et al., (2019) reported for the first time LA-ICP-MS U-Pb ages acquired on fluorite that are consistent with those of adjacent nacrite crystals, showing that fluorite U-Pb geochronology can constrain the timing of fluid flows, providing favorable U/Pb. However, the incorporation and retention of U and Pb in the crystal structure of CaF₂ are very poorly documented, hence currently limiting the reliability of fluorite U-Pb
- 55 dating. Moreover, compared to other common lead-bearing minerals, fluorite sampling by laser ablation presents some additional analytical challenges, such as laser-induced damage (De Bonis et al., 2014; Jia et al., 2005; Rafique et al., 2012) and ejection of solid fragments causing variable ablation rates (

The aim of this study is to examine the spatial distribution of uranium and lead and to further explore small-scale LA-ICP-MS U-Pb geochronology in fluorite crystals. The unconformity-related F-Ba ore in Pierre-Perthuis (Morvan massif, France)

60 was chosen as a case study. This ore has been investigated in previous studi gigoux et al., 2015, 2016) and a generation of macroscopic geodic fluorite has been dated at 130 ± 15 Ma by Sm-Nd (Gigoux et al., 2015). As in many other F-Ba deposits, the most commonly geochronometers are lacking in Pierre-Perthuis, making it an ideal target for testing fluorite U-Pb dating. Through the use of various petro-geochemical investigations involving multiple

65

analytical methods, including induced fission-track mapping, Synchrotron radiation X-Ray Fluorescence nano-imaging, secondary ion mass spectrometry and LA-ICP-MS, this paper will address the following questions:

- How are U and Pb spatially distributed within micrometer-thick fluorite growth bands?
- How is uranium incorporated in fluorite?
- Are U and Pb effectively retained in fluorite?
- Can we use fluorite U-Pb geochronology to gain knowledge of the chronology of fluid flows?

70 2 Geological settings

The studied area is located at the interface between the Paris Basin and the French Massif Central (FMC), about 200 km south east of Paris. The Paris Basin is an intracratonic sedimentary basin that formed above Cadomian and Variscan basement rocks (Guillocheau, 2000). The FMC was structured during the Variscan orogeny (Lardeaux et al., 2014; Vialette, 1973). The northern edge of the FMC corresponds to the Morvan Massif, made up mostly of

- granitic rocks emplaced during the Early and Late Carboniferous (Lardeaux et al., 2014; Vialette, 1973). The 75 northern Morvan basement is composed of three granitic units namely the Ava Lormes and Les Settons and a metamorphic unit (Lower Gneiss Unit). The Pierre-Perthuis ore is spatially related to an unconformity between the Avallon granite basement and the Late Triassic sediments on the northwestern part of the Morvan Massif (Figure 1a). Two main geological units compose the Pierre-Perthuis outcrop: (1) the Avallon two-
- 80 mica granite which shows a weathered zone of about 0.5 to 3 m thickness at its top, and (2) 4 to 8 m of silicified dolostone that corresponds to the *Assise de Chitry* Formation (Fm), a Carnian/Norian dolomite formation (235–208 Ma), silicified after the deposition (Figure 1b). The main fluorite mineralization form euhedral (cubic habits) fluorite crystals dispersed within the silicified dolomite rock. A second occurrence forms centimeter cubic fluorite in geodic cavities that crystallized under relatively stable temperatures of 80-100°C (Gigoux et al., 2016). These fluorite mineralizations are
- 85 complemented by two barte stages (an early small blade-shaped barite stage and a late fan-shaped pink barite stage), three quartz stages (a microcrystalline stage responsible for the silicification of the *Assise de Chitry* Fm co-precipitated with chalcopyrite followed by a quartz fringe stage, and a late granular stage) and at least four sulphide stages.

Figure 1: (a) Geological map of the Morvan Massif with the location of the strata-bound fluorite ore of Pierre-Perthuis (modified according to the 1/1.000.000 georgical map, BRGM) and its (b) stratigraphic log modified according to Soulé de Lafont and Lhégu (1980).

3 Materials and methods

3.1 Sampling strategy

The Pierre-Perthuis district is composed of three areas: (1) *Bois Dampierre*, (2) *Bois de l'Epenay* and (3) 95 *La roche percée* (Figure 2). All samples were collected at the Pierre-Perthuis ore from outcropping rocks in the weathered granite (Figure 1c) close to the sedimentary cover and are summarized in Table 1.

Figure 2: a) Location of the mineralized outcrops at Pierre-Perthuis and b) a W-E geological profile lized on the geological map by the red line, modified according to the 1/50.000 geological map of *Avallon* (Horon et al., 1966), congoux et al., 2016; Soulé de Lafont and Lhégu, 1980b).

	Locatio	Applied Method								
Sample				δ ³⁴ S by SIMS (‱v-cdt)		U-Pb dating by LA-ICP-MS (Ma)		Fission track mapping		Scanning SR-XRF
Name	Geographic sector	Lat. X	Long. Y							
			-	$\delta^{34}S$	2σ	Age	2σ	Tracks nb	Area(µm ²)	birina
PP18S3	Bois Dampierre	47.43	3.792	-24.2	0.3	N.D.	N.D.	N.D.	N.D.	N.D.
PP18S7	Bois Dampierre	47.43	3.792	-23.6	0.3	N.D.	N.D.	N.D.	N.D.	Zr, Fe, Th, Sr,
	Bois Dampierre									Pb, Y, U
DD19C15	Bois Dampierre	47.43	3.792	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	Ca, Fe, Th, Sr,
1110515										Pb, Y, U
PP1802	Bois Dampierre	47.43	3.792	N.D.	N.D.	40.8	3.4	1276	51.5.10 ³	N.D.
PP1801	Roche	17 126	2 794	ND	ND	ND	ND	196	24.10^{3}	ND
111001	percée	т <i>1</i> ,-т50	5.704	IN.D.	IN.D.	N.D.	IN.D.	170	24.10	N.D.
DDV:2	Roche	17 135	3 786	ND	ND	207	1.8	ND	ND	ND
11 112	percée	47.455 5.760 N.D.	IN.D.	D. 56.7 1.6	1.0	IN.D. IN.D.	N. <i>D</i> .	N.D.		
DDV:5	Roche	17 135	3 786	ND	ND	41.1	2.2	ND	ND	ND
11 115	percée	+/.+55	5.700	IN.D.	IN.D.	41.1	2.2	1 1.D .	IN.D.	IN.D.
PP15	Bois de l'Epenay	47.431	3.786	N.D.	N.D.	41.8	2.8	N.D.	N.D.	N.D.

Table 1: Sample location, sulfur stable isotopic composition of pyrite, fluorite U-Pb age, fission track and Scanning SR-XRF of fluorite. (N.D. = not determined)

3.2 Petrographic observations

- 105 Polished thin sections were observed with optical microscopy in transmitted and reflected light, and under cathodoluminescence (CL) equipment composed of a BX41 microscope coupled to a cold cathode from NewTec operating at 12 kV and 200-300 µA and a Qicam Fast 1394 digital camera. More details about the cathodoluminescence activators and inhibitors in fluorite can be found in Baele et al., (2012) and Kempe et al., (2002). Uncoated polished thin sections were also observed and analyzed by scanning electron microscopy (SEM, Phenom X 110 Pro) using a charge compensation sample holder in backscattered electron mode (BSE). Images were produced at an acceleration voltage of 15 keV. Semi-quantitative elemental compositions were measured through energy dispersive X-ray
- acceleration voltage of 15 keV. Semi-quantitative elemental compositions were measured through energy dispers spectrometry (EDS) at an acceleration voltage of 15 keV and an accumulation time of 30 s.

3.3 Uranium distribution mapping

To map the uranium distribution in fluorite crystals of the Pierre-Perthuis ore, the fission track cartography based on the 115 induced fission of ²³⁵U was carried out using the external detector method (Gleadow, 1981). Fluorite crystals were mounted

in an epoxy resin and polished. Polished sections were covered by muscovite detectors in close contact and irradiated in the Research Neutron Source Heinz Maier-Leibnitz (FRM II) of the Technical University of Munich (Garching, Germany). Thermal neutron fluence was 1 x 10^{16} n/cm². Track densities are calibrated using the standard reference glass CN5 with a total U concentration of 12.17 ppm. After irradiation, the external detectors were detached and etched in 48% HF at $20 \pm 1^{\circ}$ C for 20 minutes. Induced fission tracks revealed on detectors were observed and counted using a LEICA DMLM optical microscope in transmitted light with a x1000 magnification.

3.4 Scanning Synchrotron radiation X-Ray Fluorescence nano-imaging

Fluorite crystals were mounted in an epoxy resin, polished on both sides to a thickness of a hundred microns and cut into 5 get edge squares. These pregions were fixed on Teflon rings and positioned perpendicularly to the incoming X-ray beam.

125 beam

120

Seven fluorite samples were scanned by Synchrotron radiation X-ray fluorescence (SR-XRF) using the Nanoscopium hard X-ray nanoprobe beamline (Bergamaschi et al., 2017; Somogyi et al., 2015) of Synchrotron SOLEIL (Université Paris-Saclay, Saint Aubin, France). Elemental distribution mapping was acquired from these polished sections in different areas at a spatial resolution varying from 50 nm to 1 µm and with an integration time per pixel varying from 150 ms to 20 ms. The

- 130 18 keV monochromatic X-ray beam was focused on the crystal samples by a Kirckpatrick-Baez nano-focusing mirror. This excitation energy of 18 KeV was chosen farther away from the U-L₃ absorption edge (17.168 keV) in order to avoid the overlapping of the U-L₃ X-ray lines and the Compton scattering peak of the incident X-ray beam from the sample. This allows the optimization of the analytical sensitivity of U due to the reduced spectral background below the U-L₃ lines. To obtain nanometer-scale resolution elemental maps on mm² sized samples, a fast-continuous scanning technique (FLYSCAN)
- 135 has been employed (Lanzirotti et al., 2010; Medjoubi et al., 2013). Full XRF spectra were collected at each pixel of the scans by two silicon drift detectors of 50 mm² useful area (KETEK H50, KETEK GmbH) used with XMAP (XIA LLC) fast digital multichannel analyzer cards. The XRF detectors were placed at 20° relative to the sample surface (Somogyi et al., 2015).

The high-resolution scans consisted of 100 000 - 300 000 individual XRF spectra corresponding to an XRF spectrum at each image pixel. In order to treat this data-set, as a first step we used the XRF sum-spectrum of the entire scanned area to identify the main elements present. The distribution maps of these elements were reconstructed by an inhouse Matlab® code. Because the scanned areas sometimes included different mineral matrices (fluorite and pyrite), or successive growth bands of distinct chemical composition in the same mineral, sub-zones were defined by the Matlab® code from the elemental distribution maps in order to extract the average XRF spectrum corresponding exclusively to the targeted

145 mineral matrix or growth band. These sub-zones, or regions of interest (ROIs), were selected by using ImageJ® software (Schneider et al., 2012). The mean XRF spectra of the ROIs was fitted using PyMCA® software (Solé et al., 2007). This allowed us to identify additional elements, present only in tiny areas or in small quantities (e.g., Th), and as such not

150

detectable in the sum-spectrum of the whole sample area. As a second step, the elemental distribution maps of all the identified elements were reconstructed by correcting for spectral overlaps depending on the intensity ratios of the X-ray lines.

3.5 Sulfur stable isotope composition of pyrite

Sulfur isotopes were measured by Secondary Ion Mass Spectrometry (SIMS) using a multi-collectors CAMECA IMS1270 E7 microprobe at the *Centre de Recherches Pétrographiques et Géochimiques* (CRPG, Université de Lorraine and CNRS) in Nancy (France). Samples that were already prepared for synchrotron XRF-spectromicroscopy were re-used. They were glued on a glass slide, then coated with a layer of 30 nm of Au. To accurately locate the SIMS analysis, petrographic observations using reflected light microscopy were carried out before and after gold plating. Pyrite inclusions in fluorite were sputtered with a 10 kV Cs⁺ primary ion beam with a current of 2.7 nA. A normal-incidence electron gun was used for charge compensation. ³²S⁻ and ³⁴S⁻ secondary ions were detected in multi-collection mode using two Faraday cups. Samples were pre-sputtered for 120 seconds with a beam raster of 20 x 20 µm prior to signal acquisition to minimize surface
160 contamination. Faraday cup backgrounds were measured during the pre-sputtering before each analysis and then used for correcting the data. Typical count rates of ³²S⁻ and ³⁴S⁻ were of 4.8×10⁸ counts per second (cps) and 2×10⁷ cps respectively, during 30 cycles of 4.96 seconds acquisition time. The spot size was about 15 µm in diameter. A nominal mass resolution (M/ΔM) of 4998 was used to resolve interference with hydrides.

- A Sierra Pyrite sample was used as an internal matrix-match standard to correct the sulfur isotopic ratio (Table 2). Data was integrated as a 32 S/ 34 S ratio (δ^{34} S in ‰) and referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale (Ding et al., 2001). Homogeneity of the Sierra Pyrite has been documented by LaFlamme et al., (2016) by three analytical techniques (EPMA: Electron Probe Micro Analyser, Wavelength-Dispersive X-Ray Spectroscopy-maps and SEM-BSE) and its δ^{34} S measured by SIMS at 2.17 ± 0.08 ‰_{V-CDT}. Measurements were carried out through daily sequences consisting of 5 analyses of matrix-match reference material followed by spots on unknown samples. For the first session, Sierra pyrite was measured
- 170 at 0.94 \pm 0.02 ‰v-cDT, and at 0.92 \pm 0.02 ‰v-cDT for the second analytical session. Instrumental mass fractionation (IMF) for ³⁴S^{-/32}S⁻ was quantified during each analytical session using all the replicated analyses of the matrixmatch standard. During the first session the IMF was -1.23 ± 0.34 ‰v-cDT, and -1.25 ± 0.28 ‰v-cDT for the second. Final uncertainties are reported at a 95% confidence level (2 σ), propagating the systematic uncertainty of primary reference material Sierra pyrite (3.7 %, LaFlamme et al., 2016), and the propagated correction for instrument mass fractionation
- 175 through the analytical session by quadratic addition.

Date	Reference material	δ ³⁴ S (‱v.cdt) LaFlamme et al., 2016	Sierra Pyrite 2σ error (‱v-cdt)	Standard analyses	δ ³⁴ S measured (‰v-cdt)	δ ³⁴ S 2σ error (‱v-cdt)	Instrumental mass fractionation	IMF 2σ error (‱v-cdt)
12/11/2019	Sierra	2.17	0.00	5	0.94	0.02	-1.227	0.34
12/13/2019	Pyrite	2.17	0.08	5	0.92	0.02	-1.252	0.28

Table 2: Data for Sierra Pyrite reference material.

180

185

3.6 In situ U-Pb geochronology

U and Pb isotopic compositions were measured for 4 fluorite samples showing fluorite overgrowth (Fl_{og}) : (1) PPVi2 (n = 16), (2) PPVi5 (n = 20), (3) PP1802 (n = 30) and (4) PP15 (n=26), using a 193 nm excimer laser (Teledyne, Photon Machines) coupled to a Thermo ScientificTM Sector Field Inductively Coupled Plasma Mass Spectrometer (SF-ICP-MS) ELEMENT XR (ThermoFisher Scientific, Waltham, USA) at the Geosciences laboratory (GEOPS) of the University Paris-Saclay.

The overall analytical procedure is derived from LA-ICP-MS U-Pb geochronology of carbonates (Roberts et al., 2020), developed at the University of Paris-Saclay for calcite (Brigaud et al., 2020) - see Table A1 of Appendix A for analytical details. The main difference concerns the laser energy needed to ablate fluorite. Indeed, a fluence of 6 J.cm⁻² was

- 190 required to ablate our natural fluorite crystals. To properly correct for downhole fractionation (DF) and other sources of laser-induced elemental fractionation (LIEF) on the measured ²⁰⁶Pb/²³⁸U ratios, a fluorite primary reference material (RM) should be used. However, such a fluorite RM does not exist yet. Thus, similarly to Piccione et al., (2019), we used a calcite RM, the Permian Reef Complex Walnut Canyon WC-1 (Roberts et al., 2017) as the primary reference material. We highlight that our fluorite U-Pb ages are thus not corrected for matrix-related elemental fractionation. To evaluate the accuracy of our
- 195 U-Pb ages, we included the analysis of a fluorite sample independently dated by (U-Th-Sm)/He thermochronology (Wolff et al., 2016). It corresponds to a sodium-and Rare Earth Element (REE)-rich green fluorite from the Horni Krupka deposit in Czech Republic (named "HK13") that has been dated by Wolff et al., (2016) at 290 ± 10 Ma.

The laser beam diameter for fluorite unknowns was 85 μ m. Fluorite crystals were ablated at a repetition rate of 10 Hz and a fluence of 6.25 J.cm⁻². Calcite reference materials, including WC-1 primary standard and two secondary standards that are

200 detailed below, were ablated at a repetition rate of 8 Hz and a fluence of 1 J.cm⁻², and a beam diameter of 150 μm. Glass reference materials NIST612 (37.38 ppm U and 38.57 ppm Pb) and NIST614 (0.823 ppm U and 2.32 ppm Pb, Jochum et al., (2011)) were ablated at a repetition rate of 10 Hz, a fluence of 6.25 J.cm⁻² and a beam size of 40 μm for NIST612 and 110 μm for NIST614.

Each analysis consists of 30 s background acquisition followed by 30 s of sample ablation and 30 s washout. Prior to analysis, each spot was pre-ablated for 7 s at a frequency of 10 Hz and with a fluence of 6.25 J.cm⁻² for reference material 205 (NIST) and fluorite samples, and at a frequency of 8 Hz and with a fluence of 1 J.cm⁻² for calcite reference materials. These pre-ablations are over an area larger than the beam diameter to clean the surface (155µm for calcite and NIST612, 110 µm for fluorite and 135 µm for NIST614) and remove potential surficial Pb contamination. The laser-induced aerosol was carried by helium (lage volume at 0. 5 l.min⁻¹ and inner cup at 0. 375 l.min⁻¹) from the sample cell to a mixing funnel in which the sample and He are mixed with 0.950 to 1 l.min⁻¹ argon to stabilize the aerosol input to the plasma. Signal strength 210 of the ICP-MS was tuned for maximum sensitivity while keeping Th/U at 1.02 and ThO/Th below 0.3% on NIST612. Isotopes ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th et ²³⁸U were acquired with integration times per peak (ms) of 10 ms for ²⁰⁸Pb, ²³²Th, ²³⁸U, of 30 ms for ²⁰⁶Pb and of 40 ms for ²⁰⁷Pb by 70 runs.

We used NIST614 to correct for 207Pb/206Pb fractionation (Jochum et al., 2011). For mass-bias correction of the measured ²³⁸U/²⁰⁶Pb ratios, we used the WC-1 calcite reference material (Roberts et al., 2017). Two secondary calcite 215 reference materials were analyzed during the analytical sessions: Duff Brown Tank (DBT), dated at 64.0±0.7 Ma by U-Pb isotope dilution - ICP-MS (Hill et al., 2016), and AUG-B6, a calcite breccia dated by LA-ICP-MS U-Pb at 42.99±1 Ma (Pagel et al., 2018). Internal secondary reference calcite AUG-B6 comes from the Gondrecourt graben (Eastern Paris Basin), part of the European Cenozoic Rift System and has been routinely analyzed for two years at GEOPS (University Paris-

- Saclay). Measurements have been made by sequences starting with 6 reference material analyses (2 NIST612, 2 NIST614 220 and 2 WC-1), then a repetition of 10 spots on unknown fluorite followed by 8 reference material analyses (2 NIST614, 2 WC-1, 2 DBT and 2 AUG-B6), 10 spots on unknown fluorite, etc., and ending with 6 reference material analyses (2 NIST612, 2 NIST614 and 2 WC-1). Data was acquired in fully automated mode overnight in two sequences of 336 analyses during about 12 hours of analysis the 19 and 20 December 2019.
- Data was reduced in Iolite© using the NIST614 glass as the primary reference material to correct for baseline, for Pb isotope 225 mass bias and for ²⁰⁶Pb/²³⁸U instrumental drift over the sequence time (Lawson et al., 2018; Paton et al., 2011). No downhole fractionation correction is applied in Iolite© (Nuriel et al., 2017). The two-sigma errors in ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U ratios measured on NIST614 during the analytical session were propagated to the final age uncertainty of fluorite samples by quadratic addition. During the first session, NIST 614 two sigma error on ²⁰⁷Pb/²⁰⁶Pb was 0.31 % and 1.10 % for ²⁰⁶Pb/²³⁸U
- and for the second session the two-sigma errors on ²⁰⁷Pb/²⁰⁶Pb and ²³⁸U/²⁰⁶Pb were 2.20% and 0.69% respectively. A signal 230 peak of ²⁰⁶Pb, ²⁰⁷Pb or ²³⁸U can occur due to unstable ablation conditions, causing an unusually high ²⁰⁶Pb/²³⁸U or ²⁰⁷Pb/²⁰⁶Pb standard error (2σ) , typically greater than 20 %. Thirty-five spots, having 2σ errors greater than 20 %, were excluded (5 on PPVi5, 7 on PPVi2, 15 on PP1802 and 8 on PP15). Each reduced piece of data is plotted in a ²³⁸U/²⁰⁶Pb versus ²⁰⁷Pb/²⁰⁶Pb Tera-Wasserburg graph using IsoplotR (Vermeesch, 2018). An isochron is drawn and the isochron age is deduced by the
- 235 intersection on the concordia. For each sequence, the age and uncertainty of WC-1 reference calcite, following normalization using NIST614 glass, was calculated without further normalization using a Tera-Wasserburg intercept age. Following the

analytic run, we applied a linear correction factor to correct the ²⁰⁶Pb/²³⁸U so that the primary WC-1 yields the correct intercept age (*i.e.*, 254.4 \pm 6.4 Ma, Roberts et al., 2017). For the first session, we obtained 167.0 \pm 3.7 Ma for WC-1 with 23 analyses, hence we applied a linear correction factor of 0.656 to correct all ²⁰⁶Pb/²³⁸U ratios of secondary calcite reference 240 materials and fluorite unknowns. For the second analytical session, WC-1 was dated at 148.0 ± 2.3 Ma with 39 analyses. Then, the linear correction factor on the ²⁰⁶Pb/²³⁸U ratio was 0.582. We fixed the ²⁰⁷Pb/²⁰⁶Pb ratio at 0.85 for the common Pb based on Stacey and Kramers, (1975) when we calculated the Tera-Wasserburg intercept age on WC-1 (see (Roberts et al., 2017)). Regarding unknown fluorite samples, Tera-Wasserburg intercept ages are calculated by plotting each spot from a single sample and by applying the linear correction factor found on WC-1 for the corresponding session to correct the ²⁰⁶Pb/²³⁸U ratios. An age is then calculated without fixing the initial ²⁰⁷Pb/²⁰⁶Pb value. Error ellipses of each spots and the 245 error on the Tera-Wasserburg intercept age are 2σ . In each Tera-Wasserburg graph, a first age uncertainty is given that does not include uncertainty propagations (except uncertainties related to the decay constants of ²³⁵U and ²³⁸U). A second age uncertainty in square brackets is given, by propagating the systematic uncertainty of primary reference material WC-1 age (2.6 %, Roberts et al., 2017) and the two-sigma error of the 207Pb/206Pb and 206Pb/238U of the analytical session by 250 quadratic addition. Calculated ages for calcite secondary reference materials analyzed during the two sequences were 40.7±1.6 Ma and 44.4±2.0 Ma for AUG-B6 and 63.7±2.2 Ma and 64.6±2.9 Ma for DBT, without fixing the initial ²⁰⁷Pb/²⁰⁶Pb ratio. These ages are identical within analytical uncertainty to the ages published for these two calcites (Pagel et al., 2018; Hill et al., 2016, respectively). "HK13" fluorite was dated at 285.9 ± 29.3 [30.9] Ma (Fig. A1 in Appendix A. Even though the isochron is less well defined, this U-Pb age matches the (U-Th-Sm)/He age obtained by Wolff 255 et al., (2016) at 290 ± 10 Ma.

Tera-Wasserburg diagrams of primary and secondary calcite reference materials and metadata for LA-ICP-MS U-Pb ages of fluorite can be found in Fig. A1 and Table A1 of Appendix A and in supplementary material.

4 Results

4.1 Petrographic observations

260 Three fluorite generations are described below and illustrated in Figure 3a.

The first fluorite stage is composed of 50 μ m up to a millimeter-large white cubes disseminated in the altered granite and mainly in the *Assister Chitry* Fm, named euhedral fluorite Fl_{euh} (Gigoux et al., 2016). These crystals may sometimes form centimeter-sized patches (Figure 3a).

The second stage fills pluricentimetric to pluri-decimetric-large geodic cavities or centimetric veinlets. This geodic fluorite (Fl_{geo}) forms millimetric to centimetric well-developed white and yellow/honey translucent cubes which are more or less

interlinked (Figure 3b). These crystals are fractured and contain many fluid inclusions (Figure 3c). Under cathodoluminescence, Fl_{geo} displays a light-blue luminescent core (Figure 3d).

Geodic fluorites (Fl_{geo}) sometimes display one or several overgrowths (Fl_{og}). It appears under cathodoluminescence as a dark-blue band at the extremity of the geodic crystals, with a thickness varying from 50 to 500 μm (Figure 3e). These overgrowths form the third and last stage of fluorite. They appear translucent in transmitted plane polarized light and do not contain any fluid inclusions (see Fig. A2 of Appendix A). From the center to the border, two growth phases have been noted (1) a translucent fluorite initiated by one or several purple rims (Flog1) (2) a second growth stage of fluorite with a laminar texture (Flog2), delineated by a fringe of well-aligned small globular pyrite crystals of about 30μm (Figure 3e and 3f). These pyrite crystals are rarely oxidized along fractures (Figure 3e).

275 Fission track mapping carried out on Fl_{geo} and Fl_{og}1&2 shows that Fl_{geo} and Fl_{og}1 are almost devoid of tracks, while a high track density is observed in Fl_{og}2 (Figure 3g and 3h). Significant uranium content is thus measured only in Fl_{og}2, with U concentration varying from 5 to 58 ppm according to the track counting zones with an average from 9 to 30 ppm per sample (see Table A2 of Appendix A for details).

Figure 3: Photographs of the fluorite stages from the Pierre-Perthuis ore. (a) Geode in the altered granite with milky white cubic crystals (Fl_{geo}) and the translucent fluorite overgrowth (Fl_{og}) delimited by a thin purple band. The euhedral fluorite (Fl_{euh}) forms patches in the Avallon granite, from Gigoux et al., 2015, (b) Centimetric cubes of Fl_{geo}, (c) Transmitted light microscopy photograph of Fl_{geo} and the overgrowth corresponding to Fl_{og}, (d) Cathodoluminescence image l_{geo} and Fl_{og}, (e) Photography of the linear between Fl_{geo} and Fl_{og} with a pyrite crystal affected by a fracture and oxidized, (f) Photography of a geodic fluorite crystal in transmitted light with the two stages constituting Fl_{og} (1) a translucent fluorite initiated by one or several purple rims: Fl_{og}1: (2) a final growth stage of laminar fibrous fluorite with nyrite inclusions: Fl_{og}2. (g) Parraphy in transmitted light of an

 $Fl_{og}1$; (2) a final growth stage of laminar fibrous fluorite with pyrite inclusions: $Fl_{og}2$, (g) P raphy in transmitted light of an irradiated crystal of $Fl_{geo} + Fl_{og}$, (h) Corresponding interpreted map of the induced fission tracks distribution in a crystal illustrated in (g) with a zooming on the muscovite detector.

290 4.2 Sulfur stable isotope composition

SIMS analyses were carried out for two fluorite crystals containing pyrite inclusions in their rims (Figure 4). Five pyrite crystals in PP18S3 sample have δ^{34} S values varying from -23.1 to -24.9 ‰_{V-CDT}. The sulfur isotopic ratio of pyrite from PP18S7 sample varies from -19.9 to -24.7 ‰_{V-CDT}. The mean of δ^{34} S values for PP18S3 and PP18S7 are -24.2 and -23.6 ‰_{V-CDT}, respectively. Two-sigma uncertainty is below 0.4 ‰_{V-CDT}.

295

Figure 4: Location of SIMS spots for δ^{34} S measurements presented in ‰V-CDT for (a) sample PP18S3 and (b) sample PP18S7. Micro-photographs are in transmitted plane polarized light for the entire sample (upper left) and in reflected plane polarized light on gold metallized zo

300 4.3 SR-XRF mapping

We studied in detail a sample that contains the last two generations of fluorite (Fl_{geo} and Fl_{og} described above) to investigate geochemical heterogeneities. Synchrotron radiation XRF mapping of a transect from Fl_{geo} and $Fl_{og}2$ shows areas of lower concentration of Ca within the $Fl_{og}2$ exclusively, and higher concentrations of substituted elements such as Y, Sr, U and Pb (Figure 5).

305

Figure 5: Transmitted plane polarized light photography from PP18S15 and corresponding Synchrotron radiation X-ray fluorescence elemental maps. Black areas indicate concentration below the limit of detection of the element. A globular pyrite crystal is included in Flog2.

310 Other maps have been generated with a focus on the transition between Fl_{og}1 and Fl_{og}2 (Figure 6), highlighted as distinct by petrographic observations and fission track mapping (Figure 3f and 3h). This map reveals elemental substitution and uranium incorporation. At this scale, SR-XRF mapping shows enrichment in Fe, Th, Sr, Pb, Y and U in Fl_{og}2. Th and Pb maps are highly correlated and show three growth bands anti-correlated with Y.

315

Figure 6: SR-XRF imaging of the transition between $Fl_{og}1$ and $Fl_{og}2$ in PP18S15 showing the distribution of Fe, Th, Sr, Pb, Y and U contents. Map dimensions are $261 \mu m \times 122 \mu m$.

4.4 e geochronology

- 320 Uranium and lead isotopic compositions are plotted in Tera-Wasserburg graphs (²³⁸U/²⁰⁶Pb vs ²⁰⁷Pb/²⁰⁶Pb) in Figure 7.
- Four isochrons have been calculated, with a common initial ²⁰⁷Pb/²⁰⁶Pb composition ranging from 15 to 0.840. Outer rims of geodic fluorite crystals from Pierre-Perthuis yield an age of 38.7 ± 1.5 [1.8] Ma with 9 analyses and a MSWD of 0.68 (Figure 7a) for PPVi2, 41.1 ± 1.8 [2.2] Ma (MSWD = 1 and n=15) for PPVi5 (Figure 7b), 40.8 ± 3.0 [3.4] Ma for PP1802 with 11 analyses and a MSWD = 0.6 (Figure 7c) and PP15 of 41.8 ± 2.4 [2.8] Ma (MSWD=1.5 and n=22) (Figure 325 7d). As these ages are identical within analytical uncertainties, all data from the different crystals but corresponding to the same generation according to petrography, were then plotted in a single graph (Figure 7e), giving an age of 40.0 ± 0.9 [1.7]
- Ma (MSWD=1.2). Because U/Pb ratios are variable in the samples, data is well distributed in the Tera-Wasserburg space, and the isochron is rather well constrained despite the somehow large uncertainty of single analytical spots.

To evaluate the accuracy of fluorite LA-ICP-MS U-Pb dating in the absence of calibration against a fluorite primary RM, we 330 tested the HK13 fluorite, a sample independently dated at 290 ± 10 Ma by (U–Th–Sm)/He thermochronology (Wolff et al., 2016). Although we found an age of 285.9 ± 30.9 Ma (Fig. A1 of Appendix A), interpretation of results is somehow limited by a poor data spread in a Tera-Wasserburg diagram and by rather large uncertainties regarding single analytical spots related to unstable ablation rates.

335 Figure 7: Tera-Wasserburg diagram (²⁰⁷Pb/²⁰⁶Pb vs. ²³⁸U/²⁰⁶Pb) for fluorite. (a,b,c and d) U-Pb ages of the four fluorite overgrowth samples. (e) Isochron obtained from the compilation of all data illustrated in a,b,c and d. "n" is the number of analytical spots for each sample.

5 Discussion

5.1 Uranium and lead incorporation in fluorite

- The fluorite overgrowths are composed of two distinct layers: (1) Flog1, without significant integration of U in the fluorite lattice and (2) Flog2, in which U was effectively incorporated within the crystal and correlated with precipitation Flog2 appears colorless with an internal fibrous texture. No pleochroic halos were observed (Dill and Weber, 2010). Fission track mapping instead shows a homogeneous incorporation of U (Figure 3g and 3h). On a smaller scale, SR-XRF reveals micrometer-scale fluctuations in uranium concentrations along the growth directions, correlated with the incorporation of
- 345 other substituted elements such as Sr and Zr (Figure 8).

Figure 8: Synchrotron-based XRF elemental maps showing distribution of Zr, Y, Sr, Th, U and Pb through a transect from the core crystal of Fl_{gco} to the Fl_{og} rim of PP18S7. Color bars indicate intensity scale (black indicates concentrations below the detection limit). Higher intensities correspond to higher metal contents. Map dimensions are 179 μ m x

355

360

The transition between $Fl_{og}1$ and $Fl_{og}2$ can be explained by the development of a redox front, causing the reduction of $U^{(VI)}$ into $U^{(IV)}$. Theoretically, fluorite can incorporate $U^{(IV)}$ as UO_2 and $U^{(VI)}$ as $CaUO_4$ (Kröger, 1948; Recker, 1961). Recently, reported hexavalent uranium in fluorite from the Round Top Mountain in Texas (USA). In Pierre-Perthuis, the presence of numerous pyrite crystals in $Fl_{og}2$, similar to those reported by Dill and Weber (2010), characterizes a reducing environment that has probably initiated the precipitation of U. Pyrite is common in roll-front uranium deposits (Bonnetti et al., 2015; Cai et al., 2007; Campbell et al., 2012; Ingham et al., 2014). Globular pyrites, similar to those observed in $Fl_{og}2$, are usually interpreted as biogenic in origin This hypothesis is supported by the sulfur stable isotope composition of the pyrites included in $Fl_{og}2$ (mean $\delta^{34}S = -23.6 \, \text{Mov-CDT}$) (Belyi et al., 1972; Blakeman et al., 2002; Chen et al., 2019; Bonnetti et al., 2020; Cai et al., 2007; Rackley, 1972). The homogeneous $\delta^{34}S$ of these pyrites indicates a large amount of sulfate available for reduction by bacteria in an open system (Hough et al., 2019; Magnall et al., 2016). Concentric

incorporation of Ni, As, and Cu were reported both in biogenic (Baumgartner et al., 2020) and abiogenic pyrite (Wu et al., 2019). Pyrite crystals in Flog2 show such concentric zonation (Figure 9).

Figure 9: Copper, arsenic and nickel distribution maps of a pyrite included in Flog2. Maps dimensions are 52 µm x 76 µm.

365

370

Hence, we propose that uranium incorporation in $Fl_{og}2$ is related to BSR (Figure 10). The solubility of uranium was enhanced by F-bearing solutions (Xing et al., 2019) that leached the granitic basement through the fracture network (Figure 10 a). When reaching the unconformity between the basement and the sedimentary cover, a local redox front generated by BSR causes U to precipitate. BSR produces sulfur species reacting with iron oxyhydroxides or dissolved iron to form iron disulphides (Bonnetti et al., 2017; Machel, 2001). These sulfur species are electron donors that can reduce U^(VI) to insoluble U^(IV), thus causing uranium precipitation (Bonnetti et al., 2015; Campbell et al., 2012; Yi et al., 2007). Alternatively, direct microbial reduction of U could also have occurred (Bhattacharyya et al., 2017; Lovley et al., 1991). The incorporation of U, together with other metals (Figure 5 and 6), may have been enhanced through their

adsorption by bacterial bio-films developed at the surface of fluorite crystals. Indeed, the collomorphic fibrous texture of the 375 external overgrowth Flog2 in the Pierre-Perthuis crystals (Figure 3f) could result from the development of bio-films in pore/geode linings. Although the secretion of extracellular polymeric substances leading to the formation of bacterial biofilms on pyrite has been extensively documented, their development at the surface of fluorite crystals remains largely unexplored, apart from Heim et al., (2012) who reported tubular structures within fluorite filling fractures in the Aspö diorite in Sweden, interpreted as fossilized microbial bio-films.

380

Figure 10: Conceptual model of uranium incorporation in the fluorite lattice. a) Uranium is leached by F-rich oxidizing solutions flowing through the granitic basement and reaching Flgeo in the basement/cover interface, b) formation of purple layers on the fluorite surface by F-bearing fluids, c) Crystallization of Flog1, d) A local redox front is generated by BSR, e) sulfur species react with iron oxyhydroxides or dissolved Fe to form pyrite, f) reduced uranium is incorporated in Flog2.

385

The development of purple colorations in fluorite has long been recognized to be related to the vicinity of uranium-bearing minerals (Chatagnon et al., 1982; Pi et al., 2007). Bill and Calas (1978) proposed that the incorporation of Eu²⁺, together with metallic calcium colloids formed by long-time irradiation, can cause purple colorations. Chatagnon et al., (1982) and later Kempe et al. (2002) show that such colorations have rather been caused by the reduction and stabilization of Tm and Ho in the divalent state under irradiation by the radioactive decay series of U. SR-XRF mapping focused on small welldefined purple growth bands (Figure 11) shows enrichment in U and Th. As the thickness of these bands is sometimes less

than 10 μ m, we suggest that the coloration was acquired through gamma irradiation, instead of α -irradiation, which would have caused larger bands (Dill and Weber, 2010; Pi et al., 2000). Vochten et al., 1977). It must be noted however that such coloration is not developed in the U-bearing Flog2 layer (Figure 6, 8). Thus, the origin of the purple coloration in the fluorite crystals of Pierre-Perthuis is still not fully understood and would require further investigation.

Figure 11: Transmitted plane polarized light photography from PP18S7 and corresponding Synchrotron X-ray fluorescence elemental maps. Area of XRF scan is outlined by a red box on the photography. Map dimensions are 80 x 80 µm.

400 Lead was detected by SR-XRF mapping, and its distribution in Flog2 seet be correlated with Th (Figure 6 and 11). During the co-precipitation of pyrite and Flog2, lead was preferentially incorporated into pyrite crystals (Figure 8).

In the following section, we will further discuss the spatial distribution and retention of U and Pb and the reliability of the U-Pb geochronometer in fluorite.

5.2 Fluorite U-Pb geochronology

405 **5.2.1 Retention of U in fluorite**

To test the reliability of U-Pb dating in the fluorite rims of Pierre-Perthuis, we further discuss potential alterations by (1) the development of fractures and cleavages; (2) dissolution and re-crystallization; (3) solid-state diffusion.

(1) Fractures and cleavages

Fluorite is well known to develop cleavages and fractures. Although cleavages are abundant in the core of the crystals (Flgeo),
they are rare on the rims (Figure 3c). Scarce fractures crosscutting Flog2 were observed, causing the oxidation of pyrite (Figure 3e). Adjacent pyrite crystals being unaffected, these fractures only generated local alterations, and were consequently avoided in LA-ICP-MS analyses (Figure 3e).

(2) Dissolution-re-crystallization

Dissolution and re-precipitation of fluorite in hydrothermal deposits is common (Burisch et al., 2017). In Pierre-Perthuis, some crystals show irregular extremities demonstrating that a late fluid event was able to slightly dissolve fluorite. These corroded crystals were not selected for LA-ICP-MS analyses. In the other crystals, the preservation of pyrite crystals, the internal fibrous texture of fluorite and the perfect geometric relationship between Fl_{geo} and Fl_{og} (Figure 3f) demonstrate that Fl_{og}2 was not dissolved and re-crystallized.

(3) Solid-state diffusion

- 420 Cherniak et al., (2001) determined the diffusion rates of Sr, Y, and REE in natural fluorite and concluded that no significant diffusion (< 100 µm) should occur at temperatures below 500 °C. Bosze and Rakovan, (2002), however, document diffuse boundaries between REE sectoral zoning in fluorite, interpreted as resulting from the diffusion of these elements over an area of 200 300 µm. In Pierre-Perthuis, the preservation of ca. 10 µm thick violet bands with sharp terminations demonstrates the absence of significant REE diffusion (Kempe et al., 2002). SR-XRF mapping also shows the preservation</p>
- of Sr, Y, Th, Pb and U-rich bands of a thickness of ca. 10μm (Figure 6), evidencing the absence of solid-state diffusion of these elements in our samples. Although the crystallization temperature of Flog2 is unknown due to the absence of fluid inclusions, a maximum temperature of 100 °C is speculated based (1) on the fluid inclusion homogenization temperature ranging from 80 to 100°C for Fl_{geo} at Pierre-Perthuis (Gigoux et al., 2016), (2) on evidence of BSR and (3) on the fact that the paleotemperatures reached by the *Assise de Chitry* Fm in the area were low during the Cenozoic period (Barbarand et al., 2012).
- 430 2013; Gigoux et al., 2016). We thus conclude that U and Pb did not diffuse within $Fl_{og}2$.

5.2.2 In situ LA-ICP-MS U-Pb dating

Uranium concentration in fluorite is highly variable (Piccione et al., 2019; Walter et al., 2018; Wolff et al., 2016), and is often insufficient for U-Pb dating (Piccione et al., 2019). In the Pierre-Perthuis fluorite ore, the geodic fluorite Fl_{geo} , dated at 130 ± 15 Ma by Sm-Nd (Gigoux et al., 2015), could not have been tested for U-Pb geochronology because it contains no U.

435 Likewise, Flog1 is not amenable to U-Pb dating. The first fluorite generation, Fleuh, precipitated from the dissolution of the host dolomite rock, and therefore contains too many carbonate impurities that cannot be excluded from sampling in LA-ICP-MS.

440

Compared to U-Pb geochronology of other common lead-bearing minerals such as calcite (e.g., Roberts et al., 2020), fluorite U-Pb geochronology presents some additional analytical challenges. Laser induced damages in fluorite have been extensively studied (De Bonis et al., 2014; Jia et al., 2005; Rafique et al., 2012; Reichling et al., 1994). Due to thermal stress and shock waves, large fractures and the ejection of solid fragments commonly occur during the first laser shots (Gogoll et al., 1996; Johansen et al., 1995). A 7s pre-ablation, excluded from data used for U-Pb age calculation, helps in getting more stable ablation rates.

Ablation quality depends on numerous factors including laser parameters (wavelength, fluence and repetition rate) and intrinsic crystallographic features like orientation, chemical impurities lefects (Gogoll et al., 1996). Therefore, ablation rate and quality may largely vary from one natural fluorite crystal to another.

Variations in ablation rates (crater depth/crater diameter) may generate variable downhole fractionations (DF). To minimize DF, a low laser fluence (typically 1J.cm⁻²) and a large diameter are generally preferred (Mangenot et al., 2018). However, a fluence of at least 6J.cm⁻² was required to ablate Flog2. SEM observations of ablation pits in Flog2 reveal variable laser crater

- 450 aspect ratios (see Fig. A3 of Appendix A for spots illustration and measured crater depths). The total crater depths, including the material excluded for analysis during the 7s "pre-ablation" vary from 97 to 153 μm in Pierre-Perthuis fluorite samples and from 231 to 266 μm for the HK13 fluorite (see Table A3 of Appendix A). To correct for DF, a matrix-match primary RM can be used if laser ablation generates similar crater aspect ratios between the reference material and unknown samples (Elisha et al., 2020; Guillong et al., 2020). Such a matrix-match RM is not yet available for fluorite U-Pb
- 455 geochronology (Piccione et al., 2019). However, even with the use of such a RM, DF correction may turn out to be incorrect because of variable crater aspect ratios in fluorite. Further research is needed to improve the precision and accuracy of fluorite U-Pb geochronology, through the systematic comparison of LA-ICP-MS crater aspect ratios in fluorite samples of known ages. In addition to DF, other sources of elemental fractionation should also be investigated, such as the influence of the chemical composition of the aerosol (Sylvester, 2008). Piccione et al. (2019) reported comparable U-Pb ages acquired on
- 460 fluorite and associated nacrite, suggesting that this effect may not introduce a significant bias.

5.3 U-Pb age significance

In the absence of elemental fractionation correction against a fluorite RM, the age of the last generation of fluorite in Pierre-Perthuis ore ($Fl_{og}2$), 40.0 ± 1.7 Ma, may be over- or underestimated. Considering an age offset of 20% as an extreme case (Guillong et al., 2020), this age estimate still significantly differs from the Sm-Nd age of 130 ± 15 Ma (Gigoux et al., 2015) of the prior geodic fluorite crystals Fl_{geo} .

5.3.1 Regional significance

465

Bergerat, (1984) proposed an N-S compressive stress field during the Eocene through micro-structural analysis in the studied area, interpreted as the consequence of the Pyrenean compression. Evidence of late Eocene fragile deformation and

associated fluid flows are also found in the eastern Paris basin, ca. 150 km north-east of Pierre-Perthuis, where calcite cementing hydraulic breccia were dated at 43 ± 1 Ma (Brigaud et al., 2020; Pagel et al., 2018). Volcanic activity in the northern part of the French Massif Central has been reported by Bellon et al., (1974) and Lefort and Agarwal, (2002) during this period, at about 80-120km south-east of the study area. In conclusion, a local compressive stress field related to the propagation of N-S Pyrenean compression in the intraplate domain may have generated fluid flows and the crystallization of Flog2.

475 5.3.2 Wider considerations regarding radiometric dating of ore deposits

In Pierre-Perthuis, the geodic fluorite crystals Fl_{geo} yield a Sm-Nd age of 130 ± 15 Ma (Gigoux et al., 2015). Here, we show that later fluid flows took place during the Cenozoic period, recorded as rims overlaying Fl_{geo} . Hence, successive mineralizing fluids occur during a time period of ca. 90 Ma.

In some ore deposits, fluorite Sm-Nd dating is the only available geochronometer. However, errorchrons and imprecise ages may occur. In such cases, U-Pb geochronology of common lead-bearing authigenic phases such as calcite (Rasbury and Cole, 2009), hematite (Walter et al., 2018), chalcedony (Nuriel et al., 2011) or nacrite (Piccione et al., 2019) offers new perspectives to gain knowledge on the successive chronology of mineralizing fluid flows. In Pierre-Perthuis however, as in some other F-Ba deposits, these minerals are absent. A late Eocene age estimate for the last fluorite-mineralizing event reveals that the "lifetime" of the ore deposit was much longer than previously thought. Fluorite was deposited during several

485 successive fluid flows induced by the reactivation of faults affecting the granitic basement. Small-scale radiometric dating of single growth bands in authigenic phases makes it possible to determine the chronology of these multiple crystallization events. Future research should be conducted to test the U-Pb geochronometer in fluorite crystals dated by Sm-Nd or other direct ((U-Th-Sm)/He) or indirect methods.

6 Conclusion

- 490 We have explored the U-Pb geochronometer in fluorite. In the Pierre-Perthuis F-Ba deposit, uranium was found in the most external rim of fluorite crystals. SR-XRF mapping demonstrates the preservation and retention of micrometer-thick zonation in uranium concentration in fluorite. Petrographic observations coupled to induced fission tracks and SR-XRF mapping show that uranium is incorporated in the fluorite crystal lattice by elemental substitution. The incorporation of uranium is related to bacterial sulphate reduction, evidenced by globular pyrite inclusions. Relying on careful and detailed petrography, we
- show that such growth bands can be dated by U-Pb geochronology. The spread of U and Pb isotopic compositions in a Tera-Wasserburg space are interpreted as isochrons, yielding an age of 40.0 ± 1.7 Ma, not corrected for matrix-related elemental fractionation. This age estimate corresponds to the last minor fluorite-mineralizing event. Since the crystal cores were previously dated at 130 ± 15 Ma by Sm-Nd, successive episodic fluid flows occurred during ca. 90 Ma. Future research

should be conducted to correct for ²³⁸U/²⁰⁶Pb fractionation during LA-ICP-MS analysis in fluorite through the definition of a

500 fluorite reference material.

Appendix A

Laboratory and Sample Preparation							
Laboratory name	Géosciences Paris Sud (GEOPS). Université Paris-Saclay. Orsay.						
	France						
Sample type/mineral	Fluorite						
Sample preparation	Fluorite crystals mounted in epoxy resin						
Imaging	Optical microscopy using transmitted light						
Laser ablation system							
Make. Model and type	193nm ArF (Teledyne Photon Machines)						
Ablation cell	HelEx						
Laser wavelength (nm)	193 m						
Pulse width (ns)	5 ns						
Fluence (J.cm-2)	6.25 J.cm ⁻²						
Repetition rate (Hz)	10 Hz						
Pre-ablation	each spot during 7 s						
Ablation duration (secs)	30 s						
Spot size (mm)	<mark>150 μm</mark>						
Sampling mode / pattern	Static spot ablation						
Carrier gas	Не						
Cell carrier gas flow (l.min ⁻¹)	Helium						
	Lage volume : 0.5 1.min ⁻¹						
	Inner cup : 0.375 1.min ⁻¹						
ICPMS instrument							
ICPMS instrument Make. Model & type	ThermoScientific Element XR						
Sample introduction	Ablation aerosol						
RF power (W)	1175 W						
Make-up gas flow in ablation funnel (l.min ⁻¹)) Ar=0.950 to 1 l.min ⁻¹						
Detection system	Ion counter						
Masses measured	206. 207. 208. 232. 238						

Average gas background (cps) 2019-12-19	12 for 206. 10 for 207. 26 for 208. 0.1 for 232. 0 for 238
Average gas background (cps) 2019-12-20	20 for 206. 17 for 207. 53 for 208. 0.1 for 232. 0 for 238
Integration time per peak (ms)	10 ms for ²⁰⁸ Pb. ²³² Th. ²³⁸ U. of 30 ms for ²⁰⁶ Pb and of 40 ms for ²⁰⁷ Pb by
	70 runs
Total integration time per reading (secs)	0.1 s
IC Dead time (ns)	30 ns
Signal strength at ICPMS tuned conditions	Th/U=1.02
	248ThO/232Th below 0.3%
Data Processing	
Data acquisition	Fully automated mode overnight in sequences of 399 analysis
	maximum
Gas blank	30 s background. 30 s sample ablation and 30 s washout
Calibration strategy	NIST614 for Pb-Pb. calcite WC-1 for U-Pb. secondary reference
	materials: calcite Duff Brown Tank (DBT). calcite breccia AUG-B6 and
	fluorite HK13
Reference Material info	WC-1 age: 254.4±6.4 Ma (Roberts et al., 2017). Duff Brown Tank age:
	64±0.7 Ma (Hill et al., 2016).
	(Pagel et al., 2018) and fluorite HK15 age: 290±10 Ma (Wolff et al., 2016)
Data processing package used / Correction	Iolite to calculate uncertainties. no down-hole fractionation correction
for LIEF	
Mass discrimination	²⁰⁷ Pb/ ²⁰⁶ Pb normalization to NIST614. ²⁰⁶ Pb/ ²³⁸ U normalization to WC-1
Common-Pb correction. composition and	No common-Pb correction applied
uncertainty	
Uncertainty level & propagation	Ages in the data table are quoted at 2sigma (2σ) absolute. uncertainty
	propagation by quadratic addition
Quality control / Validation	Measurements of WC-1 age = 167.7 ± 3.5 Ma. Duff Brown Tank (DBT)
2019-12-19	age = 63.75 ± 2.03 Ma. AUG-B6 age = 40.7 ± 1.61 Ma and NIST614 were
	done along with samples throughout the analytical session
Quality control / Validation	Measurements of WC-1 age = 148.9 ± 2.2 Ma. Duff Brown Tank (DBT)
2019-12-20	age = 64.57 ± 2.95 Ma. AUG-B6 age = 44.45 ± 2.17 Ma. "HK13" fluorite
	was dated at 290.38 \pm 14.38 [17.52] Ma and NIST614 were done along
	with samples throughout the analytical session

Table A1: Data for fluorite LA-ICP-MS U-Pb analysis at University Paris-Saclay, GEOPS laboratory.

505 Figure A1: Tera-Wasserburg diagrams of primary and secondary calcite and fluorite reference materials and measured during analytical sessions. (a,b) Tera-Wasserburg diagrams displaying corrected ages for the calcite Breecia of the Gondrecourt graben AUG-B6 measured during the two analytical sessions, (c,d) Tera-Wasserburg diagram displaying the Duff Brown Tank corrected ages measured during the two analytical sessions, (e) Tera-Wasserburg diagram of "HK13" fluorite dated at 290 ± 10 Ma by Wolff et al., 2016.

510

Figure A2: Photography of the fluorite stages from the Pierre-Perthuis ore showing the contrast in fluid inclusions concentration between Fl_{geo} and Fl_{og}.

		counted	counted		U average
Sample	zone	fission		concentration	concentration
		tracks	(µm-)	(ppm)	/sample (ppm)
CORNING CN5	-	131	104	12.17	-
	1	57		18	
	2	57		18	
	3	54		17	·
PP1802-1	4	63	3000	20	19
	5	62		20	
	6	58		19	
	7	52		17	

	8	60		19	
	1	67		26	
	2	70		27	
PP1802-2	3	76	2500	30	29
	4	85		33	
	5	76		30	
	1	56		38	
	1 (rim)	22		15	
	2	58		39	
	2 (rim)	31		21	
DD1903 /	3	47	1500	32	20
FF1002-4	3 (rim)	25	1300	17	50
	4	86		58	
	4 (rim)	22		15	
	5	63		43	
	5 (rim)	29		20	
	1	36		13	
	2	28		10	
	3	26		9	
DD1901 2	4	13	2000	5	0
FF 1001-2	5	22	3000	8	9
	6	25		9	
	7	33		11	
	8	13		5	
CORNING CN5	-	94	104	12.17	-

515 Table A2: Fission tracks analytical results. Counted areas are distributed along Fl_{og}2 on different samples. Correcting factor employed for U concentration calculation on each sample depends on the counted area and followed a bracketing method (thanks to the two CN5 standard certified at 12.17ppm).

Figure A3: Various crater aspects induced by laser ablation on different fluorite s have by Scanning Electron Microscopy. Blue circle shows the pre-ablation laser diameter (110 μm) and the red one the ablation laser diameter (85 μm).

Sampla	onvetal	spot	distance to the	crater depth	Average	
Sample	crystar	spor	surface of the sample	bottom of the crater	(µm)	(µm)
		1	4244	4357	113	
PP15	1	2	4216	4336	120	
		3	4214	4312	98	
		1	4169	4276	107	111
	2	2	4161	4287	126	
	2	3	4144	4261	117	
		24	4154	4251	97	
		1	4317	4444	127	
DD1003	1	6	4255	4356	101	110
PP1802	1	7	4230	4349	119	112
		8	4192	4293	101	
		3	4020	4164	144	
		4	3982	4135	153	
	1	8	3977	4104	127	
		12	3957	4094	137	100
PPV12		13	3950	4096	146	133
		20	3889	4011	122	
		22	3869	3982	113	
		25	3882	4006	124	
		2	4109	4234	125	
DD3/1 <i>7</i>	1	5	4080	4210	130	120
PPV15	1	8	4082	4226	144	138
		10	4047	4199	152	
		1	4486	4730	244	
HK13	1	4	4478	4744	266	249
		6	4457	4690	233	

	2	2	4526	4757	231	
		5	4540	4807	267	
	2	2	4496	4752	256	
	3	4	4503	4752	249	
	4	2	4407	4646	239	
	4	4	4430	4689	259	

Table A3: Statistical analysis of crater depths induced by laser ablation for U-Pb dating by scanning electron microscopy. The crater depth includes the 7s pre-ablation.

525

530

Author contribution

Julius Nouet and Claire Boukari were involved in the preparation of the fluorite samples for SEM observations, SR-XRF \$and induced fission track mapping. Andréa Somogyi directed the elemental mapping experiments on the Nanoscopium beamline at Synchrotron SOLEIL, and supervised SR-XRF data interpretation. Jocelyn Barbarand, Benjamin Brigaud and Maurice Pagel were involved in field work, data interpretation and contributed to the improvement of the manuscript. Louise Lenoir and Thomas Blaise participated in every step of the study and prepared the manuscript.

Competing interests

The authors declare that they have no conflict of interest.

535

Acknowledgments

The authors would like to thank Kadda Medjoubi for support and the scientific discussions during SR-XRF experiments on the Nanoscopium beamline at SOLEIL. We acknowledge Nordine Bouden and Johan Villeneuve for the acquisition of sulfur stable isotope ratios by SIMS at the CRPG. We would like to thank Frederic Haurine for his assistance during the acquisition of the U-Pb analyzes, performed on the LA-ICP-MS which is part of the PANOPLY platform (GEOPS-LSCE). Portions of this research were carried out at the SOLEIL Synchrotron Radiation Laboratory, a national user facility operated by CEA and CNRS (Proposal number: 20190188). This research was partly funded by TelluS Program CESSUR "*Connaissance et Technologie du Sous-Sol pour son Exploitation et Usage Durable*" of CNRS/INSU. Reinhard Wolff is warmly thanked for the sharing of fluorite sample HK13.

References

565

570

575

Alexandre, P., Kyser, K., Thomas, D., Polito, P. and Marlat, J.: Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin, Mineralium Deposita, 44(1), 41–59, doi:10.1007/s00126-007-0153-3, 2009.

550 Baele, J.-M., Monin, L., Navez, J. and André, L.: Systematic REE Partitioning in Cubo-Dodecahedral Fluorite from Belgium Revealed by Cathodoluminescence Spectral Imaging and Laser Ablation-ICP-MS, Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), 23–30, doi:10.1007/978-3-642-27682-8_4, 2012. Barbarand, J., Quesnel, F. and Pagel, M.: Lower Paleogene denudation of Upper Cretaceous cover of the Morvan Massif and

southeastern Paris Basin (France) revealed by AFT thermochronology and constrained by stratigraphy and paleosurfaces,
 Tectonophysics, 608, 1310–1327, doi:10.1016/j.tecto.2013.06.011, 2013.

Baumgartner, R. J., Van Kranendonk, M. J., Pagès, A., Fiorentini, M. L., Wacey, D. and Ryan, C.: Accumulation of transition metals and metalloids in sulfidized stromatolites of the 3.48 billion-year-old Dresser Formation, Pilbara Craton, Precambrian Research, 337, 105534, doi:10.1016/j.precamres.2019.105534, 2020.

Bellon, H., Gillot, P. Y. and Nativel, P.: Eocene volcanic activity in Bourgogne, Charollais, Massif Central (France), Earth and Planetary Science Letters, 23(1), 53–58, doi:10.1016/0012-821X(74)90029-6, 1974.

Belyi, V., Vinogradov, V. and Lisitsin, A.: Sulfur isotope composition of uranium roll ore bodies and its genetic significance, Litologiya i Poleznye Iskopaemye, 6, 42–53, 1972.

Bergamaschi, A., Medjoubi, K., Messaoudi, C., Marco, S. and Somogyi, A.: MMX-I: A data-processing software for multimodal X-ray imaging and tomography, Journal of Physics: Conference Series, 849, 012060, doi:10.1088/1742-6596/849/1/012060, 2017.

Bergerat, F.: La fracturation nivernaise : Influences bourguignonne et centralienne sur la structuration du Nivernais, Bulletin d'information des géologues du bassin de paris, 21(4), 27–31, 1984.

Bhattacharyya, A., Campbell, K. M., Kelly, S. D., Roebbert, Y., Weyer, S., Bernier-Latmani, R. and Borch, T.: Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits, Nature Communications, 8(1), 1–8, doi:10.1038/ncomms15538, 2017.

Bill, H. and Calas, G.: Color centers, associated rare-earth ions and the origin of coloration in natural fluorites, Physics and Chemistry of Minerals, 3(2), 117–131, doi:10.1007/BF00308116, 1978.

Blakeman, R. J., Ashton, J. H., Boyce, A. J., Fallick, A. E. and Russell, M. J.: Timing of Interplay between Hydrothermal and Surface Fluids in the Navan Zn + Pb Orebody, Ireland: Evidence from Metal Distribution Trends, Mineral Textures, and 34S Analyses, Economic Geology, 97(1), 73–91, doi:10.2113/gsecongeo.97.1.73, 2002.

Boiron, M. C., Cathelineau, M., Banks, D. A., Buschaert, S., Fourcade, S., Coulibaly, Y., Michelot, J. L. and Boyce, A.: Fluid transfers at a basement/cover interface Part II. Large-scale introduction of chlorine into the basement by Mesozoic basinal brines, Chemical Geology, 192, 121–140, 2002.

605

Bonnetti, C., Cuney, M., Michels, R., Truche, L., Malartre, F., Liu, X. and Yang, J.: The Multiple Roles of Sulfate-Reducing
Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China,
Economic Geology, 110(4), 1059–1081, doi:10.2113/econgeo.110.4.1059, 2015.

- Bonnetti, C., Liu, X., Zhaobin, Y., Cuney, M., Michels, R., Malartre, F., Mercadier, J. and Cai, J.: Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China, Ore Geology Reviews, 82, 108–129, doi:10.1016/j.oregeorev.2016.11.013, 2017.
- 585 Bonnetti, C., Zhou, L., Riegler, T., Brugger, J. and Fairclough, M.: Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle, Geochimica et Cosmochimica Acta, S0016703720303240, doi:10.1016/j.gca.2020.05.019, 2020.

Bosze, S. and Rakovan, J.: Surface-structure-controlled sectoral zoning of the rare earth elements in fluorite from Long Lake, New York, and Bingham, New Mexico, USA, Geochimica et Cosmochimica Acta, 66(6), 997–1009, doi:10.1016/S0016-7037(01)00822-5, 2002.

Brigaud, B., Bonifacie, M., Pagel, M., Blaise, T., Calmels, D., Haurine, F. and Landrein, P.: Past hot fluid flows in limestones detected by Δ47–(U-Pb) and not recorded by other geothermometers, Geology, 48(9), 851–856, doi:10.1130/G47358.1, 2020.

Burisch, M., Walter, B. F. and Markl, G.: Silicification of Hydrothermal Gangue Minerals in Pb-Zn-Cu-Fluorite-Quartz-Baryte Veins, The Canadian Mineralogist, 55(3), 501–514, doi:10.3749/canmin.1700005, 2017.

Cai, C., Dong, H., Li, H., Xiao, X., Ou, G. and Zhang, C.: Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China, Chemical Geology, 236(1–2), 167–179, doi:10.1016/j.chemgeo.2006.09.007, 2007.

Campbell, K. M., Kukkadapu, R. K., Qafoku, N. P., Peacock, A. D., Lesher, E., Williams, K. H., Bargar, J. R., Wilkins, M.

600 J., Figueroa, L., Ranville, J., Davis, J. A. and Long, P. E.: Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer, Applied Geochemistry, 27(8), 1499–1511, doi:10.1016/j.apgeochem.2012.04.013, 2012.

Cardon, O.: Datation Re-Os sur pyrite et traçage des sources des métaux dans des gisements de type porphyre et épithermal neutre: Exemple des gisements de Bolcana, Troita et Magura, Monts Apuseni, Roumanie, Thèse de doctorat, Université Henri Poincaré, Nancy I., 2007.

Cathelineau, M., Boiron, M.-C., Fourcade, S., Ruffet, G., Clauer, N., Belcourt, O., Coulibaly, Y., Banks, D. A. and Guillocheau, F.: A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K– Ar dating, fluid chemistry, and related geodynamic context, Chemical Geology, 322–323, 99–120, doi:10.1016/j.chemgeo.2012.06.008, 2012.

610 Chatagnon, B., Galland, D., Gloux, P. and Méary, A.: L'lon Paramagnétique Tm2+ dans la Fluorite : Un Témoin de la Radioactivité dans le Gisement, Mineralium Deposita, 17(3), doi:10.1007/BF00204469, 1982.

Cherniak, D. J., Zhang, X. Y., Wayne, N. K. and Watson, E. B.: Sr, Y, and REE diffusion in fluorite, Chemical Geology,

181(1-4), 99-111, doi:10.1016/S0009-2541(01)00267-4, 2001.

Chi, G., Li, Z., Chu, H., Bethune, K. M., Quirt, D. H., Ledru, P., Normand, C., Card, C., Bosman, S., Davis, W. J. and Potter,
E. G.: A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca basin, Economic Geology, 113(5), 1209–1217, doi:10.5382/econgeo.2018.4588, 2018.

- De Bonis, A., Santagata, A., Galasso, A., Sansone, M. and Teghil, R.: Femtosecond laser ablation of CaF2: Plasma characterization and thin films deposition, Applied Surface Science, 302, 145–148, doi:10.1016/j.apsusc.2013.09.089, 2014. Deng, X.-D. and Li, J.-W.: Mineralogy and 40Ar/39Ar geochronology of supergene Mn-oxides in the Dongxianggiao
- deposit, Hunan Province, South China, Mineralogy and Petrology, 111(2), 253–265, doi:10.1007/s00710-016-0466-y, 2017.
 Dill, H. G. and Weber, B.: Accessory minerals of fluorite and their implication regarding the environment of formation (Nabburg–Wölsendorf fluorite district, SE Germany), with special reference to fetid fluorite ("Stinkspat"), Ore Geology Reviews, 37(2), 65–86, doi:10.1016/j.oregeorev.2010.01.004, 2010.

Dill, H. G., Hansen, B. T. and Weber, B.: REE contents, REE minerals and Sm/Nd isotopes of granite- and unconformity related fluorite mineralization at the western edge of the Bohemian Massif: With special reference to the Nabburg Wölsendorf District, SE Germany, Ore Geology Reviews, 40(1), 132–148, doi:10.1016/j.oregeorev.2011.06.003, 2011.

- Ding, T., Valkiers, S., Kipphardt, H., De Bièvre, P., Taylor, P. D. P., Gonfiantini, R. and Krouse, R.: Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur, Geochimica et Cosmochimica Acta, 65(15), 2433–2437, doi:10.1016/S0016-7037(01)00611-1, 2001.
- Elisha, B., Nuriel, P., Kylander-Clark, A. and Weinberger, R.: Towards in-situ U–Pb dating of dolomites, Geochronology Discussions, 1–17, doi:10.5194/gchron-2020-19, 2020.
 European Commission. Study on the review of the list of critical raw materials. Final report. EU publications, Report, 92

pages, 2017.

Evans, N. J., Wilson, N. S. F., Cline, J. S., McInnes, B. I. A. and Byrne, J.: Fluorite (U-Th)/He thermochronology:

- 635 Constraints on the low temperature history of Yucca Mountain, Nevada, Applied Geochemistry, 20(6), 1099–1105, doi:10.1016/j.apgeochem.2005.02.008, 2005.
 Galindo, C., Tornos, F., Darbyshire, D. P. F. and Casquet, C.: The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study, Chemical Geology, 112(3–4), 351–364, doi:10.1016/0009-2541(94)90034-5, 1994.
- Gigon, J., Deloule, E., Mercadier, J., Huston, D. L., Richard, A., Annesley, I. R., Wygralak, A. S., Skirrow, R. G., Mernagh, T. P. and Masterman, K.: Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes, Geology, 48(5), 478–482, doi:10.1130/G47001.1, 2020.

Gigoux, M., Delpech, G., Guerrot, C., Pagel, M., Augé, T., Négrel, P. and Brigaud, B.: Evidence for an Early Cretaceous mineralizing event above the basement/sediment unconformity in the intracratonic Paris Basin: paragenetic sequence and

645 Sm-Nd dating of the world-class Pierre-Perthuis stratabound fluorite deposit, Mineralium Deposita, 50(4), 455–463, doi:10.1007/s00126-015-0592-1, 2015.

Gigoux, M., Brigaud, B., Pagel, M., Delpech, G., Guerrot, C., Augé, T. and Négrel, P.: Genetic constraints on world-class carbonate- and siliciclastic-hosted stratabound fluorite deposits in Burgundy (France) inferred from mineral paragenetic sequence and fluid inclusion studies, Ore Geology Reviews, 72, 940–962, doi:10.1016/j.oregeorev.2015.09.013, 2016.

650 Gleadow, A. J. W.: Fission-track dating methods: What are the real alternatives?, Nuclear Tracks, 5(1–2), 3–14, doi:10.1016/0191-278X(81)90021-4, 1981.

Gogoll, S., Stenzel, E., Johansen, H., Reichling, M. and Matthias, E.: Laser-damage of cleaved and polished CaF2 at 248 nm, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 116(1–4), 279–283, doi:10.1016/0168-583X(96)00061-4, 1996.

Grønlie, A., Harder, V. and Roberts, D.: Preliminary fission-track ages of fluorite mineralisation along fracture zones, inner Trondheimsfjord, Central Norway, Norsk geologisk tidsskrift, 6, 1990.
Guillocheau, F.: Evolution tectonique méso-cénozoïque du bassin de Paris: contraintes stratigraphiques 3D, Geodinamica Acta, 13(4), 189–245, doi:10.1016/S0985-3111(00)00118-2, 2000.

Guillong, M., Wotzlaw, J.-F., Looser, N. and Laurent, O.: Evaluating the reliability of U–Pb laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material, Geochronology, 2(1), 155–167, doi:10.5194/gchron-2-155-2020, 2020.

Heim, C., Lausmaa, J., Sjövall, P., Toporski, J., Dieing, T., Simon, K., Hansen, B. T., Kronz, A., Arp, G., Reitner, J. and Thiel, V.: Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden): Ancient microbial activity recorded in fracture fillings, Geobiology, 10(4), 280–297, doi:10.1111/j.1472-4669.2012.00328.x,
2012.

Hill, C. A., Polyak, V. J., Asmerom, Y. and Provencio, P. P.: Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone, Tectonics, 35(4), 896–906, doi:10.1002/2016TC004166, 2016.

Hough, G., Swapp, S., Frost, C. and Fayek, M.: Sulfur Isotopes in Biogenically and Abiogenically Derived Uranium Roll-670 Front Deposits, Economic Geology, 114(2), 353–373, doi:10.5382/econgeo.2019.4634, 2019.

Ingham, E. S., Cook, N. J., Cliff, J., Ciobanu, C. L. and Huddleston, A.: A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia, Geochimica et Cosmochimica Acta, 125, 440–465, doi:10.1016/j.gca.2013.10.017, 2014.

Jia, T. Q., Li, X. X., Feng, D. H., Cheng, C. F., Li, R. X., Chen, H. and Xu, Z. Z.: Theoretical and experimental study on

femtosecond laser induced damage in CaF2 crystals, Applied Physics A, 81(3), 645–649, doi:10.1007/s00339-004-2685-z, 2005.

Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D. and Enzweiler, J.: Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines, Geostandards and Geoanalytical Research, 35(4), 397–429, doi:10.1111/j.1751-908X.2011.00120.x, 2011.

680 Johansen, H., Gogoll, S., Stenzel, E. and Reichling, M.: Scanning electron microscopical inspection of uncoated CaF2 single

crystals, Physica Status Solidi (a), 150(2), 613-624, doi:10.1002/pssa.2211500205, 1995.

Kahou, Z. S., Brichau, S., Poujol, M., Duchêne, S., Campos, E., Leisen, M., d'Abzac, F.-X., Riquelme, R. and Carretier, S.: First U-Pb LA-ICP-MS in situ dating of supergene copper mineralization: case study in the Chuquicamata mining district, Atacama Desert, Chile, Mineralium Deposita, 1–14, doi:10.1007/s00126-020-00960-2, 2020.

Kawasaki, K. and Symons, D. T. A.: Paleomagnetism of fluorite veins in the Devonian St. Lawrence granite, Newfoundland, Canada, edited by F. Cook, Canadian Journal of Earth Sciences, 45(9), 969–980, doi:10.1139/E08-045, 2008.
Kempe, U., Plötze, M., Brachmann, A. and Böttcher, R.: Stabilisation of divalent rare earth elements in natural fluorite, Mineralogy and Petrology, 76, 213–234, 2002.

Kröger, F. A.: The incorporation of uranium in calcium fluoride, Physica, 14(7), 488, doi:10.1016/0031-8914(48)90019-6, 1948.

LaFlamme, C., Martin, L., Jeon, H., Reddy, S. M., Selvaraja, V., Caruso, S., Bui, T. H., Roberts, M. P., Voute, F., Hagemann, S., Wacey, D., Littman, S., Wing, B., Fiorentini, M. and Kilburn, M. R.: In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models, Chemical Geology, 444, 1–15, doi:10.1016/j.chemgeo.2016.09.032, 2016.

- 695 Lanzirotti, A., Tappero, R. and Schulze, D. G.: Practical Application of Synchrotron-Based Hard X-Ray Microprobes in Soil Sciences, in Developments in Soil Science, vol. 34, pp. 27–72, Elsevier., 2010. Lardeaux, J. M., Schulmann, K., Faure, M., Janoušek, V., Lexa, O., Skrzypek, E., Edel, J. B. and Štípská, P.: The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities, Geological Society, London, Special Publications, 405(1), 7–44, doi:10.1144/SP405.14, 2014.
- 700 Lawson, M., Shenton, B. J., Stolper, D. A., Eiler, J. M., Rasbury, E. T., Becker, T. P., Phillips-Lander, C. M., Buono, A. S., Becker, S. P., Pottorf, R., Gray, G. G., Yurewicz, D. and Gournay, J.: Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating, GSA Bulletin, 130(3–4), 617– 629, doi:10.1130/B31656.1, 2018.

Leach, D. L., Sangster, D. F., Kelley, K. D., Large, R. R., Garven, G., Allen, C. R., Gutzmer, J. and Walters, S.: Sedimentbosted lead-zinc deposits: A global perspective, Economic Geology, One Hundredth Anniversary Volume(3), 561–607,

hosted lead-zinc deposits: A global perspective, Economic Geology, One Hundredth Anniversary Volume(3), 561–607, doi:10.5382/AV100.18, 2005.
 Lefort, J. P. and Agarwal, B. N. P.: Topography of the Moho undulations in France from gravity data: their age and origin,

Tectonophysics, 350(3), 193–213, doi:10.1016/S0040-1951(02)00114-2, 2002.

Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. and Landa, E. R.: Microbial reduction of uranium, Nature, 350(6317), 413– 710 416, doi:10.1038/350413a0, 1991.

Machel, H. G.: Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights, Sedimentary Geology, 140(1–2), 143–175, doi:10.1016/S0037-0738(00)00176-7, 2001.

Magnall, J. M., Gleeson, S. A., Stern, R. A., Newton, R. J., Poulton, S. W. and Paradis, S.: Open system sulphate reduction in a diagenetic environment – Isotopic analysis of barite (δ 34S and δ 18O) and pyrite (δ 34S) from the Tom and Jason Late

821X(00)00256-9, 2000.

715 Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada, Geochimica et Cosmochimica Acta, 180, 146-163, doi:10.1016/j.gca.2016.02.015, 2016.

Mangenot, X., Gasparrini, M., Rouchon, V. and Bonifacie, M.: Basin-scale thermal and fluid flow histories revealed by carbonate clumped isotopes ($\Delta 47$) - Middle Jurassic carbonates of the Paris Basin depocentre, Sedimentology, 65(1), 123–150, doi:10.1111/sed.12427, 2018.

- Mark, D. F., Parnell, J., Kelley, S. P., Lee, M., Sherlock, S. C. and Carr, A.: Dating of Multistage Fluid Flow in Sandstones, Science, 309(5743), 2048–2051, doi:10.1126/science.1116034, 2005.
 Markey, R., Stein, H. J. and Morgan, J. W.: Highly precise Re–Os dating for molybdenite using alkaline fusion and NTIMS, Talanta, 45(5), 935–946, doi:10.1016/S0039-9140(97)00198-7, 1998.
 Martz, P., Mercadier, J., Perret, J., Villeneuve, J., Deloule, E., Cathelineau, M., Quirt, D., Doney, A. and Ledru, P.: Post-
- 725 crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics, Geochimica et Cosmochimica Acta, 249, 138–159, doi:10.1016/j.gca.2019.01.025, 2019.
 Mathur, R., Ruiz, J., Titley, S., Gibbins, S. and Margotomo, W.: Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu–Au porphyry deposit, Earth and Planetary Science Letters, 183(1–2), 7–14, doi:10.1016/S0012-
- Medjoubi, K., Leclercq, N., Langlois, F., Buteau, A., Lé, S., Poirier, S., Mercère, P., Sforna, M. C., Kewish, C. M. and Somogyi, A.: Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil, Journal of Synchrotron Radiation, 20(2), 293–299, doi:10.1107/S0909049512052119, 2013.
 Magasti, B. L. and Naumerle, L. A.: U. Ph. gasehronelagy. of tin. densaits associated with the Computing Bathalith of

Moscati, R. J. and Neymark, L. A.: U–Pb geochronology of tin deposits associated with the Cornubian Batholith of southwest England: Direct dating of cassiterite by in situ LA-ICPMS, Mineralium Deposita, 55(1), 1–20, doi:10.1007/s00126-019-00870-y, 2020.

Nakai, S., Halliday, A. N., Kesler, S. E., Jones, H. D., Kyle, J. R. and Lane, T. E.: Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits, Geochimica et Cosmochimica Acta, 57(2), 417–427, doi:10.1016/0016-7037(93)90440-8, 1993.

Nuriel, P., Rosenbaum, G., Uysal, T. I., Zhao, J., Golding, S. D., Weinberger, R., Karabacak, V. and Avni, Y.: Formation of
fault-related calcite precipitates and their implications for dating fault activity in the East Anatolian and Dead Sea fault
zones, Geological Society, London, Special Publications, 359(1), 229–248, doi:10.1144/SP359.13, 2011.

Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R. and Craddock, J. P.: The onset of the Dead Sea transform based on calcite age-strain analyses, Geology, 45(7), 587–590, doi:10.1130/G38903.1, 2017.

Nuriel, P., Miller, D. M., Schmidt, K. M., Coble, M. A. and Maher, K.: Ten-million years of activity within the Eastern
California Shear Zone from U–Pb dating of fault-zone opal, Earth and Planetary Science Letters, 521, 37–45, doi:10.1016/j.epsl.2019.05.047, 2019.

O. Horon, M.-M., Megnien, C. and Lefavrais-Raymond, A.: Carte géologique de la France, feuille 466 : Avallon, 1966.Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B., Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P.,

Sutcliffe, C., Davis, D. and Chaduteau, C.: Improving paleohydrological and diagenetic reconstructions in calcite veins and
 breccia of a sedimentary basin by combining Δ47 temperature, δ18Owater and U-Pb age, Chemical Geology, 481, 1–17,
 doi:10.1016/j.chemgeo.2017.12.026, 2018.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, Journal of Analytical Atomic Spectrometry, 26(12), 2508, doi:10.1039/c1ja10172b, 2011.

Peverelli, V., Ewing, T., Rubatto, D., Wille, M., Berger, A., Villa, I. M., Lanari, P., Pettke, T. and Herwegh, M.: U-Pb

755 geochronology of epidote by LA–ICP–MS as a tool for dating hydrothermal-vein formation, preprint, SIMS, LA-ICP-MS., 2020.

Pi, T., Solé, J., Golzarri, J., Rickards, J. and Espinosa, G.: Autoradiography of geological fluorite samples for determination of uranium and thorium distribution using nuclear track methodology, Revista mexicana de física, 53, 57–60, 2007.

Piccione, G., Rasbury, E. T., Elliott, B. A., Kyle, J. R., Jaret, S. J., Acerbo, A. S., Lanzirotti, A., Northrup, P., Wooton, K.

- and Parrish, R. R.: Vein fluorite U-Pb dating demonstrates post-6.2 Ma rare-earth element mobilization associated with Rio Grande rifting, Geosphere, 15(6), 1958–1972, doi:10.1130/GES02139.1, 2019.
 Rackley, R. I.: Environment of Wyoming Tertiary uranium deposits, AAPG Bulletin, 56(4), 755–774, 1972.
 Rafique, M. S., Bashir, S., Husinsky, W., Hobro, A. and Lendl, B.: Surface analysis correlated with the Raman measurements of a femtosecond laser irradiated CaF2, Applied Surface Science, 258(7), 3178–3183,
- doi:10.1016/j.apsusc.2011.11.059, 2012.
 Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U-Pb dating of carbonates, Reviews of Geophysics, 47(3), 1–27, doi:10.1029/2007RG000246, 2009.

Recker, K.: Über den Einbau von Uran in CaF2, Deutsche Mineralogische Gesellschaft 5. bis 12 September 1960 in Bonn, Angewandte Chemie, 73(1), 39–41, doi:10.1002/ange.19610730118, 1961.

- Reichling, M., Johansen, H., Gogoll, S., Stenzel, E. and Matthias, E.: Laser-stimulated desorption and damage at polished CaF2 surfaces irradiated with 532 nm laser light, Nuclear Instruments and methods in physics research, 628–633, 1994.
 Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood, M. S. A. and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb geochronology, Geochemistry, Geophysics, Geosystems, 18(7), 2807–2814, doi:10.1002/2016GC006784, 2017.
- 775 Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N. and Lee, J. K.: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress, and limitations, Geochronology, 2(1), 33–61, doi:10.5194/gchron-2-33-2020, 2020.

Schneider, C. A., Rasband, W. S. and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis, Nat Methods, 9(7), 671–675, doi:10.1038/nmeth.2089, 2012.

Sizaret, S.: Genèse du Système Hydrothermal à Fluorine-Barytine-Fer de Chaillac, (Indre, France), Thèse de doctorat, Université d'Orléans., 2006.

785

Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. and Susini, J.: A multiplatform code for the analysis of energy-dispersive Xray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, 62(1), 63–68, doi:10.1016/j.sab.2006.12.002, 2007.

Somogyi, A., Medjoubi, K., Baranton, G., Le Roux, V., Ribbens, M., Polack, F., Philippot, P. and Samama, J.-P.: Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil, Journal of Synchrotron Radiation, 22(4), 1118–1129, doi:10.1107/S1600577515009364, 2015.

Soulé de Lafont, D. and Lhégu, J.: Les gisements stratiformes du Morvan (sud-est du bassin de Paris, France), 26 CGI, 790 Paris7-BRGM fascicule sur les gisements Français E2, 40 p, 1980.

Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth and Planetary Science Letters, 26, 207–221, 1975.

Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L. and Schersten, A.: The remarkable Re-Os chronometer in molybdenite: how and why it works, Terra Nova, 13(6), 479–486, doi:10.1046/j.1365-3121.2001.00395.x, 2001.

795 Symons, D. T. A.: Paleomagnetism and the Late Jurassic genesis of the Illinois-Kentucky fluorspar deposits, Economic Geology, 89(3), 438–449, doi:10.2113/gsecongeo.89.3.438, 1994.

Symons, D. T. A., Kawasaki, K., Tornos, F., Velasco, F. and Rosales, I.: Temporal constraints on genesis of the Caravia-Berbes fluorite deposits of Asturias, Spain, from paleomagnetism, Ore Geology Reviews, 80, 754–766, doi:10.1016/j.oregeorev.2016.08.020, 2017.

800 Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geoscience Frontiers, 9(5), 1479–1493, doi:10.1016/j.gsf.2018.04.001, 2018.

Vialette, Y.: Age des granites du Massif Central, Bulletin de la Société Géologique de France, S7-XV(3-4), 260-270, doi:10.2113/gssgfbull.S7-XV.3-4.260, 1973.

Vochten, R., Esmans, E. and Vermeirsch, W.: Study of the solid and gaseous inclusions in the fluorites from Wölsendorf

(Bavaria, F.R. of Germany) and Margnac (Haute Vienne, France) by microprobe and mass spectrometry, Chemical Geology, 20, 253–263, 1977.

Walter, B. F., Gerdes, A., Kleinhanns, I. C., Dunkl, I., von Eynatten, H., Kreissl, S. and Markl, G.: The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting: Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany, Geochimica et Cosmochimica Acta, 240, 11–42,

810 doi:10.1016/j.gca.2018.08.012, 2018.

Wolff, R., Dunkl, I., Kempe, U. and von Eynatten, H.: The Age of the Latest Thermal Overprint of Tin and Polymetallic Deposits in the Erzgebirge, Germany: Constraints from Fluorite (U-Th-Sm)/He Thermochronology, Economic Geology, 110(8), 2025–2040, doi:10.2113/econgeo.110.8.2025, 2015.

Wolff, R., Dunkl, I., Kempe, U., Stockli, D., Wiedenbeck, M. and von Eynatten, H.: Variable helium diffusion 815 characteristics in fluorite, Geochimica et Cosmochimica Acta, 188, 21–34, doi:10.1016/j.gca.2016.05.029, 2016.

Wu, Y.-F., Fougerouse, D., Evans, K., Reddy, S. M., Saxey, D. W., Guagliardo, P. and Li, J.-W.: Gold, arsenic, and copper

820

zoning in pyrite: A record of fluid chemistry and growth kinetics, Geology, 47(7), 641-644, doi:10.1130/G46114.1, 2019.

Xing, Y., Etschmann, B., Liu, W., Mei, Y., Shvarov, Y., Testemale, D., Tomkins, A. and Brugger, J.: The role of fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the formation of IOCG deposits, Chemical Geology, 504, 158–176, doi:10.1016/j.chemgeo.2018.11.008, 2019.

Yi, Z.-J., Tan, K.-X., Tan, A.-L., Yu, Z.-X. and Wang, S.-Q.: Influence of environmental factors on reductive bioprecipitation of uranium by sulfate reducing bacteria, International Biodeterioration & Biodegradation, 60(4), 258–266, doi:10.1016/j.ibiod.2007.04.001, 2007.