
response to associate editor

1. Clearly there is a difficult balance to strike between accessibility and providing full details of our new approach. We
have moved much of the mathematical formulation into Appendices, but retain key information in the main text. We
have also tried to provide insight into the (often cryptic) protocol and calculations implemented in the widely-used
ISOPLOT software of Ken Ludwig.5

2. In order to address the associate editor’s suggestion, a comparison of application of different algorithms, including those
used in ISOPLOT, is included in the revision in a new Appendix, using the data used for the old Fig. 6 (now Fig. 7).
These data are now included in Appendix C as requested by reviewer 4, making it straightforward for the reader to see
and assess the results.

The robust algorithms in Ken Ludwig’s ISOPLOT are given in the isoplot manual 3.75, (2008 revision) p. 25, with details10
in the papers cited. Strictly these are resistant algorithms, having high breakdown point, but low efficiency (e.g. Huber
& Rochetti, 2009, Sect. 1.2.3). In our algorithm, and the code in our manuscript, such methods are used to provide a
starting point for the iteration in SPINE, as now spelt out at the start of Appendix C. Including Siegel (1982) was the idea
of reviewer 4, and that has been implemented in the code and included in the manuscript.

Ken Ludwig was a reviewer of the Powell et al. (2002) paper, and was enthusiastic about the work. Subsequent com-15
munications between Ken and the 1st author were aimed at including the robust isochron calculation approach of the
2002 paper in ISOPLOT. Unfortunately this didn’t happen, due to personal matters that Ken experienced immediately
after that time. In the ISOPLOT documentation regarding robust regression, his first suggested method is superseded by
the second (Siegel, 1982). Looking at Ken’s vba ISOPLOT code, the bootstrap used with the Siegel (1982) data-fitting
is a simple “cases”, or structural-based resampling, as though the x-y data are drawn from some underlying (unknown)20
bivariate probability distribution (not the more appropriate, model-based approach used in the 2002 paper). However,
any bootstrap is difficult and undeveloped for robust regression, e.g. Davison & Hinkley (1997), Sect. 6.5, and unreliable
in general for median-based calculations. Significant effort went into developing the bootstrap for our current work -
without success. In the 2002 paper the analytical uncertainties were discarded before the regression and the bootstrap
were calculated, as already stated in the Discussion of the manuscript. Integrating the analytical uncertainties into the25
bootstrap contributed significantly to our difficulty.

3. We think that there may be a misunderstanding here regarding the sentence quoted from our response to review 3, “...such
additional datasets show that the 95% confidence limit on the ages is 3.97 to 4.03 Ma with SPINE, but 3.91 to 4.09 Ma
with YORK, a significant increase in reliability with SPINE”. This is a 95% confidence interval on all the individual
ages of such datasets, 4445 of them, that fail mswd but have acceptable spine width, using the cutoffs in Table 1 in the30
manuscript. Reliability is possibly not the best word to use, but this result flags how much better SPINE does than model
2 (or YORK) in this simulation.

Philosphically isochron-errorchron and model 3 are orthogonal to each other. In the former, a general purpose calculation
method is sought which includes a way to distinguish datasets that are more likely to have age significance (isochrons)
from those which are less likely (errorchrons). In the latter, data scatter is parameterised with analytical uncertainties35
and additional contributions depending on the geological processes envisaged to be involved. In the latter, maximum
likelihood can then be used to devise an algorithm to find the model parameters, if the imagined data uncertainty structure
is completely specified. We, in our manuscript, aim for the former, whereas the reviewer has focused on the latter in recent
publications.

Model 3 calculations can be very interesting when there are geological reasons to make them plausible. However, com-40
monly, identifying the cause of excess scatter is not easy to do or may indeed be impossible. Instead, our approach aims
to calculate age information, discounting the potentially deleterious effects of excess scatter. Using a robust statistics
logic, isochron calculations can be undertaken for a wider range of datasets. Importantly our approach is consistent
with YORK for “good” datsets (e.g. with mswd less than some cutoff, as in model 1, accepting that the data (analyti-
cal) uncertainties account for data scatter). But, in addition, the approach extends seamlessly to datasets where mswd is45
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greater than the cutoff (e.g. model 1 with expanded errors, as well as model 2). This extension is considered to also give
isochrons as long as the central spine of the data, s, is less than some cutoff. The cutoffs, depending on the number of
datapoints, are given in Table 1 of the submitted manuscript, from a 95% confidence interval on s for simulated datasets
with Gaussian-distributed data uncertainties. The use of these cutoffs is directly analogous to the use of cutoffs on mswd,
also given in Table 1. The use of such s cutoffs avoids the rubbish-in rubbish-out problem, in the same way that mswd50
cutoffs do in YORK fitting, for strictly Gaussian data uncertainties.

We would contest the idea that maximum likelihood and the tests that can be formulated in that framework are always
that useful, particularly for the small size of datasets that are typical of geochronology. As noted already in the response
to review 4, even the 51-point dataset of Fig.6 is insufficient to distinguish a strictly Gaussian data uncertainty structure
from a contaminated Gaussian one. In YORK calculations the adoption of a strictly Gaussian uncertainty structure is an55
assumption - it cannot be tested for. It is well known that even trivial departures from this assumption have a deleterious
effect on the results from using classical statistical methods (see, for example, the introductory chapters of Huber, 1982,
and Hampel et al., 1985). This may well apply in model 3 calculations too. Whether the assumptions in the parameteri-
sation cause a problem in algorithms used for model 3 calculations could easily be tested with simulations, for example
using very slightly contaminated Gaussian data, e.g. 5%3N.60

Certainly, in the current manuscript we are not following the “cult of mswd”. Far from it. We are advocating that this
statistic is not useful and we do not use it. Mswd appears in the manuscript simply because it is needed to show that
SPINE subsumes YORK for “good” datasets. Indeed, because of that, our algorithm is based on a minimis- ation that
reduces to minimising mswd for “good” datasets. Of course, mswd is pivotal in model 3 calculations given that it is used
to signal the existence of excess scatter. But, if, as suggested in Vermeesch (2018), excess scatter starts at mswd = 1 with65
increasingmswd, rather than at some cutoff from a confidence interval on mswd, then a model 3 calculation might well
be trying to model something which is not there statistically, just noise? See Table 1 in the manuscript in the context
of Appendix A, discussing ISOPLOT model 1 calculations. Even for a 50 datapoint dataset, a 1-sided 95% confidence
interval on mswd extends up to 1.36. It doesn’t stop at mswd = 1.

The main ideas in this section of our response are incorporated in the revision, but a discussion of model 3 calculations70
is beyond our remit there.
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Abstract.

The standard classical statistics approach to isochron calculation assumes that the distribution of uncertainties on the data

arising from isotopic analysis is strictly Gaussian. This effectively excludes from consideration datasets that have excess scatter,75

even though many appear to have age significance. A new approach to isochron calculations is developed in order to circumvent

this problem. This only requires that the central part of the data uncertainty distribution is Gaussian, significantly increasing

the range of datasets from which age data can be extracted but also providing seamless integration with well-behaved datasets,

and thus all legacy age determinations. A statistical test is provided to ensure that a central spine of the uncertainty distribution

data is Gaussian. Then a robust line-fitting approach is adopted that is more reliable when used on data with excess scatter, but80

is coincident with the classical statistics approach for datasets without excess scatter. A calculation method for the algorithm

is presented, accompanied by an implementation in Python.

1 Introduction

The ability to fit a straight line through a body of isotope ratio data in order to form an isochron is the cornerstone of many

geochronological methods. In detail, however, this is a non-trivial task, since uncertainties are usually associated with all85

variables, and these are often correlated, precluding simple “least squares” line-fitting techniques. Most of the research in

this area was conducted in the late 1960’s and early 1970’s, being dominated by a classical statistics approach in which data

uncertainties, derived from the analytical methods, are taken to be strictly Gaussian-distributed (e.g. York, 1969; York et al.,

2004, and references therein). This approach, referred to here as YORK, became entrenched in the geochemical community,

particularly in the last two decades as the essential component of the very widely-used software, ISOPLOT, e.g. Ludwig (2012).90

In this contribution we examine some of the problems inherent in these techniques and suggest an alternative approach.

Our primary focus here will be on general-purpose isochron calculations, involving determining the age of an “event” that

established the isotopic compositions of samples in a dataset. This involves what are called model 1 and 2 calculations in

ISOPLOT - as described below. Approaches that try and extract detail within events, including ISOPLOT model 3 calculations,

are not considered (but see e.g. Vermeesch, 2018).95
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1.1 On ISOPLOT

In order to show that there are significant problems in using ISOPLOT for general-purpose isochron calculations, and then to see

how they can be addressed, it is first necessary to outline the ISOPLOT protocol, some details of which may not be apparent to

the user. Central to this workflow, the main tool for considering data scatter is mswd, the mean standard weighted deviates (also

called the reduced chi-squared statistic), see eq. 1. For strictly Gaussian distributed uncertainties (n−2)mswd is distributed as100

chi-squared (χ2
n−2), meaning that if data uncertainties are correctly assigned, a strong statistical statement can be made about

whether the data scatter of a particular dataset is solely consistent with the data uncertainties (i.e. with no geological scatter),

for example in the form of a 95% confidence interval on mswd, Wendt and Carl (1991). Such a confidence interval is not fixed,

but depends on the number of datapoints under consideration, so for example for n= 10, mswd< 1.94 (meaning that mswd

extends from less than 1 through to 1.94), while for n= 50, mswd< 1.36. A dataset with mswd in the chosen range for the105

number of datapoints has data scatter that is consistent with the data uncertainties. This situation is commonly referred to as

mswd “passes”; otherwise mswd “fails”, in relation to χ2
n−2. Mswd passing provides a “pure” interpretation of YORK, and, in

ISOPLOT is referred to as a model 1 fit. This is depicted as the horizontal line in Fig. 1, indicating that in this range of mswd,

corresponding to a confidence interval, the calculated uncertainty on an isochron age does not vary with mswd. Such a figure

is drawn by taking an actual dataset and progressively modifying it to show what happens as mswd varies, as described in110

Appendix A.

1.0

age ±

sqrt(mswd)

model 2

model 1x

model 1

model 1 = YORK
isoplot

A

B

model 2 = separate calc (see text)
model 1x = model 1 x sqrt(mswd) 

Figure 1. [new fig and caption] Age uncertainty (age±) plotted against
√
mswd under the ISOPLOT protocol for a progressively modified

dataset (see text, and Appendix A). Under the condition of a model 1 fit, the age uncertainty is constant with increasing data scatter (reflected

in increasing mswd), until there is a step change in the data treatment at A when the age uncertainty is multiplied by sqrt(mswd). Then at B

there is another step change in age uncertainty calculation with increasing data scatter forming ISOPLOT model 2 (see text)
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What if mswd is greater than the upper limit of the chosen confidence interval? Then the data are considered to have excess

scatter, in addition to that accounted for by the data uncertainties (assuming that they are strictly Gaussian). At this point,

ISOPLOT, asks the user whether an alternative—model 2—calculation should be undertaken. This decision point is indicated

at A in Fig. 1. If the user declines, ISOPLOT gives results that are referred to here as model 1x, as shown in Fig. 1. The model 1115

age uncertainty is multiplied by
√
mswd, to reflect the data scatter being more than expected from the data uncertainties alone.

With further scatter, the switch is made to model 2, at B in Fig. 1. If the switch to model 2 takes place at A in response to

user input, then model 1x is not used, the vertical line at A extending up to the model 2 line in Fig. 1. The model 2 calculation

in ISOPLOT is unrelated to YORK. The data uncertainties are discarded and the slope of the line through the linear trend is

calculated as the geometric mean of the lines calculated by unweighted least squares of y on x and of x on y (see Appendix120

A).

In summary, then, in ISOPLOT the calculation of ages and their uncertainties involves a number of decision points based

around the concept of mswd that impart significant (and in our view unwelcome) step-changes in the way that the data are

handled, and algorithms applied. To assist in further discussion of these matters we depart from the language of ISOPLOT

at this point, reintroducing the term errorchron, counterposed to isochron, following Brooks et al. (1972). The idea is that125

isochrons have a higher chance of having age significance, while errorchrons have a lower chance. In particular, it seems to be

unhelpful for the results of model 2 calculations to be called isochrons as done in ISOPLOT, given that there is excess scatter in

the data.

1.2 Replacing ISOPLOT

Given that ISOPLOT’s implementation of model 1+2 line fits is the gold standard of isochron calculations presently, where130

are the problems, and then what can be done about them? A shortcoming in YORK stems from the assumption that data

uncertainties are strictly Gaussian-distributed. In real-world application this appears to be too restrictive, with datasets that are

likely to have age significance being labelled as errorchrons because mswd is too large. While using YORK guided by mswd is

optimal statistically if data uncertainties are strictly Gaussian, this logic fails once uncertainties are even slightly non-Gaussian.

In such circumstances, both mswd and least squares methods themselves, like YORK, become unreliable (e.g. Hampel et al.,135

1986; Huber, 1981).

Rather than being truly Gaussian, data uncertainties may well be Gaussian-distributed in their centres, but slightly fat-tailed

distant from the centres. An isotopic dataset looks intuitively acceptable if the data has a central linear “spine”, in which scatter

is commensurate with stated analytical uncertainty, but this spine is flanked by data of somewhat larger scatter (i.e. excess

scatter, from the “fat tail”). This excess scatter may originate in the isotopic analysis or as a result of geological disturbance.140

Age-significance in such data manifests primarily via the position of the spine. In the following, the focus is on this spine in

the data.

Adopting this spine approach, a successful calculation method for a dataset that may not have strictly Gaussian-distributed

uncertainties must, firstly, ascertain whether or not such a spine exists in the data—and hence whether calculations yield an

isochron or an errorchron. Secondly, in the case of an isochron calculation, the successful method must reliably locate the145
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spine without being perturbed by vagaries in the more scattered data. Classical statistical methods can do neither of these

things, tending to be excessively influenced by the data at the extremes of the scatter. However, the field of robust statistics

offers calculation methods that can. When a dataset has no excess scatter, reflected in mswd lying within an appropriate χ2-

constrained confidence interval, such methods can be devised to retrieve identical results to classical statistic methods, but, in

addition, provide reliable age and age-uncertainty estimates in the presence of excess scatter around a spine. This continuity150

of operation with increasing mswd contrasts with previous approaches and means that the steps in the ISOPLOT line in Fig.

1, which are certainly undesirable, are circumvented. Moreover the involvement of potentially unreliable least squares-based

methods, like ISOPLOT model 2, are avoided when the data show excess scatter.

2 An Algorithm for Isochron Calculations

An algorithm is sought that finds a robust straight line through a 2-dimensional linear data trend, while converging with the155

classical statistical approach of YORK for datasets with consistent scatter (i.e. mswd passes). This section describes the nature

of the problem and the theoretical basis for the robust statistical approach that will be adopted. The algorithm adopted

1. determines a preliminary resistant fit of the data, not dependent on vagaries of the data scatter

2. determines the spine width in relation to this preliminary fit

– if the spine width is in an acceptable range: isochron160

– if the spine width is not in an acceptable range: errorochron

3. determines a robust fit of the data, starting from the preliminary resistant fit, it reducing to YORK for “good” data

This algorithm is fleshed out below, and then evaluated via simulated datasets and applied to a natural dataset. The central

calculation in the algorithm is detailed in Appendix B, and a python implementation is given in Appendix C.

2.1 Uncertainty distributions and data fitting165

Geochronological datasets are collected on the presumption that the isotopic compositions were established via an “event”

the age of which is to be estimated. Given the focus here on data with linear trends, even if the effect of the event is recorded

perfectly by the samples analysed—the isotopic compositions lying on a line—the actual data are measured with finite precision

and so the data inevitably scatter about the trend. An uncertainty probability distribution can be used to describe the form of

the data scatter.170

Classical statistical methods assume that the underlying uncertainty distribution of a dataset is known, typically taken to be

Gaussian. Under the Gaussian assumption, if the analytical uncertainty on the measurements have been appropriately inferred,

mswd, the classical statistics parameter used in YORK to validate an isochron, tests that the scatter of datapoints is consistent

with the inferred uncertainties. But, in general, there is no reason to suppose that a given analytical technique generates a
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truly Gaussian uncertainty distribution. Even small amounts of geological disturbance destroy the optimality of YORK. If the175

uncertainty distribution is not strictly Gaussian then classical methods of data fitting become sub-optimal or worse.

While there are many possible non-Gaussian uncertainty distributions, this paper is concerned with a situation commonly

occurring in datasets, in which the datapoints form a linear spine with Gaussian-like scatter, but additional scatter is seen

in the tails of the distribution. Such a dataset still encodes meaningful age information in its spine, yet it will typically fail

an mswd test owing to its departure from a Gaussian distribution. In this work, datasets of this nature are modelled using a180

contaminated Gaussian uncertainty distribution (Gaussian mixture), written c%dN, meaning that with a probability (100−c)%
the distribution involves a standard deviation, σ, but with a probability c% the distribution has a standard deviation, dσ,

both with a mean of zero (see Powell et al., 2002; Maronna et al., 2006, Sect. 2.1). An example is 25%3N, with c= 25 and

d= 3, so that with 25% probability the uncertainty is drawn from N(0,3σ), and 75% probability drawn from N(0,σ), with

the N(0,s) notation indicating a Gaussian distribution with a mean of zero and a standard deviation of s. Such distributions185

provide excess scatter suitable for developing and evaluating a robust line-fitting calculation. It does not matter if excess scatter

in real data is drawn from a different contaminated Gaussian distribution. Note that with the sample sizes provided by most

modern geochronological techniques, it is not possible to test for Gaussian behaviour, or such small departures from Gaussian

behaviour.

2.2 Isochrons and errorchrons190

In YORK, assuming that the data uncertainties are strictly Gaussian distributed, the probability distribution of mswd provides

bounds that can be used to distinguish isochrons from errorchrons (e.g. Wendt and Carl, 1991). These bounds come from a 95%

confidence interval on mswd, as discussed in Appendix A. Datasets whose scatter give mswd outside the bounds are deemed

to be errorchrons, not isochrons. The focus in this paper is on mswd that is too large, indicating excess scatter. Mswd is defined

with the residuals, rk, the distance in y of the datapoint, k, to the line, ek, weighted by the uncertainty on this distance, σek195

mswd =
1

n− 2

n∑
k=1

r2k with rk =
ek
σek

=
a+ bxk − yk

b2σ2
xk

+σ2
yk
− 2bσxk

σykρxkyk

(1)

The line being fitted is y = a+bx; datapoint, k, is {xk,yk}; the analytical uncertainty on xk, σxk
; the analytical uncertainty on

yk, σyk ; and the correlation between xk and yk, ρxkyk (see derivation of eq. B4 in Appendix B). Note that the slope, b, appears

in the denominator of rk, as well as the numerator.

If, instead, data uncertainties are c%dN, with unknown c and d, or some other contaminated Gaussian distribution then there200

is no equivalent of the mswd argument to say which datasets should give isochrons rather than errorchrons. The approach

advocated here is to use a measure that reflects whether the dataset has a linear spine of “good” data within it. The measure

suggested, s, coined the spine width, is robust, and is defined as

s= nmad(r) = 1.4826 median(|rk − median(r)|) (2)

with the constant normalising the result to be like the standard deviation for Gaussian-distributed r (e.g. Maronna et al., 2006,205

Sect. 2.4). Given that s is based on a median, its magnitude depends on that half of the data that have the smallest absolute
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values of centred r, in other words those that would define a spine. If the data were in fact Gaussian-distributed, it is expected

that s should be in a range about 1 in the same way that mswd is, given that r already involves the analytical uncertainties. The

larger is s, greater than 1, the less pronounced is the linear spine in the data (or the uncertainties have been underestimated).

Whereas the 95% confidence interval (95%ci) on mswd for Gaussian-distributed uncertainties comes from a well-established210

probability distribution, with (n−2)mswd∼ χ2
n−2 (e.g Wendt and Carl, 1991), the confidence interval on s needs to be found

by simulation (see Appendix D), with the simulated datasets just involving Gaussian-distributed uncertainties. The intervals

are given in this table, Table 1:

95%ci
√
mswd 95%ci s

n low high ∗ low high ∗

5 0.268 1.765 1.614 0.09 1.64 1.48

6 0.348 1.669 1.540 0.17 1.62 1.47

8 0.454 1.552 1.449 0.26 1.58 1.45

10 0.522 1.480 1.392 0.31 1.55 1.43

15 0.621 1.379 1.312 0.40 1.50 1.40

30 0.739 1.260 1.215 0.58 1.39 1.33

60 0.818 1.181 1.151 0.71 1.28 1.23

Whereas 1-sided confidence intervals are advocated in Appendix A—columns marked with an asterix in the Table—2-sided215

confidence intervals are also given in the table. Using the asterixed column, for example for a dataset with 10 datapoints

(n= 10), the dataset is deemed to yield an isochron if the observed s is less than 1.43. If s is larger, the dataset gives an

errorchron. For isochrons, the age uncertainty is calculated as in Appendix B. For errorchrons, the age uncertainty is not

calculated.

2.3 A robust statistics approach to isochron calculation220

We seek a statistical approach to isochron calculation that is robust (e.g. Huber, 1981; Hampel et al., 1986), meaning that it is

not excessively affected by outliers in the data, while having desirable statistical properties, for example good efficiency (see

below). In addition, we require the approach to converge to YORK for a “good” dataset, one with a near-Gaussian uncertainty

distribution, allowing seamless compatibility with classical data interpretation. The overall approach adopted will be referred to

as SPINE, involving the use of spine width for isochron-errorchron distinction, combined with robust line-fitting. The line-fitting225

is based on the approach of Huber (1981), as outlined in Maronna et al. (2006), Sect. 2.2.2. Whereas most robust line-fitting

methods use the scatter of the data as a scale, data uncertainties having been discarded (e.g. Powell et al., 2002), here the data

uncertainties are used. This is necessary in order to have continuity of the results with YORK, in which the data uncertainties

are an integral part of the calculation.

In both the Huber approach in SPINE, and in YORK, a straight line is fitted to a dataset by minimising a function of the230

residuals, rk. In the case of YORK this is just the mswd, (1). Since isochron data are generally bivariate with correlated
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analytical uncertainties in x and y, the analytical uncertainty in datapoint k can be represented as an ellipse as in Fig. 2. The

absolute value of the residual for datapoint, k, rk, is in fact the scaling factor on the size of the ellipse required to expand it or

reduce it until it touches the best-fit line (Fig. 2).

The function that is minimised to find the best-fit line can be written
∑
ρ(rk) for both YORK and SPINE. Whereas in YORK,235

ρ(rk) = r2k for all rk, in SPINE ρ(rk) = r2k near the centre of the uncertainty distribution (as in YORK), but downweights

datapoints for which the absolute value of the residual is greater than a cut-off value, h. Thus, in SPINE, and in Fig. 3

ρ(rk) =


2hrk −h2 rk <−h
r2k if −h < rk < h

2hrk −h2 rk > h

(3)

520 530 540 550

0.555

0.560

0.565

0.570
207Pb
206Pb

238U
206Pb

Figure 2. For an example datapoint, {xk,yk}, the inner ellipse is calculated with the analytical uncertainties, Vk, at the 1σ level (in black).

Given a line, y = a+ bx (in blue), the ellipse must be drawn at the |rk|σ level (in red) to touch the line, in this case |rk|= 5.73. The data

point is xk = 529.14, yk = 0.5614, and σxk = 1.870, σyk = 0.00127 and ρxkyk =−0.967. The line is y = 0.8108− 0.0004764x.

In SPINE, for residuals that have an absolute value less than an adjustable constant, h, the contribution to the sum being

minimised is the same as for YORK, but it is linear in the residual for larger absolute value. Note that as h becomes larger and240

larger, SPINE converges to YORK. The value to use for h is discussed in Maronna et al. (2006), Sect. 2.2.2.

The iteration developed in Appendix B minimises
∑
k ρ(rk) with respect to the unknown, θ, a two-element column vector,

{a,b}T in the line equation, y = a+bx. The iteration is applicable to SPINE and also YORK. As a starting point of the iteration,

a resistant estimate for θ is used (see Appendix B). However such methods are much less efficient than SPINE (see below), so

SPINE is a better ultimate estimator. A full iteration is envisaged in Appendix B. The iteration converges in less than 5 iterations245

for all the simulations run (see Appendix D). Once θ is calculated, the measure of scatter used to distinguish an isochron from

an errorchron can be calculated using Table 1. If an isochron is deemed to have been calculated, the uncertainty on θ, Vθ, can

be found, as outlined in Appendix B.
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Figure 3. Plots of ρ(r) against r for YORK in red (r2), and for SPINE (eq. 3) in blue, with the two curves coincident for |r|< h, with h= 1.4

the vertical green lines. See text.

The SPINE algorithm can be summarised:

1. determine a preliminary resistant fit of the data using e.g. SIEGEL (Appendix A)250

2. determine the spine width using nmad

– if the spine width is in an acceptable range, from col. 6 in Table 1: isochron

– if the spine width is not in the acceptable range: errorochron

3. determine a robust fit of the data, starting e.g. from SIEGEL, by minimising
∑
ρ(rk), with ρ defined by (3)

2.4 Application of SPINE to simulated datasets255

Assessing algorithms for data fitting is best done using simulated datasets. In this case, datasets were generated by drawing data

points from a range of uncertainty distributions, all centred on a linear trend reflecting an age of 4 Ma. Full details are provided

in Appendix D. Two features of the datasets are varied: the number of datapoints in the dataset, and the uncertainty structure

adopted, the latter via varying c and d in c%dN. The algorithm is assessed in terms of its ability to retrieve the specified age of

the linear trend on which the simulated datasets are built, and on the uncertainty in the age.260

Given that the datasets investigated have fat-tailed contaminated-Gaussian uncertainty distributions, the focus is on the

effect of excess scatter in the data, in other words, data scatter over and above what is expected for Gaussian data uncertainties.

Nevertheless a small proportion of datasets do have small scatter, giving s which is below the lower bound for that number of

datapoints.

The analysis below compares the results of YORK, applied only to those simulated datasets that lie within the mswd bounds,265

with the results of SPINE, applied to those datasets that lie within the spine width (s) bounds. The greatest majority of the former
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are included in the latter, e.g. > 97% for n= 10). Importantly, however, SPINE typically identifies the age information in many

more datasets than YORK. In the following table, m%excl and s%excl are the percentage of simulated datasets excluded on

the basis of the mswd and s bounds, respectively:

n N 5%3N 25%3N 10%10N

m%excl s%excl m%excl s%excl m%excl s%excl m%excl s%excl

5 2.5 2.5 8.7 4.0 30.2 9.8 32.5 9.5

6 2.5 2.5 9.6 3.9 34.6 13.8 37.3 10.9

8 2.5 2.5 12.7 4.2 44.7 14.5 46.0 10.4

10 2.5 2.5 14.2 4.0 51.8 15.2 53.5 9.7

15 2.5 2.5 17.4 4.2 65.2 17.1 68.2 9.1

270

Note that, for example, for n= 10, datasets drawn from 5%3N, in fact have 100(100.95) = 59.9% of the datasets having all

uncertainties Gaussian, and 40.1% having at least one uncertainty drawn from 3 times Gaussian (3N). For 25%3N, 5.6% are

Gaussian only, and for 10%10N, 34.9%. The leftmost columns are 2.5% by definition.

The 95% confidence interval on ages derived using SPINE is the same or slightly less than those derived from using YORK for

all dataset sizes and uncertainty structures studied, noting that this is from a (much) larger proportion of the dataset simulations.275

Such a 95% confidence interval is calculated from an ordered list of the ages, with the lower limit at the 2.5% point in the list,

and the upper limit at the 97.5% point.

Even if the age comparison is favourable, it might be expected that the age uncertainty suffers from the excess scatter in the

data. This appears not to be the case, but there is a small degradation in the age uncertainties retrieved caused by an unavoidable

efficiency loss. Efficiency at the Gaussian distribution is the ratio of the variance obtained by the optimal estimator (YORK),280

divided by the variance using the chosen robust estimator (in this case, SPINE). Obviously, SPINE has optimal efficiency when

all r in a dataset have |rk|< h, when it is identical to YORK, but there is an efficiency loss associated with using SPINE for an

isochron-yielding dataset with any |rk|> h. In fact there is a trade-off between efficiency and robustness when the distribution

is not strictly Gaussian, but is near Gaussian ([ Maronna et al., 2006, Sect. 3.4).

The efficiency loss is illustrated in Figure 4 via kernel density estimate (kde) plots of the age uncertainties calculated for285

simulated datasets with n= 10. Kde plots are probability distributions akin to smoothed histograms (Wand and Jones, 1995).

The red curve is the kde for datasets that have all |rk|< h, for which efficiency is optimal. The blue curve is the kde for

all datasets with at least one |rk|> h. The efficiency loss is seen in the displacement of the blue curve to slightly higher age

uncertainty than the red curve. The overall kde, in black, is the kde of all of the datasets in the red and blue kde, in observed

proportion, about 30% to 70%. The relationships shown in Figure 4 for n= 10 can be seen for other n in Figure 5. The pairs290

of red and black lines, correspond to, and have the same meaning as the red and black lines in Figure 4. As expected, the

distribution of age uncertainties moves towards larger values as the sample size n decreases.

The ability of SPINE to retrieve age uncertainty information for data with uncertainties from contaminated Gaussian distri-

butions varies with the probability and scale of the contamination, as shown in Figure 6. Not unexpectedly the more seriously
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Figure 4. Kernel density estimates (kde) for age uncertainty calculated with SPINE on 10,000 simulated datasets with n=10 and Gaussian-

distributed uncertainties. (a) Those datasets for which all |rk|<h (in red); (b) those datasets for which at least one |rk|>h (in blue), and (c)

overall result combining a and b in observed proportion (in black).
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Figure 5. Kernel density estimates for age uncertainty calculated with SPINE on 10,000 simulated datasets with a range of n values and

Gaussian-distributed uncertainties. In each case, the kde for those datasets for which all |rk|<h is in red and the overall kde is in black.

contaminated distributions (25%3N and 10%10N) involve a greater displacement of the kde to higher age uncertainty than295

the more weakly contaminated 5%3N distribution. Although the displacement of the blue curves from the black curve is real,

nevertheless the ability of SPINE to retrieve age uncertainties from datasets with contaminated distributions is good.
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Figure 6. Kernel density estimates for age uncertainty calculated with SPINE on 10,000 simulated datasets with n=10 and several uncertainty

structures. The kde for those datasets for which all |rk|<h is in red, the kde for datasets with Gaussian-distributed uncertainties is in black,

and the kde for all of the datasets for 5%3N, 25%3N and 10%10N respectively are in blue.

2.5 Application of SPINE to a natural dataset

In order to show the real-world utility of SPINE, we show data for a carbonate flowstone from the Riversleigh World Heritage

fossil site in Queensland, Australia (Sample 0708). Isotope dilution U-Pb data for the bulk sample were previously published300

by Woodhead et al. (2016) providing a Model 2 isochron with an age of 13.72± 0.12 Ma and with a mswd of 3.7. The new

data presented here were obtained by laser ablation ICPMS on the same sample using methods outlined and published in

Woodhead and Petrus (2019). Such datasets are typically larger with little error correlation (rounder error ellipses), but with

larger uncertainties than isotope dilution data. These new data define an errorchron under the YORK assumptions, with mswd =

1.68, and a model 2 age of 13.68±0.31 Ma. These data might therefore be rejected under the mswd criterion despite exhibiting305

a well-developed linear trend in Tera-Wasserburg isochron space. With SPINE, s= 1.24, within the s range for an isochron, the

age is 13.69± 0.26 Ma (± is 1.96σ). The data for 0708 are plotted in Fig. 7, with 95% confidence ellipses on the datapoints.

Further calculations with this sample, comparing the results of our new algorithm with existing approaches are presented in

Appendix A.

3 Discussion310

This work was motivated by the belief that many isotopic datasets contain meaningful age information that cannot be identified

using classical statistical methods. In such datasets, the age information is contained in a linear spine in the data, but the

dataset also contains excess scatter that is inconsistent with a Gaussian uncertainty distribution. A statistical test based on the
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Figure 7. Laser ablation example 0708. See text.

spine width is devised, akin to using mswd in classical methods, allowing an isochron-errorchron distinction to be made. This

distinction, conditional on the adoption of the spine width approach, means that such isochrons include many datasets that are315

errorchrons under a Gaussian uncertainty distribution assumption. A statistically-robust isochron calculation method is able to

identify this age information and to provide appropriate uncertainty estimates. Calculated ages and age uncertainties are more

reliable than ISOPLOT ones, given that least-squares-based methods are unreliable with excess scatter in the data.

Contaminated Gaussian distributions provide a model for a type of dataset with excess scatter relative to a strictly Gaussian-

distributed one. The robust isochron method presented in this work can however be applied in general to data which is Gaussian-320

distributed only in the central spine of the uncertainty distribution, with non-Gaussian scatter occurring in the tails, arising from

analytical or geological uncertainty.

In most robust statistics data fitting approaches, the formal uncertainties output during data measurement are ignored. In-

stead, the scale used in the data fitting is derived from the scatter in the data themselves, an approach adopted by Powell et

al. (2002). The new approach followed here does include the data measurement uncertainties, and this allows the results to325

converge on those of YORK when the data have little excess scatter. This provides compatibility with older “good” datasets

processed using the classical statistical approach but, going forward, allows age information to be extracted from a much wider

range of datasets which might otherwise be rejected for having mswd greater than the isochron cutoff.

A problem with SPINE, shared with YORK, is that the effect of high-leverage data is not taken into account. Such data are

easily recognised in x-y plots, when a small proportion of the data—even one datapoint—is separated from the main body330

of the data along the trend through the data. Data fitting tends to be overly constrained to fit high-leverage data, giving them

small residuals, even if the best fit of the main body of the data alone would give the high-leverage data larger residuals. In

0708, the point at highest x is relatively high leverage (hat = 0.171). Robust approaches have been developed to handle high

leverage data, e.g. Maronna et al. (2006), ch. 5, but are not yet developed for the situation where the data uncertainties are
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taken into account, nor for the relatively small datasets that are typical of geochronological studies (c.f. Fig. 7). Huber and335

Rochetti (2009), ch. 7, have a counter view advocating data assessment, rather than aiming for a black-box method to try and

automatically safeguard against the potentially deleterious effect of high leverage data, an approach we suggest here. In the

case of the relatively high leverage datapoint in 0708, omitting this datapoint gives 13.75± 0.27 (compare row 13 with row 1

in the Table in Appendix A), within uncertainty of the age including this datapoint.

Appendix A: Algorithms and applications to sample 0708340

Here are collected some results of calculations for sample 0708, used in Fig. 7, and some related algorithmic details.

thought experiment in Fig. 1

The thought experiment sketched in Fig. 1 aimed to show the consequence for ISOPLOT behaviour of the modification of the

observed data in a dataset to reduce or increase the scatter of the data about the linear trend. The calculated equivalent of Fig. 1

for sample 0708 is shown in Fig. A1, including also the corresponding SPINE results. In calculating the Figure, the modification345
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Figure A1. [new fig and caption] Age uncertainty (age±) plotted against
√
mswd under the ISOPLOT protocol for the progressively modified

dataset, 0708 (see text). In model 1, the age uncertainty is constant with increasing data scatter (reflected in increasing mswd), until there is

a step change in age uncertainty at A when the ± is multiplied by
√
mswd. Then at B there is another step change with further increase of

data scatter to model 2 (see text). The location of the step at A is based on a 95% confidence interval for mswd (discussed below), whereas

the
√
mswd position of the step at B is arbitrary. The y-axis is drawn at the

√
mswd of the actual data, 1.27 (i.e. no modification of the data).

See text.

of the dataset is done by first taking the data points with their attendant error ellipses (i.e. covariance matrices), and moving

them all in to lie on the linear trend, considered as fixed by a YORK calculation. Then the points and ellipses are considered to
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be displaced away from the trend. This is “move” in the Table below, going from -1, when the points lie on the trend, through

0, with the points as in the original data, to positive when displaced further away from the trend. “Move” varies more or less

linearly with
√
mswd from -0.133 at the left-edge of the Figure, to 0.064 on the right-edge; the spine width changes from 1.08350

to 1.32 across the Figure. For these calculations the last line in the dataset is omitted as it is relatively high leverage (hat =

0.171), not wishing this datapoint to affect the results.

In the Figure, extending from the left, through mswd = 1, to A, the ISOPLOT age uncertainty (model 1, i.e. YORK) is constant

because the data scatter is consistent with the data uncertainties. Through this range the SPINE age uncertainty is above the

model 1 line because of the efficiency loss embodied in SPINE, as shown in Figs 4–5. However, after the age uncertainty steps355

with increasing mswd, to the right of the diagram, the SPINE age uncertainty is smaller than the model 1x and model 2 age

uncertainty. This is because SPINE gives an isochron on the basis of spine width up to C at
√
mswd≈ 1.3, whereas model

2 is an errorchron, on the basis of the assumption of strictly Gaussian data uncertainties. The small steps in the SPINE age

uncertainty line are an artefact of the approximation used in the calculation of the age uncertainty, see Appendix B.

In the top part of the following Table, the results for SPINE and for ISOPLOT are summarised. The ∆ column gives the change360

to the age from the SPINE age, normalised by the uncertainty on the SPINE age. Below the double line in the Table, are some

results from the above thought experiment, Fig. A1.

move
√
mswd age age± ∆ notes

1 SPINE 13.685 0.257 − s = 1.24

2 YORK 1.296 13.733 0.216 0.37 outside 95% c.l.

3 ISOPLOT model 1x 13.733 0.280

4 ISOPLOT model 2 13.679 0.306 −0.05

5 siegel 13.803 −0.95

6 L1 13.518 1.23

7 lsq 13.608 0.307 0.54 with eiv

8 SPINE −0.133 1.1 13.769 0.252 s= 1.08

9 YORK 13.800 0.223 −0.39 inside 95% c.l.

10 SPINE −0.055 1.2 13.756 0.262 s= 1.18

11 ISOPLOT model 1x 13.800 0.268 −0.39

12 ISOPLOT model 2 13.832 0.300 −0.62

13 SPINE 0 1.27 13.747 0.267 − s= 1.25 ∆ = 0.366

14 ISOPLOT model 2 13.836 0.317 −0.65

15 SPINE 0.024 1.3 13.743 0.267 s= 1.26

16 ISOPLOT model 2 13.837 0.325 −0.66

Additional algorithmic details for ISOPLOT follow next, in part related to the above thought experiment.365
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ISOPLOT model 1

In the ISOPLOT model 1 calculation, i.e. in YORK, a decision has to be made about the confidence interval on mswd that is used

to denote the range of data scatter (i.e. mswd) that is considered to be accounted for by the data uncertainties, without need to

either multiply the age uncertainty by
√
mswd (i.e. model 1x), or switch directly to an alternative calculation (which is model

2 in ISOPLOT). On the understanding that data uncertainties are correctly assigned, a one-sided confidence interval on mswd370

can be adopted, acknowledging that mswd is not being used to identify the case where assigned data uncertainties are too large

or too small. The upper end of the confidence interval on mswd is where excess scatter is considered to start, a conventional

choice being derived from a 95% confidence interval. Note that there is no argument that this should be at mswd = 1 (c.f.

Dickin, 2005, p37), unless the number of datapoints is huge. Even for a dataset of 50 datapoints the 95% confidence interval

on mswd extends to 1.358. In terms of probability of fit, as used in ISOPLOT, this is just 100−95 = 5%. It might be noted that375

the naming of probability of fit seems unhelpful - it is clearer to focus on mswd.

ISOPLOT model 2

The so-called error-in-variables (eiv) or measurement-error problem is avoided in YORK because the uncertainty in the x

variable is taken into account explicitly. If it was not, then eiv results in the calculated slope being biased downwards and the

approach being inconsistent (e.g. Fuller, 1987).380

In the ISOPLOT model 2 calculation, eiv is avoided, even though the data uncertainties are discarded, by making the slope

of the line through the data be the geometric mean of the slopes of ordinary least squares of y on x, byx, and x on y, 1/bxy .

These are

byx =

∑
(xk −x)(yk − y)∑

(xk −x)2
and

1

bxy
=

∑
(xk −x)(yk − y)∑

(yk − y)2

with x= 1
n

∑
xk and y = 1

n

∑
yk. Then385

b=±
√
byxbxy =±

√∑
(yk − y)2∑
(xk −x)2

and a= y− bx

with, in this case, the sign of the square root being negative. The calculation in ISOPLOT does not use this explicit formula,

instead adopting an algebraic equivalent that allows the YORK iteration to be used.

ISOPLOT robust

In ISOPLOT, there is an option to use a robust isochron calculation method. The two available are, strictly, resistant methods,390

having high breakdown point but low efficiency (e.g. Huber, 1981, Sect. 1.2.3). The second method—(Siegel, 1982)—can be

considered to supercede the first. In fact, here, SIEGEL is used in the implementation of SPINE as a possible starting point for

the iteration, along with least absolute deviations, L1, Sadovski (1974) (see Appendix C). The fit of the data for sample 0708

with SIEGEL and L1, along with that for ordinary least squares, are given in lines, 5–7, of the Table.

15



Appendix B: SPINE iteration395

The SPINE algorithm involves minimising
∑
k ρ(rk) with respect to the unknown, θ, a two-element column vector, {a,b}T in

the line equation, y = a+ bx, in order to fit the data. The residual, rk on datapoint k is defined below, and the function ρ is

defined in (3) in the main text. The SPINE iteration subsumes YORK.

Writing the kth datapoint as {xk,yk}, generally the isotopic data used in isochron calculations involve uncertainties in both

xk and yk, and commonly the xk and yk are also correlated. These can be represented by a covariance matrix, Vk,400

Vk =

 σ2
xk

σxk
σykρxkyk

σxk
σykρxkyk σ2

yk

 (B1)

in which σxk
is the standard deviation on xk, σyk the standard deviation on yk, σxk

σykρxkyk the covariance between xk and

yk, and ρxkyk the correlation coefficient between xk and yk. The covariance matrix can be represented by an ellipse around the

data point in an x–y diagram, as illustrated in Fig. 2. The residual, rk, a measure of the distance of the point {xk,yk} to the

line, is calculated from the coordinates of the data points, {xk,yk}, and their uncertainties in Vk, by405

rk =
ek
σek

(B2)

in which ek is the distance of the datapoint from the line, ek = a+ bxk − yk, and σek is the standard deviation on ek. The

standard deviation, σek , is calculated by error propagation using Vk:

σ2
ek

=

{
∂ek
∂xk

,
∂ek
∂yk

}
Vk

{
∂ek
∂xk

,
∂ek
∂yk

}T

= b2σ2
xk

+σ2
yk
− 2bσxk

σykρxkyk (B3)

with the term in curly brackets evaluating to {b,−1}. The residual is then410

rk =
ek
σek

=
a+ bxk − yk√

b2σ2
xk

+σ2
yk
− 2bσxk

σykρxkyk

(B4)

The minimisation of
∑
k ρ(rk) is iterative, starting from a resistant estimate of the line, for example using least absolute

deviations, L1, as advocated by Maronna et al. (2006), or Siegel (1982). At each iteration, an update of θ, ∆θ, is generated so

that at the ith iteration, θi = θi−1 + ∆θ.

The minimisation of
∑
ρ(rk) is undertaken using the fact that, at the minimum, the derivative of

∑
ρ(rk) with respect to θ415

is zero. Defining

2ψ(rk) =
∂ρ(rk)

∂rk
(B5)

this function, for (3) in SPINE, is

ψ(rk) =


−h rk <−h
rk if −h < rk < h

h rk > h
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For YORK, ψ(rk) = rk, equivalent to SPINE with large h. Then, at the minimum420 ∑
k

∂ρ(rk)

∂θ
= 0 =

∑
k

(
∂ρ(rk)

∂rk

)(
∂rk
∂θ

)
=
∑
k

ψ(rk)

(
∂rk
∂θ

)
(B6)

Defining the kth row of a matrix C, Ck, to be the derivative of rk with respect to θ then

Ck =
∂rk
∂θ

=
1

σek

∂ek
∂θ
− rk

∂σek
∂θ

=Bk − rk
∂σek
∂θ

(B7)

with Bk the kth row of B, given by 1/σek ∂ek/∂θ, then at the minimum∑
k

ψ(rk)
∂rk
∂θ

=
∑
k

ψ(rk)Ck = 0 (B8)425

or in matrix form, CTψ(r) = 0, in which ψ(r) is a column vector whose kth element is ψ(rk). This constitutes two non-linear

equations requiring iteration to solve.

Now, at iteration i, progressing towards the minimum, writing θi = θi−1 + ∆θ

ψi(rk)||rk|<h =Bk(θi−1 + ∆θ)− yk
σek

= ψi−1(rk) +Bk∆θ (B9)

and ψi(rk)||rk|>h = ψi−1(rk) otherwise. This can be written430

ψi(rk) = ψi−1(rk) + ψ̇i−1(rk)Bk∆θ (B10)

in which ψ̇(rk) = ∂ψ(rk)/∂rk. So, for SPINE, ψ̇(rk) = 1 for |rk|< h, and ψ̇(rk) = 0 otherwise. Substituting (B10) into (B8)

gives∑
(ψi−1(rk) + ψ̇i−1(rk)Bk∆θ)Ck = 0 (B11)

or, in matrix form, dropping iteration subscripts435

CT(I′B∆θ+ψ(r)) = 0 (B12)

with I′ = diag(ψ̇(r)) a modified identity matrix with its kkth element equal to ψ̇(rk). Equation (B12) can then be rearranged

to give ∆θ at the current iteration

∆θ =−(CTI′B)−1CTψ(r) (B13)

The iteration works because the changes in B and C between iterations are small, particularly when a good starting guess is440

used at the beginning of the iterations. This is the iteration implemented in the python code.

Accepting that an isochron has been calculated, the covariance matrix of θ, Vθ, can be calculated by error propagation of r

to θ

Vθ =

(
∂θ

∂r

)
Vr

(
∂θ

∂r

)T

(B14)
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assuming that θ is approximately linear in rk around the minimum in
∑
ρ(rk). Then, using (B14) with (B13)445

Vθ =
(
CTI′B

)−1
CT I′Vr I

′C
(
CTI′B

)−T
(B15)

If it is assumed that the uncertainty on a datapoint has the form c%dN, with unknown c and d, then Vr is not specified. However

those residuals with |rk|> h are likely to be those where d > 1, but these residuals are the ones with ψ̇(rk) = 0. Therefore a

good approximation involves taking Vr = I′. This is identically true in the case of YORK, when Vr = I as then I′ = I. Taking

Vr = I′, (B15) becomes450

Vθ =
(
CTI′B

)−1
CT I′C

(
CTI′B

)−T
(B16)

This result is equivalent to York (1969), whereas the equivalent result from Titterington and Halliday (1979), as outlined in

York et al. (2004), involves replacing B in (B16) with C, resulting in

Vθ =
(
CTI′C

)−1
(B17)

The small steps in the age uncertainty (age±) curve in Fig A1 arise because of the assumption involved in using I′ in (B16).455

When diagonal elements in I′ change from one to zero as mswd increases in Fig A1, the small steps result.

In YORK (or if all |rk|< h in SPINE), then I′ = I and ψ(r) = r. So

∆θ =−(CTB)−1CTr (B18)

and the covariance matrix becomes

Vθ = (CTB)−1CTC(CTB)−T (B19)460

or, following York et al. (2004)

Vθ = (CTC)−1 (B20)

If, in addition, all σxk
= 0 then C = B and, as in this case, B does not depend on θ, iteration is not involved, r is replaced

by −y, and

θ = (BTB)−1BTy (B21)465

with a covariance matrix of

Vθ = (BTB)−1 (B22)

These are the results for fitting data by simple weighted least squares.
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Appendix C: SPINE Python code

The iteration in Appendix B is coded in the Python function, huber. The starting point for the iteration is preset to be the best470

preliminary fit of the data by L1 (function lad, Sadovski, 1974), Siegel (function siegel, Siegel, 1982), and ordinary least

squares. The user may call the huber function with additional possible starting points. Best preliminary fit is defined as the

one that gives the smallest
∑
ρ(rk) as in eq. A1. At the ith iteration in the huber function, interval halving is used to get a

steplength, step, to apply in θi = θi−1 + step∆θ. This was sufficient for all the simulations run, but may need to be made

more sophisticated for datasets for which the iteration does not converge. The calling function, recipe, is a placeholder for a475

more general function to be written by the user.

import sys

import datetime

import numpy as np

480

out = open("out.txt", "w") # opening output file

screen = sys.stdout

standard = [screen, out] # default where print goes

defaulth = 1.4 # default h in huber485

def nmad(e):

return 1.4826 * np.median(np.absolute(e - np.median(e)))

def lsq(data): # ordinary least squares490

X = [[1, xk] for xk in data[:,0]]

Y = data[:,2]

inv = np.linalg.inv(np.dot(np.transpose(X), X))

theta = np.dot(inv, np.dot(np.transpose(X), Y))

e = np.dot(X, theta) - Y495

sigfit2 = np.dot(e, e)/(e.shape[0] - 2)

return (theta, sigfit2 * inv)

def lad(data): # L1 - sadovski (1974)

n = data.shape[0]500

(x, sdx, y, sdy, cor) = np.transpose(data)

rr = 1e-8 * np.random.random(n-1) # used for naive breaking of x ties

bi = np.empty(n); bi.fill(False)

k = 0; i = 0; i1 = 0; i2 = 0;

while i != -1 and k < 12:505

i2 = i1; i1 = i; k += 1

o = np.delete(np.arange(n), i);

x1 = np.delete(x - x[i], i) + rr

y1 = np.delete(y - y[i], i)
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oo = np.argsort(y1/x1)510

x2 = np.abs(x1[oo]); mid = sum(x2)/2

sx = 0; j = 0

while sx < mid: sx += x2[j]; j += 1

i = o[oo][j-1]

if i == i2: i = -1515

elif bi[i]: i = -1

else: bi[i] = True

return np.array(((x[i1] * y[i2] - x[i2] * y[i1])/(x[i1] - x[i2]),

(y[i1] - y[i2])/(x[i1] - x[i2])))

520

def siegel(data): # siegel (1982)

n = data.shape[0];

(x, sdx, y, sdy, cor) = np.transpose(data)

x += 1e-8 * np.random.random(n) # naive breaking of x ties

med = np.empty(n);525

for i in range(n):

col = np.empty(n); # col.fill(0)

for j in range(n):

if i is not j: col[j] = (y[j] - y[i])/(x[j] - x[i])

med[i] = np.median(np.delete(col, i))530

b = np.median(med)

return [np.median(y - x * b), b]

def calcage(theta, covtheta = None):

# add age and age uncertainty calculation code535

def rhohub(r, h = 1.4):

v = [rk**2 if abs(rk) < h else 2 * h * abs(rk) - h **2 for rk in r]

return np.array(v)

540

def psihub(r, h = 1.4):

v = [rk if abs(rk) < h else np.sign(rk) * h for rk in r]

return np.array(v)

def dpsihub(r, h = 1.4):545

v = [1 if abs(rk) < h else 0 for rk in r]

return np.array(v)

def sumrho(data, theta, h = 1.4):

(a, b) = theta550

(x, sdx, y, sdy, cor) = np.transpose(data)

e = a + b * x - y

sde = np.sqrt(sdy**2 + b**2 * sdx**2 - 2*b*cor*sdx*sdy)
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r = e / sde

return np.sum(rhohub(r, h))555

def sumpsi2(data, theta, h = 1.4):

(a, b) = theta

(x, sdx, y, sdy, cor) = np.transpose(data)

e = a + b * x - y560

sde = np.sqrt(sdy**2 + b**2 * sdx**2 - 2*b*cor*sdx*sdy)

r = e / sde

c = np.transpose([1/sde, (x - r * (b*sdx**2 - cor*sdx*sdy)/sde)/sde])

pc = np.dot(np.transpose(c), psihub(r, h))

return np.sqrt(np.dot(pc, pc))565

def halving(data, theta, deltheta, m, h = 1.4):

# naive interval halving for a steplength, assumes < 1

kmax = 16

step1 = 0570

s1 = sumrho(data, theta, h)

step2 = 1

s2 = sumrho(data, theta + step2 * deltheta, h)

k = 1

while (k < m or step1 < 1e-10) and k < kmax:575

if s1 > s2:

step1 = (step1 + step2)/2

s1 = sumrho(data, theta + step1 * deltheta, h)

else:

step2 = (step1 + step2)/2;580

s2 = sumrho(data, theta + step2 * deltheta, h)

(steps, ss) = (step2, s2) if s1 > s2 else (step1, s1);

k += 1

return (steps, ss)

585

def huber(data0, h = 1.4, th00 = []): # huber line-fitter

n = data0.shape[0]

itmax = 12; minsump = 1e-5; mindel = 1e-8; mincond = 1e-12

code = 0;

(x, sdx, y, sdy, cor) = np.transpose(data0)590

avx = np.dot(x, np.ones(n))/n; avy = np.dot(y, np.ones(n))/n;

div = np.array([1/avy, avx/avy])

data = np.copy(data0)

(x, sdx, y, sdy, cor) = np.transpose(data)

x /= avx; sdx /= avx; y /= avy; sdy /= avy595

th0 = (lad(data), siegel(data), lsq(data)[0])

[th0.append(thetak * div) for thetak in th00]
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sr = np.array([sumrho(data, thetak) for thetak in th0])

theta = th0[np.argsort(sr)[0]]

sump = 1e10; step = 1; deltheta = (1e10, 1e10)600

k = 0; bb = 0

while k < itmax and (sump > minsump or \

np.sqrt(np.dot(deltheta,deltheta)) > mindel):

k += 1

(a, b) = theta605

e = a + b * x - y

sde = np.sqrt(b**2*sdx**2 - 2*b*cor*sdx*sdy + sdy**2)

r = e/sde

sum = sumrho(data, theta, h)

c = np.transpose([1/sde, (x - r * (b*sdx**2 - cor*sdx*sdy)/sde)/sde])610

rs = psihub(r, h)

pc = np.dot(np.transpose(c), rs)

sump = np.sqrt(np.dot(pc, pc)) # same as given by sumpsi2

drs = dpsihub(r, h)

d = np.transpose([drs/sde, drs * x/sde])615

cd = np.dot(np.transpose(c),d)

(uu, sv, vv) = np.linalg.svd(cd)

if mincond * sv[0] > sv[1]: code = 2; break

inv = np.dot(np.dot(np.transpose(vv), np.diag(1/sv)), np.transpose(uu))

bb = np.dot(inv, np.transpose(c))620

deltheta = np.dot(bb, -rs)

sum1 = sumrho(data, theta + deltheta, h);

(step, sum1) = (1, sum1) if sum1 < 1.01 * sum else \

halving(data, theta, deltheta, 4, h)

if step == 0: code = 3; break625

theta += step * deltheta

sump = sumpsi2(data, theta, h)

if step == 0 and sump < np.sqrt(minsump):

code = 0 # not fully converged, but nearly good: ok?

if sump > 10: code = 1630

rbb = np.dot(bb, np.diag(drs))

theta /= div

covtheta = np.dot(rbb, np.transpose(rbb)) / \

np.array([[div[0]**2, div[0] * div[1]], [div[0] * div[1],div[1]**2]])

return (code, theta, covtheta, sump, k, sv[1])635

def recipe(title, data, where = [screen]): # simple calculation driver

h = defaulth

(x, sdx, y, sdy, cor) = np.transpose(data)

n = data.shape[0]640

today = datetime.datetime.now();
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pr("==========================================================\n"+ \

"running huber.py on "+today.ctime())

res = huber(data)

if res[0] != 0: return res(0) # exit if not converged645

(a, b) = theta = res[1]

ucovtheta = res[2]

(age, sdage) = calcage(theta, ucovtheta)

e = a + b * x - y

sde = np.sqrt(b**2 * sdx**2 - 2 * b * sdx * sdy * cor + sdy**2)650

s = nmad(e/sde); slim = 1.92 - 0.162 * np.log(10 + n)

iso = ": isochron " if s < slim else ": errorchron "

pr(("sample "+title+": s = %0.2f"+ iso + "age = %0.3f +/- %0.3f Ma") % \

(s, age, 1.96 * sdage), printto = where)

return [0, age, sdage, theta]655

def pr(s, e="\n", printto=standard): # prints a string

for pr in printto: print(s, end=e, file=pr)

def pra(x, f, s="", e="\n", printto=standard): # prints an array660

for pr in printto:

print(s, end=’’, file=pr)

for xk in np.array(x).flatten():

print(f % xk, end=’’, file=pr)

print(e, file=pr)665

# data rows: x sdx y sdy cor

data2 = np.loadtxt("data0708.txt", delimiter=",")

recipe("0708", data2, where=standard)

Datafile for sample 0708, data0708.txt, see Fig. 7670

73.2064, 1.12543, 0.753, 0.0075, -0.068224

260.417, 4.06901, 0.435, 0.01, 0.18853

169.205, 2.43357, 0.577, 0.01, 0.45644

79.1766, 0.908995, 0.751, 0.01, 0.19585

212.766, 2.94251, 0.473, 0.0085, 0.37494675

154.56, 1.79165, 0.615, 0.0105, 0.22567

217.391, 2.83554, 0.474, 0.0095, 0.27879

209.644, 4.83455, 0.484, 0.011, 0.10969

144.092, 2.49151, 0.647, 0.0105, 0.10222

174.216, 1.97283, 0.584, 0.009, 0.21416680

224.215, 3.26771, 0.477, 0.012, 0.26464

236.407, 3.35329, 0.461, 0.0115, 0.14718

161.551, 2.87086, 0.628, 0.011, -0.041164

265.252, 5.62869, 0.385, 0.0115, -0.043072
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152.439, 2.32377, 0.608, 0.0095, 0.019543685

151.745, 2.30266, 0.626, 0.0105, 0.0030752

101.112, 1.17572, 0.727, 0.0085, 0.038467

265.182, 3.41058, 0.427, 0.0095, 0.070384

286.78, 3.16634, 0.391, 0.0085, 0.24059

287.604, 3.5568, 0.365, 0.008, -0.041298690

264.69, 2.83747, 0.419, 0.008, 0.15939

274.574, 2.67638, 0.378, 0.008, 0.17686

212.314, 4.28235, 0.501, 0.013, 0.34121

161.29, 1.69095, 0.591, 0.009, 0.14398

140.647, 1.58253, 0.633, 0.0105, 0.18753695

183.15, 2.18036, 0.557, 0.0105, 0.49436

218.818, 2.39407, 0.53, 0.012, 0.21725

312.5, 5.3711, 0.334, 0.01, -0.080507

227.79, 2.20526, 0.49, 0.0105, 0.073412

212.766, 2.71616, 0.507, 0.011, 0.25544700

139.276, 2.03676, 0.652, 0.01, 0.44912

179.533, 2.25625, 0.556, 0.0105, 0.24303

224.215, 2.51362, 0.48, 0.0085, 0.11165

219.78, 3.62275, 0.519, 0.0115, 0.31258

165.017, 2.8592, 0.59, 0.0115, 0.03575705

145.773, 2.33746, 0.61, 0.0105, 0.098985

239.808, 4.02556, 0.442, 0.0095, -0.10478

187.266, 2.80548, 0.538, 0.0125, 0.11864

255.232, 2.63831, 0.443, 0.0085, 0.025538

141.443, 4.10124, 0.616, 0.011, -0.15512710

115.34, 0.997753, 0.707, 0.01, 0.15087

117.509, 1.17371, 0.68, 0.008, 0.33891

73.6377, 0.623589, 0.757, 0.0065, 0.57883

160.256, 2.31139, 0.605, 0.012, 0.16382

149.701, 1.56872, 0.619, 0.009, 0.24589715

245.278, 2.58694, 0.452, 0.008, 0.33748

251.256, 4.10343, 0.435, 0.014, 0.3589

130.208, 2.11928, 0.666, 0.011, 0.18376

276.243, 4.19706, 0.419, 0.01, 0.16668

298.508, 4.90087, 0.359, 0.0105, -0.090909720

381.679, 6.40989, 0.241, 0.013, 0.0073965

Example output, running on the command line

running huber.py on Tue Sep 3 09:47:51 2019

sample 0708: s = 1.19: isochron age = 13.685 +/- 0.260 Ma
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Appendix D: Simulation setup725

This work was originally motivated by the dating of speleothems using the lower intercept with a U-Pb Concordia in Tera-

Wasserburg style plots (Woodhead et al., 2012). This paper therefore discusses {x,y} data with the expectation that

x=238 U/206Pb and y =207 Pb/206Pb, but the logic and the algorithm are in no way restricted to this system.

10,000 simulated datasets, each containing 5, 6, 8, 10 and 15 datapoints, respectively, were used to assess SPINE. Each

dataset corresponds to an age of 4 Ma, with an underlying trend chosen to be y = 0.811− 0.000474737x. For each dataset,730

the x-values were drawn from a uniform probability distribution with bounds, {400,1100} (so the x are not equi-spaced).

Datapoints are assigned uncertainty with σxk
= 0 and a fixed σyk = 0.00125, the latter representing the analytical uncertainty,

propagated from both the x and y measurement into y. In a real {238U/206Pb, 207Pb/206Pb} dataset, σxk
and σyk would be

finite and correlated. However, this makes no difference to the calculations once data is processed into rk form as in Fig. 2.

For a given dataset, scatter is introduced into the data by drawing the y values from an uncertainty distribution, centred on735

the underlying trend, that may be either Gaussian (N) or one of three contaminated Gaussian distributions—5%3N, 25%5N,

or 10%10N—as in Powell et al. (2002). For n= 10 and gaussian-distributed uncertainties, the age uncertainty obtained is

approximately σt = 0.01 Ma.

Results are presented in terms of kernel density estimates using an Epanechnikov kernel (Wand and Jones, 1995). Kernel

density estimates (kde) are a way of presenting data that could otherwise be plotted as a histogram, normally normalised740

so that—like a probability distribution—the area under the kde curve is 1. The smoothness of the kde is controlled by a

smoothing constant whose value was chosen to be just large enough for the kde to appear smooth, given that 10,000 datasets

are used in each kde.
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