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Abstract 

Age dispersion is a common feature of apatite fission track (AFT) and apatite (U–Th)/He (AHe) 

thermochronological data and it can be attributed to multiple factors. One underappreciated and underreported cause 10 

for dispersion is variability in apatite composition and its influence on thermal annealing of fission tracks. Using 

synthetic data we investigate how multikinetic AFT annealing behaviour, defined using the rmr0 parameter, can be 

exploited to recover more accurate, higher resolution thermal histories than are possible using conventional 

interpretation and modelling approaches. Our forward model simulation spans a 2 Gyr time interval with two 

separate heating and cooling cycles and was used to generate synthetic AFT and AHe data for three different apatite 15 

populations with significantly different annealing kinetics. The synthetic data were then used as input for inverse 

modelling in the Bayesian QTQt software to recover thermal history information under various scenarios. Results 

show that essential features of the dual peak thermal history are captured using the multikinetic AFT data alone, 

with or without imposed constraints. Best results are achieved when the multikinetic AFT data are combined with 

the AHe data and geologic constraint boxes are included. In contrast, a more conventional monokinetic 20 

interpretation that ignores multikinetic AFT behaviour reproduces all the input data but yields incorrect thermal 

solutions. Under these conditions, incorporation of constraints can be misleading and fail to improve model results. 

In general, a close fit between observed and modelled parameters is no guarantee of a robust thermal-history 

solution if data are incorrectly interpreted. For the case of overdispersed AFT data, it is strongly recommended that 

elemental data be acquired to investigate if multikinetic annealing is the cause of the AFT apparent age scatter. 25 

Elemental analyses can also be similarly useful for broadly assessing AHe data. A future companion paper will 

explore multikinetic AFT methodology and application to detrital apatite samples from Yukon, Canada. 

1. Introduction 

Studies focusing on upper crustal tectonics, landscape evolution, and sedimentary basin analysis often rely on apatite 

fission track (AFT) and apatite (U–Th)/He (AHe) low-temperature thermochronology to decipher spatial patterns of 30 

exhumation and burial through time (e.g., Zeitler et al., 1982; Naeser et al., 1989; van der Beek et al., 1995; House 

et al., 1998; Ehlers and Farley, 2003). These low-temperature techniques typically produce internally consistent 

results in rapidly cooled, actively eroding mountain belts (e.g., Glotzbach et al., 2011), however, 

thermochronometric harmony commonly breaks down in slowly cooled settings. There are gaps in our knowledge of 
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how fission tracks anneal in apatite (e.g., Ketcham, 2019), how 4He diffusion occurs over geologic time (e.g., 35 

McDannell et al., 2018), and if the mechanisms controlling these processes are fundamentally different, linked, or 

interact in complex and unforeseen ways (McDannell et al., 2019a). Poorly understood compound variables, both 

geological and analytical, sometimes yield apatite thermochronology data that are not straightforward to interpret. 

For example, AFT < AHe “age inversion” (e.g., Farley et al., 1996; Fitzgerald et al., 2006; Flowers and Kelley, 

2011) is often encountered in continental interiors and has been attributed to the effects of slow cooling and 40 

accumulated radiation damage on He diffusion (e.g., Green et al., 2006). Highly overdispersed AFT data are also 

found in slowly cooled, ancient terranes (McDannell et al., 2019a), suggesting there are unexplained complexities 

present in both systems. 

 

The canonical temperature sensitivity for AFT dating is ~60–120 °C (Gleadow and Duddy, 1981) and ~45–75 °C for 45 

AHe dating (Wolf et al., 1998). However, temperature sensitivity varies as a function of multiple factors such as 

apatite chemistry (Green et al., 1985, 1986; Crowley et al., 1990; Ravenhurst et al., 1993; Carlson et al., 1999; 

Barbarand et al., 2003) and cooling rate for AFT, and radiation damage accumulation, grain size, parent nuclide 

zoning, and chemistry for AHe (e.g., Farley, 2000; Shuster et al., 2006; Gautheron et al., 2009; Gautheron et al., 

2013; Djimbi et al., 2015; Recanati et al., 2017). Radiation damage may also play a role in modifying apatite fission 50 

track annealing kinetics from old rocks (e.g., Carpéna et al., 1988; Hendriks and Redfield, 2005), or at least cause 

reduced thermal annealing resistance (McDannell et al., 2019a). This is a debated issue (Kohn et al., 2009) requiring 

further scrutiny and experimental work to verify empirical relationships (e.g., Carpéna and Lacout, 2010). However, 

observations of AHe age–U and age-elemental trends by Recanati et al. (2017) and joint AFT–AHe age–U trends by 

McDannell et al. (2019a) imply a complex relationship between a-radiation damage, fission tracks, and apatite 55 

chemistry, where apparent ages increase and then decrease as a function of the estimated damage accumulated, 

similar to observations in zircon (Guenthner et al., 2013). This suggests a change in both helium and fission-track 

retention at high radiation damage levels and warrants a closer inspection of apatite chemistry, radiation damage, 

and track annealing for applications in thermal history analysis. 

2. Motivation  60 

There is clear experimental documentation that AFT annealing is influenced by composition (e.g., Gleadow and 

Duddy, 1981; Green et al., 1986; Carlson et al., 1999; Barbarand et al., 2003; Ravenhurst et al., 2003). The work of 

Carlson et al. (1999) remains one of the most detailed studies of fission track annealing with respect to apatite 

chemistry. They derived the empirical rmr0 kinetic parameter by characterizing track annealing with respect to 

chemical composition to produce a multikinetic annealing model that relates one apatite to another for the purposes 65 

of comparing annealing behaviour at laboratory timescales. Laboratory annealing was then extrapolated to the 

geologic timescale for the purpose of time-temperature (t–T) modelling (Ketcham et al., 1999; Ketcham et al., 

2007). Specifically, rmr0 is the reduced fission-track length of the more resistant apatite at the point in time and 

temperature where the less resistant apatite is totally annealed, allowing a direct comparison between any two 
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apatites (Ketcham et al., 1999). Therefore, rmr0 values approaching one, signify lower retentivity, whereas those 70 

approaching zero are more retentive, with common fluorapatite defined by an rmr0 value of 0.83.  

 

The main purpose of this paper is to show that multikinetic AFT samples with significantly different annealing 

characteristics carry far more thermal history information than single AFT populations with typical annealing 

temperatures (~100–110°C) and under certain circumstances it is possible to recover information about multiple 75 

heating events from a single multikinetic AFT sample. Here, we present simple examples demonstrating this point 

using synthetic AFT data derived from forward models utilizing the rmr0 kinetic parameter based on apatite 

composition (Carlson et al., 1999; Ketcham et al., 1999). The synthetic data are idealized and exaggerated when 

compared to most natural samples, implementing extreme endmember kinetics that are rare, but not unheard of, in 

natural crystalline basement samples and more commonly encountered in detrital samples. This was done to 80 

illustrate that multikinetic AFT samples provide an expanded range in thermal sensitivity and demonstrate that 

statistically valid, yet spurious, thermal histories may be recovered if potential kinetic sub-populations governed by 

composition are not accounted for during data interpretation, or are alternatively unresolvable due to collection of 

low precision kinetic data (Issler et al., 2018; Schneider and Issler, 2019) such as Dpar (mean etch-figure width).  

 85 

This is a synthetic resolution test and a single example drawn from a nearly infinite number of possibilities. We 

chose a deep-time problem involving slow cooling and multiple reheating events because it is harder to deal with 

than a Phanerozoic case that may have more geological constraints available. In general, deep-time problems suffer 

from greater uncertainty that could be addressed by having thermochronometers with a broad range of temperature 

sensitivity (McDannell and Flowers, 2020). These exercises were performed assuming that we knew the true thermal 90 

history, which is almost always not the case, and they are ultimately meant to encourage users of low-temperature 

thermochronology to thoroughly interpret data and explore kinetic models before undertaking thermal history 

simulations. The results in this paper give us confidence in our treatment of real data and support the idea that the 

multikinetic AFT approach yields higher resolution thermal histories than the conventional method. We will 

specifically discuss elemental data collection, multikinetic workflow and interpretation schemes, and thermal history 95 

analysis of natural detrital samples from Yukon, Canada in a future companion paper. 

 

We believe that it is best to use an ideal endmember synthetic sample with well-defined kinetic populations to 

illustrate that it is possible, in principle, to recover information about multiple heating events from a single 

multikinetic AFT sample using inverse modelling techniques. We emphasize that natural samples are rarely this 100 

perfect and our synthetic examples are idealized in the sense that apparent age dispersion is low for individual 

kinetic populations, but dispersion is high for the overall sample — which is the normal starting condition for most 

natural overdispersed samples that then require further interpretation. For natural samples, complicated thermal 

history information may be retained in multikinetic AFT samples and the degree to which this information can be 

recovered will vary from sample to sample. Consideration of kinetics is most important for histories involving 105 

persistence at, or reheating to, a temperature range that differentiates the thermal response of the grains present, and 
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thus the apparent ages and lengths recorded. Our ability to resolve kinetic populations depends on the number of 

AFT age and length measurements and their distribution across different populations. For example, multikinetic 

AFT data with low U apatite grains can pass the X2 test due to large uncertainties on single-grain apparent ages and 

these can be misinterpreted as single populations if not carefully investigated using elemental data. If compositional 110 

zoning is present, those apatite grains can be assigned to the wrong kinetic population, or some populations may be 

too highly track retentive (or vice versa) to be sensitive to key parts of a thermal history. To be clear, not all natural 

samples are multikinetic and the ability to retain a record of a complex thermal history depends strongly on the 

relative timing and magnitudes of different thermal events and this in turn feeds back into whether kinetic 

populations have experienced enough differential annealing to be clearly resolved.  115 

 

Unlike AFT, there is limited empirical evidence to suggest 4He diffusivity is strongly affected by apatite chemistry 

(e.g., Warnock et al., 1997; Gautheron et al., 2013; Recanati et al., 2017), whereas ab initio modelling (e.g., Djimbi 

et al., 2015; Recanati et al., 2021) suggests some effect. None of the diffusion studies (e.g., Warnock et al., 1997) 

show a direct connection between changes in diffusivity and apatite composition but their results indicate 120 

hypothetical offsets in temperature sensitivity between compositional endmember apatites. The development of a 

model to explain radiation damage effects on He diffusivity (Shuster and Farley, 2009; Shuster et al., 2006) resulted 

in the radiation damage accumulation and annealing model (RDAAM; Flowers et al., 2009) that used the rmr0 

parameter and fission-track annealing kinetics of Ketcham et al. (2007) as a proxy for α-damage or bulk radiation 

damage annealing. The fundamental assumption being that α-damage and fission-track damage anneal at about the 125 

same rate, enabling the use of the rmr0 parameter in the RDAAM set to typical fluorapatite kinetics (rmr0 = 0.83). This 

allows a comparison between fission track and AHe data within the same kinetic framework.  

 

We include synthetic AHe ages in some of our modelling examples since many modern studies include both AFT 

and AHe data and reconciliation of these complementary datasets is often difficult in slowly-cooled settings. In 130 

situations where this occurs, AHe apparent age scatter is often attributed to the effects of radiation damage (or 

secondarily grain size), yet unexplained dispersion often persists even when these variables are considered. The 

commonly implemented kinetic models for the AHe system (Flowers et al., 2009; Gautheron et al., 2009) utilize 

fission track annealing as a proxy for radiation damage annealing — therefore it is unclear whether chemistry truly 

affects He diffusion or if this is an illusion due to the use of a composition-based fission-track kinetic model. The 135 

assumption here is that apatite chemistry does in fact influence diffusivity and that the rmr0 parameter adequately 

describes radiation damage annealing in most geologic settings. Gautheron et al. (2013) and Powell et al. (2020) 

successfully adopted the approach of varying rmr0 to investigate AHe age dispersion in natural samples from the 

Paris Basin, France and Mackenzie Plain in northern Canada, respectively. We corroborate this and show that AHe 

ages from grains of identical size and U content may still be highly dispersed due to differences in rmr0 values — 140 

implying that apatite composition may be an additional source of dispersion that is mostly unaccounted for in 

routine applications. In in the absence of retentivity information for the AHe system, using a default fluorapatite rmr0 
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value may yield “acceptable” t–T solutions that are inaccurate, especially when data containing more thermal history 

information, such as AFT ages and lengths, are not collected or jointly modelled. 

3. Forward and inverse modelling of multikinetic synthetic data 145 

3.1 Forward modelled synthetic AFT and AHe data from a predetermined thermal history 

Synthetic AFT data were generated from forward modelling a two-pulse heating history over 2000 Myr using the 

QTQt software v. 5.7.3 (Gallagher, 2012) implementing Ketcham et al. (1999) annealing kinetics (Fig. 1), with one 

maximum heating event occurring at 1000 Ma (110°C) and the other at 300 Ma (60°C). AFT ages and track length 

data (Fig. 2) were randomly predicted for three kinetic populations as external detector method (EDM) data in 150 

QTQt. In this paper, we utilize the relationship established between rmr0 and measured Cl to calculate an “effective 

Cl” (eCl) value in atom per formula unit (apfu) from collected electron microprobe data (see McDannell et al., 

2019b for further explanation). Effective Cl is the Cl concentration required to yield an equivalent rmr0 value for the 

Ketcham et al. (1999) annealing model based on the published correlation between Cl and rmr0 in Carlson et al. 

(1999). The eCl value (e.g., Issler et al., 2018; McDannell et al., 2019b) is used to transform the nonlinear rmr0 155 

parameter to a linear form for data interpretation using the equation (given in Figure 7 of Ketcham et al., 1999):  

 

𝑟!"# = 1 − exp	[2.107(1 − 𝐶𝑙) − 1.834]        (1) 

 

Low retentivity apatite with rmr0 values exceeding the 0.84 limit of the Ketcham et al. (1999) model transform to 160 

negative eCl values. We specified three AFT kinetic populations of 10 age grains each, increasing in retentivity with 

rmr0 values of 0.882 (eCl = -0.144 apfu), 0.820 (eCl = 0.057 apfu), and 0.263 (eCl = 0.726 apfu) using individual-fit 

c-axis projected length kinetic data for distinct apatites from Ketcham et al. (1999). Population one is set to the 

Holly Springs (Georgia, USA) hydroxyapatite rmr0 that typifies the lowest calculated retentivity in the Carlson et al. 

(1999) dataset, population two uses Durango apatite kinetics (laboratory age standard), whereas population three is 165 

set to Tioga (Pennsylvania, USA) Fe-Cl apatite, which is characterized by high retentivity and is an outlier of the 

Carlson et al. rmr0-fitting dataset. The specified thermal history produced three AFT model ages of 670 Ma, 843 Ma, 

and 1602 Ma (Fig. 2). Seventy-five tracks were generated for each kinetic population with mean c-axis projected 

track lengths (MTL) of 13.32 ± 1.33 µm (1σ), 14.24 ± 1.42 µm, and 14.65 ± 1.47 µm, respectively. The initial (pre-

annealed) track lengths (loc) for each kinetic population were calculated as 16.17 µm, 16.40 µm, and 17.16 µm with 170 

increasing retentivity and were estimated from the equivalent Dpar calculated from the indicated rmr0 value for each 

kinetic population using the loc–Dpar relation from Carlson et al. (1999). Three AHe ages were also forward modelled 

using the radiation damage accumulation and annealing model (RDAAM) of Flowers et al. (2009), which 

implements the Ketcham et al. (2007) kinetics for radiation damage annealing. We applied Holly Springs, typical 

endmember fluorapatite (rmr0 = 0.83 and the RDAAM default), and Tioga apatite rmr0 values to AHe grains, all with 175 

spherical grain radii of 50 µm and 25 ppm U (Th and Sm discounted for simplicity). The uncorrected AHe ages (α 

ejection-corrected age in brackets) were 585 Ma [813 Ma], 610 Ma [848 Ma], and 819 Ma [1139 Ma] predicted 

using the same t–T history (Fig. 1) as the AFT data. 
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 180 
Figure 1: Thermal history used to predict synthetic AFT and AHe data. This t–T path is referred to as the “true” thermal history 
throughout this paper. The predicted synthetic data were then used as input for QTQt to recover the thermal history through 
inverse modelling. PAZ = partial annealing zone for fission tracks. 

3.2 Methods for inverting AFT and AHe synthetic data for thermal history 

We attempted to recover the true thermal history used to predict the synthetic data from Sect. 3.1 using the QTQt 185 

software. QTQt implements a reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm to systematically 

search t–T space (Gallagher, 2012). These exercises imitate real thermal history investigation in the context of 

incomplete geologic knowledge, complex or imperfect datasets, and judgement calls that are typically made by 

researchers implementing thermochronology data and performing modelling to infer quantitative information about 

geologic processes. We also explore the effects of kinetic assumptions for AHe ages or the consequences of 190 

neglecting the identification of multikinetic populations during AFT modelling. An important point is that QTQt 

uses the ratio of data fit, or likelihood, between a current and proposed model and will accept thermal histories 

regardless of feasibility, therefore it is up to the user to understand the ramifications of this and make sensible 

decisions about modelling input and output (Vermeesch and Tian, 2014; Gallagher and Ketcham, 2018). 

Conversely, other software such as HeFTy (Ketcham, 2005) or AFTINV (Issler, 1996) implement a nondirected 195 

Monte Carlo (MC) search algorithm and an absolute approach using the p-value as a threshold measure of statistical 

fit. We used QTQt because it is sensitive to the number and quality of data during history inference (i.e., notionally 

improving model results with additional, high quality data) and specifically because it will accept model histories 

regardless of the physical or geologic plausibility for a history simulation — this was done to explore the possible 

effects of improper data treatment or data misinterpretation.  200 
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Figure 2: Predicted synthetic AFT data from the thermal history in Figure 1. Multikinetic age populations were individually 
predicted using distinct rmr0 kinetics shown in (b) panels (discussed in the text). These data were then input in QTQt and inverted 
in an attempt to recover the true thermal history in Figure 1 (see Fig. 3). (a) Central age and 1σ errors are indicated for each 205 
kinetic population. Throughout this paper, “central age” is used for historical reasons to refer to the approximate geometric mean 
of a population of single-grain AFT ages (Galbraith and Laslett, 1993). The first radial plot shows all thirty individual grains and 
demonstrates that when taken together, the combined sample fails the X2 test (p < 0.05) for homogeneity (i.e., that all grains 
belong to a single underlying age population) suggesting multiple age populations. This is the scenario most researchers would 
start with before evaluating the sample for potential multikinetic behaviour. Mixture modelling was subsequently performed on 210 
the combined sample and the model age peaks that were picked seamlessly align with the individual kinetic population central 
ages. Kinetic populations one, two, and three are displayed as arms on their respective radial plots, with individual AFT ages 
closer to the origin being less precise. This aligns with how populations would be defined and compared with the elemental 
chemistry for individual age grains during multikinetic interpretation. (b) The predicted track length distributions for the 
combined and individual kinetic populations derived from the thermal history in Figure 1 using the specified kinetic parameter 215 
value. Numbers on the histogram are the number of tracks in each µm bin. Abbreviations: eCl = effective Cl; MTL = mean track 
length. 

The rmr0 values for AFT and AHe data were held fixed for simulations and noise was added to the synthetic dataset 

by randomly adding age scatter to single-grain AFT apparent ages by varying spontaneous/induced (Ns/Ni) track 

ratios and setting typical analytical uncertainties for predicted AHe apparent ages (all information given in 220 

ascending retentivity/kinetic population order). The AFT data were recast from QTQt individual synthetic output 

files using random Ns/Ni ratios that produced central ages for each kinetic group that were in agreement with 

forward model predictions using identical EDM parameters with a ζ-calibration value = 350 yr cm-2, induced track 

density (ρDi) = 2.5 x 106 cm-2, and dosimeter tracks (Nd) = 10000. These common values made it so that each 

population was simulated as being from the same grain mount for the purposes of easy comparison and t–T 225 

inversion. The synthetic AFT sample has an overall central age of 934 ± 64 Ma (1σ, X2 = 0.0, MSWD = 9, 34% 

dispersion, n = 30) when all age grains are combined. The central AFT age for population one was calculated as: 

670 ± 26 Ma, population two was calculated as: 843 ± 29 Ma, and population three was calculated as: 1602 ± 79 

Ma. Three mixture model age peaks of 687 ± 34 Ma, 828 ± 34 Ma, and 1602 ± 78 Ma (1σ) were selected in IsoplotR 

(Vermeesch, 2018) for the combined AFT data, which are in agreement with the individual kinetic population 230 
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central ages. The uncorrected AHe ages used all default RDAAM settings with the exception of rmr0 and the ages 

were input as: 585 ± 17 Ma, 610 ± 18 Ma, and 819 ± 25 Ma (1σ). 

 

We ran QTQt in multiple stages to tune Bayesian sampling and to ensure the acceptance rates for time and 

temperature were between ~0.1–0.7, within the acceptable limits discussed in Gallagher (2012). Inversions were run 235 

for >500,000 to >1,000,000 total iterations (burn-in and post burn-in) and were considered complete when the 

likelihood distribution was stationary (i.e., there was no trend in the likelihood values with a stable or “flat” mean; 

Gallagher, 2012). The modelling t–T space (prior) was designated as 1000 ± 1000 Ma and 150 ± 150 °C with a 

maximum allowed heating/cooling rate of 5 °C/Myr. Sampling proposed outside of the prior was prevented and 

more complex models were rejected for proposed models of equivalent likelihood. Therefore, t–T points were only 240 

accepted if they provided a better fit to the input data, which is a newer feature in QTQt that essentially prevents 

overly complex model paths from being accepted if they do not provide any benefit or improvement in data fit.  

 

The long time interval for these model inversions are styled after a typical cratonic history and the only constraint 

that was consistently enforced was starting the model at 300 ± 1°C at 2000 ± 1 Ma. For our purposes, this scenario is 245 

considered a “no constraint” model, since we apply this as a starting condition for all inverse models well above the 

sensitivity of our thermochronology data. We also ran models that enforced constraint boxes (i.e., with either one or 

two boxes) at 20 ± 10°C at 1650 ± 100 Ma and 20 ± 10°C at 500 ± 50 Ma, requiring t–T paths to pass through them. 

These t–T boxes were treated as “known” geologic information for the inversions and represent common geologic 

situations for cratons with Proterozoic and Phanerozoic basement nonconformities. However, these boxes 250 

purposefully represent an incomplete period of time at surface conditions with respect to the true thermal history, the 

repercussions of which will be discussed below in Section 5.2.  

 

For all models presented hereafter, we show the QTQt Maximum Likelihood (ML; i.e., usually more complex, best 

fit t–T path to the observed data, red line) and Expected models (EX; i.e., ~weighted mean ± 95% credible interval; 255 

black lines) with respect to the true thermal history (white line) used to predict the synthetic data (Fig. 1). In our 

thermal history plots, the individual t–T paths are coloured by [log] path density, which is proportional to the 

relative probability, with higher intensity (brighter) colours denoting higher path density and higher relative 

probability. Note that in Bayesian inference, the posterior probability is proportional to the likelihood multiplied by 

the prior, and in QTQt the prior acts as a penalty against making the model too complex and thus the Maximum 260 

Posterior (MP) model will commonly be the simpler t–T path when compared to the ML path (i.e., equal or fewer t–

T points; Gallagher, 2012). We have excluded the MP model for plot clarity for most output because the ML and 

MP paths are identical or nearly so for most scenarios, which implies a well sampled and constrained ensemble of 

solutions (Gallagher and Ketcham, 2020). 
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4. Model inversion results 265 

QTQt inversion results are shown in Figure 3 and examine the implications of multikinetic AFT, joint models with 

multikinetic AFT and AHe grains using the correct kinetics (i.e., the kinetics implemented during forward modelling 

to predict AHe ages), and different combinations of incorrect monokinetic AFT models where the three multikinetic 

populations were combined and treated as a single AFT sample and/or AHe ages were assumed to have the 

endmember fluorapatite rmr0 value. Figure 4 depicts the results comparing observed synthetic data and model 270 

predictions for the inversions in Figure 3. The first three models are “multikinetic AFT only” models (Fig. 3a–c), 

whereas the second row of models depicts results for three multikinetic AFT populations and three AHe grains (Fig. 

3d–f). The last three panels are the single population AFT models (Fig. 3g–i). To reemphasize, we prevented t–T 

points from being accepted during QTQt inversions unless the addition of points provided better agreement between 

observed and predicted data. Therefore, all of our preferred results and discussion focus on the ML model t–T path 275 

since this path is the best fit to the data and is, in these instances, not unnecessarily complex, yet we show the EX 

model and 95% credible interval for comparison and to provide a general picture of the overall model ensemble. 

4.1 AFT-only models — identified multikinetic age populations and correct kinetics 

The first model was setup to simultaneously invert each AFT kinetic population without AHe data for scenarios with 

a “no constraint” model, a “single t–T constraint” model, and “two t–T constraints” model (Fig. 3a–c). These 280 

simulations were meant to be the ideal case using a lone AFT chronometer with extended thermal sensitivity due to 

the presence of multikinetic apatite populations. We investigated the ability of QTQt to recover the true thermal 

history using properly identified kinetic age populations while utilizing the fixed, true rmr0 value from forward 

modelling for each population under varying degrees of geologic assumptions or constraints. The general shape, 

timing, and magnitude of the true history form and peak temperatures are recovered for the multikinetic AFT models 285 

regardless of whether or not constraint boxes were used. This suggests to us that the combination of high-quality, 

distinct age and length populations enhance t–T history resolving power, which becomes progressively improved if 

kinetic populations sample a broad range of kinetic space (predicted AFT parameters closely agree with the 

synthetic data; Fig. 4a–c). 

4.2 AFT + AHe models — consequences of the rmr0 parameter 290 

The addition of the three AHe ages using their correct kinetics (i.e., rmr0 values) along with the three multikinetic 

AFT populations (Fig. 3d) marginally improved thermal history recovery with respect to the AFT-only models (Fig. 

3a–c), while the addition of two constraint boxes produced a ML model t–T path that reproduced nearly all features 

of the true thermal history (Fig. 3e). Figure 3e is the best thermal history model that utilized all assumptions and 

information used during forward model generation of the synthetic dataset and provides the closest fit to the 295 

synthetic data (Fig. 4e). Setting all three AHe grains to 0.83 rmr0 produces distortion of the ML model history with 

respect to the true history (Fig. 3f). The model predicts three AHe ages that are virtually identical but provide a poor 

fit to the input synthetic AHe ages (Fig. 4f). The 610 Ma AHe grain (true kinetic rmr0 value = 0.83) was on the 

margin of acceptability. However, in this case the overall group of model paths is still similar to the other “AFT-
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only” and “correct kinetics AHe” models simply because the multikinetic AFT populations are the primary controls 300 

on the t–T history (i.e., exert more influence and contain more thermal information), and without them, the model 

ensemble would instead be highly inaccurate (e.g., Fig. 3i; see below). 

4.3 Monokinetic AFT models — incorrectly combined kinetic populations 

In our experience, multikinetic behaviour is not uncommon for basement samples characterized by complicated 

burial histories and nearly always present for detrital apatite samples derived from complex source areas that 305 

experience multiple heating events. In our “monokinetic” scenario, the multikinetic AFT data were incorrectly 

treated as a single population and modelled using the central age, MTL, and average eCl (or rmr0) ± 1σ of the entire 

pool of synthetic single-grain ages. As previously mentioned, combining the three populations caused the sample to 

fail the chi-square test (X2 = 0.0) and the calculated AFT central age was 934 ± 64 Ma, the overall MTL was 14.07 ± 

1.40 µm (n = 225), and the average eCl is 0.213 ± 0.373 apfu for all grains (equivalent rmr0 ≈ 0.75). AFT data are 310 

usually treated as such in the published literature and overdispersed data are often modelled regardless of X2 

statistics. This situation could conceivably occur when the three kinetic populations were either ignored or there was 

insufficient kinetic parameter resolution to identify discrete kinetic groups. A sample could also simply not be 

multikinetic — but the models here are meant to illustrate the hazards of monokinetic misinterpretation for thermal 

history analysis. In the monokinetic simulation without constraints, both the ML and EX t–T paths do not accurately 315 

reproduce the true thermal history (Fig. 3g). In this instance the ML path simply passes through both true thermal 

maxima, and yet yields excellent fits to the observed synthetic data (Fig. 4g). The addition of two constraint boxes 

produced even more complex and highly inaccurate t–T solutions (Fig. 3h) and reproduce well the observed AFT 

data (Fig. 4h). The AFT sample was modelled as monokinetic again (Fig. 3i), but also included the three AHe ages 

using uniformly applied default RDAAM rmr0 value of 0.83 for each apatite grain to provide further insight into 320 

whether this combination could yield a better outcome just from the addition of more data for the inversion. The EX 

model is still inaccurate but the addition of AHe grains made the ML path simpler, nevertheless it poorly reproduces 

the true thermal history. The true AHe apparent ages were not well reproduced and the same age was predicted for 

all three grains (Fig. 4i). This may be because the second 610 Ma AHe grain utilized the true rmr0 value of 0.83 from 

the forward modelling and was the best-predicted age of the three (close to the observed age upper uncertainty limit) 325 

and dominated the iterative sampling during the inversion. The AHe kinetics produced forward model ages that were 

distinctly older (819 Ma) and younger (585 Ma) than the (middle) 610 Ma grain but these were unable to be 

reproduced by the inverse model assuming incorrect rmr0 kinetics. 
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 330 
Figure 3: Thermal history inversion results from QTQt under different imposed kinetic and t–T assumptions. Relative 
probability is proportional to path density in our t–T figures, therefore brighter colours (or higher saturation) denotes higher 
relative probability. Panels (a–c) show the “AFT only” models that utilized three multikinetic AFT populations (discussed in the 
text) as the only input data. The true rmr0 kinetics applied during forward modelling were entered in the input files and held fixed 
for each kinetic population during the inversion. Panels (d–e) show the results of models that correctly utilized three multikinetic 335 
AFT kinetic populations and three AHe ages all with the true kinetics held fixed. Panel (e) is the best model inversion 
incorporating all correct thermochronometer information used during forward modelling of the synthetic data set. The panel (f) 
model was completed under the same conditions as panels (d–e) except that the three AHe grains all employ the incorrect (in the 
oldest and youngest cases) RDAAM default fluorapatite rmr0 value of 0.83 as the kinetic parameter. Panels (g–i) were modelled 
assuming a “monokinetic” or traditional single population AFT sample that combines all three multikinetic populations into one. 340 
For all panels: Thick white line is the “true” thermal history from Figure 1; red lines are the Maximum Likelihood model (best 
fit) t–T path from QTQt; black lines are the Expected model t–T path and 95% credible interval. Assumed t–T constraints are 
white boxes that require thermal histories to pass through them during the inversion. 

5. Discussion 

5.1 Apatite composition and multikinetic interpretation 345 

The AFT and AHe modelling results presented here may seem intuitive based on the implemented kinetics and 

modelling exercises using synthetic data but are worth discussing, since situations where highly variable apatite 

compositions could influence thermochronometric ages are likely to be encountered in natural samples. The results 

shown here indicate the benefits offered by interpreting intrasample AFT kinetic populations for inverse modelling 

and also show how inappropriate assumptions regarding kinetic parameters can greatly influence model outcome. 350 

Our examples were determined for a single, distinct thermal history, and yet they establish that apatite composition 
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and multikinetic interpretation (when appropriate) provide valuable information for thermal history modelling — 

and are mostly unexplored, or at least underutilized by routine AFT studies. 

 

Collection of elemental data and interpretation of multikinetic samples is particularly important for providing greater 355 

t–T resolution (Fig. 3a–f), whereas combining or overlooking kinetic populations effectively smears the t–T signal 

contained in the individual kinetic groups and produces a meaningless hybrid thermal history model (Fig. 3g–i). We 

could disregard these incorrect model simulations as self-fulfilling due to forward modelling a synthetic dataset and 

assuming “perfect” kinetic models, however for real scenarios we would not know the true thermal history and 

without other information, this class of results could be interpreted as geologically meaningful. Perhaps more 360 

important are the broader implications for thermal history modelling if there are inappropriate assumptions 

regarding data interpretation and certain steps are not taken to fully evaluate multikinetic AFT samples (Fig. 3g–i), 

especially at longer timescales where there is greater uncertainty and less geologic control. An important point is 

that if multikinetic populations exist and are properly interpreted, they have the potential to constrain a much 

broader range of t–T space than an incorrect monokinetic (single population) interpretation for an overdispersed 365 

AFT sample. Many readers may appreciate that assuming or inadvertently ‘forcing’ the wrong model is a problem, 

but this remains a highly reviewed topic (e.g., Vermeesch and Tian, 2014; Fox et al., 2019) and is seemingly 

underexplored in studies, as multikinetic-focused literature remains practically negligible in the >20 years since 

multikinetic models were introduced. Gallagher and Ketcham (2020) also touch on these points in response to the 

lengthy modelling discussion sparked by Vermeesch and Tian (2014) and are the primary themes of this work.  370 
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Figure 4: QTQt inversion predictions compared to “observed” synthetic thermochronology data generated during forward 
modelling. Panel letters correspond to counterpart t–T model panels in Figure 3. All predictions are for the Maximum Likelihood 
models. Squares are observed AFT central age ± 2σ, circles are predicted AFT age, diamonds are observed MTL ± 1σ, and X-375 
symbols are the predicted MTL. Individual model fits to each track length distribution for the AFT kinetic populations are also 
shown and color-coded the same as Figure 2. Observed apatite He ages shown by red H-symbol (spans the 1σ error range quoted 
in the text) and predicted AHe ages are black bars. Panel E with star is our best model that accounts for all multikinetic AFT 
populations and utilizes the true AHe kinetics and two geologic constraints, all combined for the highest thermal history 
resolution. Note: track length distributions are arbitrarily placed next to their respective age population and were not plotted with 380 
respect to the MTL plot axis. 

5.2 Data quality and kinetic parameter influence on t–T resolution 

The overall temporal and thermal resolution contained in multikinetic AFT data is influenced by multiple factors 

such as, the amount and distribution of the data (i.e., if the majority of the data are contained in one population 

versus distributed more equally), thermal history (i.e., the magnitude and sequence of heating-cooling events), and 385 

kinetics (i.e., the range of temperature sensitivity). A greater number of different kinetic groups are sensitive to an 
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expanded t–T range than a single population. However, the ability to recover thermal history information depends 

on the details of the thermal history; if maximum temperatures occur late in the history then previous events are 

thermally overprinted and the early history is obscured or erased entirely. We intentionally use an ideal synthetic 

dataset with well-defined kinetic populations that have an equal distribution of data across all populations. Natural 390 

populations may have an uneven distribution of grains and therefore populations that contain the most data will best 

resolve distinct parts of the thermal history. Our QTQt inversions demonstrate the ability of these data to inform t–T 

modelling in the context of variable kinetics and different modeller assumptions. The similarity between Expected 

models that do and do not require paths to pass through explicit t–T boxes (e.g., Fig. 3a–c) is informative for general 

modelling practices using Bayesian methods. This tells us that the multikinetic data being inverted have enough 395 

sensitivity to resolve the general t–T history without necessarily requiring explicit conditions imposed on the t–T 

search. This is perhaps unexpected, as the Bayesian sampling implemented by QTQt generally favours simpler 

models over complex ones, which is a possible deterrent for users investigating deep-time thermal histories 

(McDannell and Flowers, 2020). However, this should not preclude the use of QTQt for deep-time problems, as the 

addition of thermochronological data augments inferences regarding thermal-history complexity. 400 

 

However, enforcing constraints while utilizing fewer chronometers and ignoring data complexity or multikinetic 

trends are detrimental to obtaining accurate t–T solutions. The main region of t–T space that proved difficult to 

resolve in all models was the prolonged periods at low temperature. This was anticipated since the kinetic models 

and chronometers themselves are rather insensitive to temperatures < 50°C. The EX model may define an envelope 405 

that seems consistent with the known true history (Fig. 3a–c), however this does not take into account the form of 

individual thermal histories that may be inconsistent with the true history. There were individual paths that were 

more similar to the true history for these three simulations, yet they were considered lower relative (posterior) 

probability due to constraint box placement. We may expect this compromise between accuracy (i.e., closer to the 

true solution) and precision (i.e., greater certainty) because subsequent heating event(s) erase t–T information and 410 

the earlier or older, low-temperature parts of the history will be less and less resolvable with additional reheating and 

thus may require constraint boxes to focus the t–T search. However, imposing ‘uncertain’ constraints, or constraints 

that do not fully capture the geologic record where the model is less sensitive leads to exclusion of (potentially 

viable) solutions and tightens the 95% credible interval. These results suggest that data quantity, quality, and the use 

of t–T constraint boxes variably trade-off with one another and the validity or uncertainty of geologic constraints 415 

should be carefully considered and tested for natural samples since model results are conditional on these factors. 

 

Figure 3e shows the ideal case with the most accurate thermal history recovery (nearly identical to the true history) 

when two constraint boxes are implemented with three interpreted AFT kinetic populations and three AHe grains 

modelled using the proper kinetics. Importantly, this applies in the case of integrating multiple low-temperature 420 

thermochronometers and/or multikinetic AFT data, especially multikinetic populations that progressively diverge in 

kinetics, therefore increasing thermal resolution. However, constraint boxes provide no obvious advantage when the 

three multikinetic populations are ignored and only the overall central AFT age is modelled (Fig. 3h). In light of 
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these results, we disagree with the recent assertion by Green and Duddy (2020) that “thermochronology data in 

isolation cannot define periods when samples were cooler and subsequently reheated. This can only be defined with 425 

the aid of constraints from geological evidence.” This statement alludes to the non-uniqueness of t–T models and 

certainly applies in situations where a single AFT age population is modelled, or more generally when only one 

thermochronometer is used to elucidate complicated t–T histories. However, we propose that multikinetic AFT 

interpretations (or more generally, integration of independent information from multiple chronometers) demonstrate 

that their view does not always apply, as we can see illustrated in Figure 3a. Green and Duddy (2020) also go on to 430 

state that slow, continuous cooling is often assumed in published thermal history models (seemingly referring to 

QTQt models) and that this is inappropriate. Of course, ignoring geologic information and blindly inputting 

thermochronology data into modelling software will always yield inappropriate thermal histories — and there is 

nothing preventing the user from doing this. However, model simulations such as the one that we show in Figure 3g 

tell us that the wrong model may imply slow monotonic cooling, although it is not outright assumed, whereas our 435 

examples that utilize high-quality data (Fig. 3a–e) demonstrate that universal slow cooling assumptions are invalid. 

Monotonic-cooling solutions that faithfully reproduce the observed data (Fig. 3g and Fig. 4g) are not necessarily 

correct and are a product of attempting to recover a complex history with low-resolution data and/or incomplete 

geologic information about the true history. 

 440 

We show additional QTQt models in Figure 5 to further establish the utility of modelling AFT grain populations 

with different annealing kinetics and the distinct temperature sensitivity provided by each kinetic group. These 

simulations were carried out for each kinetic population individually and utilizing their true kinetics to demonstrate 

the sensitivity of each population to the multiple heating and cooling events present in the true forward history. The 

model in Figure 5a demonstrates that population one is only sensitive to post–1 Ga cooling and the second reheating 445 

event, whereas the model in Figure 5b shows that population two is only sensitive to peak temperatures achieved 

during the first heating event. Population three is sensitive to the initial cooling from high temperature and requires 

some poorly resolved reheating to partially reset the AFT age and match the track length distribution. The high 

retentivity of population 3 makes it mostly insensitive to the two heating and cooling cycles. Each of these 

simulations illustrate that a single AFT population lacks sufficient t–T information to adequately resolve the (entire) 450 

true thermal history, yet when each kinetic population is combined and modelled simultaneously (Fig. 3), their 

consolidated sensitivities enhance recovery of the true t–T solution. 

 

 



16 

Figure 5: QTQt models of each individual AFT kinetic population plotted with respect to the true thermal history. (a) Kinetic 455 
population one (b) Kinetic population two (c) Kinetic population three. The magenta dashed line indicates the approximate 
sensitivity of each kinetic population within the overall model history (also see Fig. 6b retention ages). All other explicit 
boundary conditions are the same as previous models. 

5.3 Comparison with nondirected Monte Carlo t–T simulation 

Multikinetic AFT data may record complicated thermal histories that are difficult to simulate using classical 460 

randomized Monte Carlo algorithms and model success can depend strongly on the choice of boundary conditions 

that are used to limit the model search space. The synthetic AFT data were inversely modelled using the newest 

version of AFTINV (Issler, 1996), a derivative of the Willett (1997) model that is similar to the HeFTy software 

(Ketcham, 2005) in using a nondirected Monte Carlo scheme and p-values to generate and evaluate thermal 

histories. Unlike HeFTy, AFTINV uses fixed, user-specified time points of arbitrary spacing and generates thermal 465 

histories by randomly selecting heating and cooling rates to calculate temperature points forward and backward in 

time. Thermal histories are constructed by piecewise assembly of different thermal history styles (e.g., heating or 

cooling only, or heating/cooling cycles) that are separated by randomly-selected thermal minima within user-

specified time ranges that incorporate uncertainty in the time of deposition or onset of reburial. Monte Carlo 

calculations are performed to obtain a set (typically 300) of solutions exceeding the 0.05 level of significance and 470 

then a controlled random search (CRS; Price, 1977) learning algorithm is used to update the solution set to the 0.5 

level. Up to four different AFT kinetic populations can be modelled simultaneously. Failure to find any solutions at 

the 0.5 level may indicate a problem with the boundary conditions, the style of thermal history, or incompatibilities 

among the kinetic populations and further investigations should be undertaken to determine the source of the 

problem.  475 

 

Model sensitivity runs were undertaken to determine the boundary conditions needed to obtain close fitting solutions 

and Figure 6 shows the final preferred model results obtained from the CRS calculations. Previous models that used 

broad rate limits required millions of trial model solutions that produced a wide range of marginally acceptable 

solutions (0.05 level) that could not be updated by the CRS algorithm to produce the narrower thermal peaks needed 480 

to closely fit the AFT data at the 0.5 level. Limiting the heating/cooling rates to 0.2 °C/Myr from 1700 Ma to 1200 

Ma and 1 °C/Myr for the post–1200 Ma history improved model performance dramatically and yielded 44 solutions 

at the 0.5 significance level (dark gray lines; Fig. 6a). These limits kept temperatures closer to surface conditions 

prior to the first heating event and eliminated spurious temperature fluctuations associated with rates that are much 

higher than those used to generate the synthetic data (Fig. 1). Unlike the QTQt model results of Figure 3, all 485 

individual thermal histories in Figure 6a provide statistically significant fits to the AFT data. The minimum 

objective function solution (green curve; Fig. 6a) provides the closest fit to the AFT age and length data (Fig. 6c). 

The exponential mean of all 300 solutions (blue curve; Fig. 6a) provides acceptable fits for kinetic populations two 

and three but fails to fit population one lengths due to insufficient annealing; the wide range of permissible solutions 

for the low temperature peak results in an exponential mean peak temperature that is lower than each of the 490 

individual solutions. Retention ages (Fig. 6b) are model ages representing the oldest track (approximately 2 µm) in 
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each population and they indicate the approximate times when thermal history information is retained by each AFT 

population. Population one retention ages are younger than thermal peak one, implying total annealing and 

accumulation of new tracks after the peak one maximum temperatures. Population two shows a bimodal retention 

age distribution indicating that some solutions have tracks with older retention ages that were not reset during the 495 

first cycle of heating. The very old population three retention ages suggest that tracks were retained at temperatures 

> 290 °C. 
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Figure 6: (a) AFTINV software thermal history inversion results using random MC and the CRS algorithms (e.g., Willett et al., 500 
1997; McDannell et al., 2019b). Model in (a) was set up to find 300 random MC solutions at the 0.05 fit level (not shown), which 
are then used as a ‘seed’ pool for the CRS algorithm to iteratively recombine and refine the solution set to the better 0.5 statistical 
fit level. In this example, not all solutions reached the 0.5 significance level (only 44 did; dark gray lines) and are therefore ≥ 
0.05 level (light gray lines). The exponential mean t–T path is shown for all 300 solutions (blue line) along with the ‘minimum 
objective function’ or overall best-fit solution (green line). (b) Retention ages, or hypothetical age of the oldest retained fission 505 
tracks for each kinetic population. Retention ages give a rough sense of temperature sensitivity. (c) Track length distribution 
model fits for the exponential mean and minimum objective function t–T paths for each kinetic population. Observed versus 
predicted goodness-of-fit (GOF) for AFT age and track length for the min. obj. function solution. See McDannell et al. (2019b) 
for further discussion of AFTINV modelling methods. 

 510 

6. Conclusions 

Using synthetic multikinetic AFT (and AHe data) derived from forward modelling, we show that, under ideal 

conditions, it is possible to extract multi-cyclic heating and cooling history information using inverse modelling 

methods when kinetic parameters for AFT annealing are correctly specified. Essential details of a two-phase heating 

and cooling history are reproduced using AFT multikinetic data alone without imposing constraint boxes but the 515 

closest fit to the true solution is achieved using all the synthetic data with constraint boxes. Alternative monokinetic 

interpretations that ignore multikinetic behaviour generate solutions that significantly depart from the true solution 

while providing close fits to the interpreted AFT data; under these conditions, imposing constraint boxes can further 

degrade modeled t–T solutions with respect to the true thermal history style and the timing and magnitude of heating 

events. Within the context of our simulations and assumptions regarding helium diffusion kinetics, ignoring apatite 520 

composition (rmr0 kinetic parameter) when it truly deviates from fluorapatite kinetics can cause observed AHe ages 

to be reproduced poorly and yield inaccurate model thermal histories. Therefore, if apatite composition does 

appreciably modify He diffusivity, this effect may be an additional, and unaccounted for, source of overdispersion in 

AHe datasets and disagreement between observed and modeled ages may be due to incorrect (kinetic) model 

assumptions rather than poor quality data. We recommend the routine collection of elemental data for apatite dated 525 

using the fission-track method as a means to better quantify sample chemical variation and relate this to kinetic 

behaviour for thermal history analysis. Elemental data may also prove useful to characterize first-order 

compositional variation in AHe datasets. The use of rmr0, while imperfect, still provides the best resolution for 

kinetic interpretation when compared to other kinetic proxies. The ability to recover high-resolution thermal 

histories from natural multikinetic AFT samples depends on the details of the thermal history and characteristics of 530 

the data. These topics are discussed more fully in a future companion paper that examines detrital AFT samples 

from Yukon, Canada to illustrate multikinetic AFT interpretation and modelling methods.  

7. Appendix 

The appendix contains the true thermal history and the synthetic AFT data set. See the main text for further details. 
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