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Review of “Robust Isochron Calculation” by Powell et
al. (gchron2020-4)
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1 Summary

Prior to writing this review | have read the reviews by the three Anonymous Reviewers
AN1, AN2, AN3, abd have also looked over a number the paper’s references. The
application of robust regression straight line fits with errors in variables to isochron
calculation is an interesting one, and it seems potentially important in analyzing such
data. It is striking how sketchy the body of this paper is compared with the very well
written and more detailed treatment of robust regression applied to isochron calculation
by Powell et al. (2002). One concludes that the main contribution of the current paper
is the computational algorithm in Appendix A, and that the paper is aimed at a very
small audience of specialists who are quite familiar with the paper’s main reference. |
could therefore just comment on the computational algorithm. But in case the authors
and the journal want to a paper that is accesible by a wider audience, in which case
reviewer AN3’s comments are relevant, | offer the comments below with that possibility
in mind.

2 Improvements Needed to Serve a Wider Audience
2.1 Empirical Motivation

The use of robust statistical methods to deal with non-normal distributions associated
with outliers is important. But the first step in justifying a paper that is applications
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oriented, as is this one, is to provide empirical evidence demonstrating that the chronic
data indeed exhibits such characteristics. This should minimally be done in Section 3
for the data of Figure 6, by making a normal qgplot of the residuals from the linear fit.
But, it would be better to do it at the beginning of the paper, in one way or another,
for example: (a) display a qgplot of the residuals from the ultimate fit (point to Section
3 with regard to the fit), or (b) using residuals from an exploratory robust fit with a
repeated medians estimate, as discussed in Siegel, (1982). “Robust Regression Using
Repeated Medians”. Biometrika, 69, 1, 242-244.

2.2 The Errors in Variables Problem

As was pointed out by AN1, the authors are trying to compute a robust straight line
fit taking into account that their problem is an errors-in-variables (EIV) problem. While
the authors do not state this clearly, it is immediately obvious from the paper’s two York
references and McClean reference that the focus is on an EIV problem. The authors
need to provide up front the basic equations that describe the EIV problem and state
the well-known results that classical least square (LS) estimate is biased (stating the
bias formula), unless there is no error in the independent variable, and furthermore this
bias does not go away as the sample size goes to infinity. (a “consistent” estimator is
one that converges to the true parameter value, in a probabilistic sense as the sample
size goes to infinity).

The main place that one sees clearly that the paper is trying solve a classic EIV problem
is in equations (A1) - (A4) of the Appendix. But then in order to solve the problem, the
values of the variances o2, and o7, and the correlations p,,,, need to be specified.
One can infer from the comments in Section 2.5 and the ellipses in Figure 6, that those
values were used for each x., y;. pair, but there is no substantive discussion of this. For
the sake of reproducible research, the authors should make available the data set and
values used for those variances and correlations.
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However, based on Figure 6, one might assume that the aﬁk are relatively small enough
for that data to be ignored and just use classical LS (no EIV). In fact the authors should
compare the their result with that of classical LS. Of course for other chronic data sets
the errors in the independent variable may be much larger?

2.3 The Explanation in Section 2.2

Like reviewer AN2, it took a repeated reading to figure out that the r;, are standardized
versions of the regression residuals e;. The explanation in Section 2.2. is quite con-
fusing in several ways, the first of which is the sentence “The residual for data point,
k, used, denoted ry, is the scaling factor . . . “. It seems clear from reading Appendix
A, that what is meant is that the r; are the scaled residuals given be (A4), where the
numerator ¢, there is the raw residuals (except the sign should be changed in the nu-
merator), and the denominator is the weight given to the residual to take care of the
errors-in-variables aspect. The writers should just state this clearly in the body of the
text, by properly introducing the EIV problem and how the denominator scaling is ac-
tually computed (one can infer this in Appendix A, but readers will appreciate a clear
up-front explanation).

The sentence in the last line of page 3 states: “Although it is not obvious from the form
of p(ri), HUBER is equivalent to bringing data points in to +h when | r; |> h 7, is
indeed not obvious. But the authors should make it obvious by plotting the shape of
the ¢(rr) = p'(r;), and emphasizing that r, = ej/o., , Where that behavior will be
totally obvious.

2.4 Concerning the mswd Criterion

The mswd is finally defined in equation (2), and | think the paper would be better served
to introduce it early on in connection with a very brief but clear review of the nonlinear
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LS EIV minimization problem statement. In any event the equation (2) should have a
right-hand side where r;, is replaced by e /o, to continue to emphasize that the r;, are
the standardized residuals. This is quite in keeping with equation (1) of Wendt & Carl
(1991).

In equation (3) | think that the authors mean that nmad(r) is the standardized median
of the mad(r), the latter of which is more clearly written as mad{ry} = med{|rp —
med{ri}|}, and provide the normalization constant 1.4826. This is a very good thing to
do, i.e., use a robust scale of the standardized residuals ry.

If my assumption above is correct, the authors should reconsider the sentence “Given
that s is based on a median, its magnitude depends on that half of the data that have
the smallest absolute values of r’, maybe modify it, maybe delete it.

2.5 Statistical Efficiency and Choice of Huber Psi Function Parameter

The terms “efficiency” first appears in the second line of Section 2.2 and the term “ef-
ficient” appears in the next to last paragraph of Section 2.2, and both appearances
are followed by the phrase “(see below)”. Based on that, | expected later on to see
a definition of efficiency that is commonly used in statistics , and in robust statistics
in particular. But the discussion of efficiency that finally occurs in Section 2.4 does
not provide such a definition, and is not of little use. The efficiency (EFF) of a robust
estimator 6 at a data distribution F is defined as that ratio of the variance of a “best” es-
timator at data distribution F' to the variance of the robust estimator at data distribution
F

EFF(0; F) = var(Opess; F) /var(Oropust; F)

usually expressed as a percent. In the context of the manuscript, the data distribution F
is taken to be a normal distribution and the best estimator for a normal distribution is the
Cc7

LS estimator. It is common practice to choose the tuning constant, i.e., h in the paper
so that the estimator has 95% normal distribution efficiency. And there is a trade-off
between normal distribution efficiency and robustness toward non-normal distributions
that result in fat-tailed distributions and outliers. One can achieve more of the latter
robustness by decreasing the normal distribution efficiency, and vice versa. | provide
this level of detail because it is important with regard to the comments | make below.A
an asymptotic version of efficiency of a robust estimator, in the context of the trade-off
between normal distribution efficiency and robustness, can be found in Section 3.4 of
Maronna et al. (2019).

2.6 Focus on Normal Mixture Distributions

A focus on specific normal mixture distributions is a seemingly natural thing to do. But it
is not of much help unless the researcher is pretty certain the the data (the error termin
the straight line regression model in the paper) really conforms to such normal mixture
distributions, based on a sufficiently large data set size. This could be easily checked
by examining normal qgplots of the residuals from the fit. Two component normal
mixture models that generate outliers results in a normal ggplot with two approximately
linear pieces, and often one finds three linear pieces that require a three component
normal mixture models. The authors could easily check this for the residuals in their
real data example.

If such analysis does not indicate that a normal mixture distribution is reasonable, then
there is no point in focusing on a a normal mixture distribution.Furthermore, the point of
robust estimation is that for data whose distribution has a central region that is normal,
the variation in the tails and extent of outliers does not have much influence on the
variability of the robust estimator.
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2.7 Choice of Robust Loss Function and Associated Psi Function

As Powell et al. (2002) clearly indicates, the lead author of the current paper (and
possibly co-authors) is quite familiar with some of the basic robustness material in
Hampel et al. (2006), including the possibility of using not only the Huber psi func-
tion, but also a redescending psi function. The focus on the Huber psi function in the
current manuscript is quite reasonable both intuitively and theoretically. With regard
to the latter, the Huber psi function has a well-known optimal property of (asymptoti-
cally in sample size) minimizing the maximum variance over a mixture model where the
central model is normal and contamination component can be any symmetric distribu-
tion (which therefore does not induce estimator bias). Furthermore , the optimization
problem is convex in this case. The tuning parameter h in the present manuscript
is conventionally chosen to achieve a specified normal distribution efficiency, typically
95%.

On the other hand, under the more realistic model that the contamination component
is completely unrestricted (and therefore can lead to estimator bias), there is an opti-
mal bias robust regression estimator, whose loss function is bounded (unlike the un-
bounded Huber loss function) and whose psi function smoothly redescends. This esti-
mator is described in Section 5.8.1 of Maronna et al. (2019). This estimator also has
a tuning parameter that is set at a user’s desired normal distribution efficiency, again
typically at 95%. Although the optimization problem is no longer convex, there exists
a very good algorithm for computing the optimal bias robust estimator for a specified
normal distribution efficient. This method is available in the R package RobStatTM
available at CRAN uses that algorithm.

For the kind of data in Figure 6 of the manuscript, the Huber choice should do well
since the independent variable leverage is not very large, but the optimal bias robust
regression may do better and would be worth trying. For other kinds of data sets with
large leverage outliers or very fat-tailed residuals, the optimal bias robust estimator may
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provide a better solution. However, adapting this estimator to the EIV problem solved
by the algorithm in Appendix A would be challenging.

Minor Comment

It seems quite inappropriate to use HUBER to refer to the M-estimator (Maximum-
likelihood type estimator) using his favorite rho and psi function. It would be better to
use M-estimator is the basic concept, and say that the paper focused on the Huber rho
and psi. Similarly, use of YORK to refer to the algorithm he published seems awkward,
particularly since he was not the only person to introduce that algorithm.

2.8 The Computational Algorithm

It seems that computation algorithm in Appendix A is the main contribution of the pa-
per. While the Huber M-estimator optimization problem is convex and the numerical
algorithm is known to converge, this EIV formulation is no longer convex, and though it
may work well, the iterative algorithm might converge to a bad local minimum, or pos-
sibly fail to converge. It would be good to have a convergence proof, but that may be
exceedingly difficult or impossible. In any event a good starting point helps a lot, and
for the general multi-factor regression the L1 start is a good one.

However, for the simple straight line regression problem, the Siegel (1982) repeated
median estimator, available in the R package mb1m is likely to be even better as an
initial condition for the Appendix A algorithm (the repeated median has low efficiency
but has a breakdown point of 1/2, as compared with the L1 breakdown point of zero).
One thought about the possible use of the repeated median estimator is the following.
Use the repeated median estimator to define the slope needed in (A3) to define the
weighted residuals in (A2), and hold it fixed while solving the robust regression problem.
In this case you can use any of the robust regression computational methods available
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in the R package RobStatTM, including robust regression based on the Huber psi or
the optimal bias robust psi mentioned int he previous subsection. And one can then do
a few outer loop iterations to update the fixed values for (A3), and maybe even one or

two iterations would suffice.
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