
Robust Isochron Calculation

1School Earth Sciences, The University of Melbourne, Vic 3010, Australia

Correspondence: Roger Powell (powell@unimelb.edu.au)

Abstract. A robust statistics approach to isochron calculations is presented, accompanied by an implementation in Python. It

allows isochrons to be calculated for a wider range of datasets than the standard classical statistics approach, assuming that the

distribution of uncertainties on the data is slightly fatter-tailed than Gaussian. The robust approach advocated reduces to the

classical approach for “good” datasets.

1 Introduction5

The realm of isochron calculations has been dominated by a classical statistics approach in which data uncertainties, derived

from the analytical methods, are taken to be strictly Gaussian-distributed (e.g. York, 1969; York et al. 2004, and references

therein). This approach will be referred to as YORK. In YORK, a goodness-of-fit parameter (mean standard weighted deviates,

or mswd, see below) is used to determine whether a dataset can be considered to have age significance, giving an isochron (e.g.

Wendt & Carl, 1991). If mswd is too large, the dataset is deemed not to have age significance and the data fit is referred to as10

an errorchron.

We suggest that using mswd in YORK is too restrictive, excluding datasets that would seem intuitively to have age signif-

icance. Rather than being truly Gaussian, data uncertainties may well be Gaussian-distributed in their centres, but slightly

fat-tailed distant from the centres. Powell et al. (2002) showed that such behaviour has a devastating effect on the value of

mswd in simulated datasets. Note that establishing the distribution of data uncertainties is impossible in the small datasets15

typical of isochron work. So, taking data uncertainties to be strictly Gaussian-distributed is an assumption.

An isotopic dataset commonly looks intuitively acceptable if the data has a central linear “spine”, in which scatter is com-

mensurate with stated analytical uncertainty, but this spine is flanked by data of somewhat larger scatter(extra scatter, from

the “fat tail”). Age-significance in such data manifests primarily via the position of the spine. A successful calculation method

for a dataset that may not have strictly Gaussian-distributed uncertainties must, firstly, ascertain via a robust test whether or20

not such a spine exists in the data—and hence, in the terminology of the classical statistics approach, whether calculations

yield an isochron or an errorchron. Secondly, in the case of an isochron calculation, the successful method must reliably locate

the spine without being perturbed by vagaries in the more scattered data. Classical statistical methods can do neither of these

things, tending to be excessively influenced by the data at the extremes of the scatter. However, the field of robust statistics

offers calculation methods that can. When a dataset has little or no extra scatter, so that mswd passes, such methods can retrieve25

1

Roger Powell1, Eleanor C. R. Green1, Estephany Marillo Sialer1, and Jon Woodhead1

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

identical results to classical statistic methods, but they provide defensive age and age-uncertainty estimates in the presence of

extra scatter. This applies regardless of whether the scatter originates in the isotopic analysis or in geological disturbance.

2 An Algorithm for Isochron Calculations

An algorithm is sought that finds a robust straight line through a 2-dimensional linear data trend, while becoming coincident

with the classical statistical approach of YORK for datasets with consistent scatter (i.e. mswd passes). This section describes the30

nature of the problem and the theoretical basis for the robust statistical approach that will be adopted. The resulting algorithm

is then evaluated via simulated datasets, and applied to a natural dataset. The algorithm is detailed in Appendix A. A python

implementation is given in Appendix C.

2.1 Uncertainty distributions and data fitting

Geochronological datasets are collected on the presumption that the isotopic compositions were established via an “event”35

the age of which is to be estimated. Given the focus here on data with linear trends, even if the effect of the event is recorded

perfectly by the samples analysed—the isotopic compositions lying on a line—the actual data are measured with finite precision

so the data scatter about the trend. An uncertainty probability distribution can be used to describe the form of the data scatter.

Classical statistical methods assume that the underlying uncertainty distribution of a dataset is known, typically taken to be

Gaussian. Under the Gaussian assumption, if the analytical uncertainty on the measurements have been appropriately inferred,40

mswd, a classical statistics parameter used in YORK to validate an isochron, tests that the scatter of datapoints is consistent with

the inferred uncertainties, given the assumption of Gaussian-distributed scatter. But, in general, there is no reason to suppose

that a given analytical technique generates a truly Gaussian uncertainty distribution. If it is not, classical methods of data fitting

become strictly inappropriate.

While there are many possible non-Gaussian uncertainty distributions, this paper is concerned with a situation commonly45

occurring in datasets, in which the datapoints form a linear spine with Gaussian-like scatter, but additional scatter is seen

in the tails of the distribution. Such a dataset still encodes meaningful age information in its spine, yet it will typically fail

an mswd test owing to its departure from a Gaussian distribution. In this work, datasets of this nature are modelled using a

contaminated Gaussian uncertainty distribution, written c%dN, meaning that with a probability (100− c)% the distribution

involves a standard deviation, σ, but with a probability c% the distribution has a standard deviation, dσ, both with a mean of50

zero (see Powell et al., 2002). An example is 25%3N, with c= 25 and d= 3, so that with 25% probablity the uncertainty is

drawn from N(0,3σ), and 75% probability drawn from N(0,σ), with the N(0,s) notation indicating a Gaussian distribution

with a mean of zero and a standard deviation of s.

2.2 A robust statistics approach to isochron calculation

We seek a statistical approach to isochron calculation that is robust (e.g. Huber, 1981, ch.1; Hampel et al,, 1986), meaning that it55

is not excessively affected by outliers in the data, while having desirable statistical properties, for example good efficiency (see

2

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

below). In addition, we require the approach to converge to YORK for a “good” dataset, one with a near-Gaussian uncertainty

distribution. The approach adopted will be referred to as HUBER (Maronna et al., 2006), as originally developed in Huber

(1981).

In HUBER, as in YORK, a straight line is fitted to a dataset by minimising a function of the residuals, a measure of the distance60

of a datapoint to the line. Since isochron data are generally bivariate with correlated analytical uncertainties in x and y, the

analytical uncertainty in datapoint k can be represented as an ellipse as in Fig. 1. The residual for datapoint, k, used, denoted

rk, is the scaling factor on the size of the ellipse required to expand it until it touches the best-fit line (Fig. 1). The residual rk

is derived from the x and y uncertainties in Appendix A.

The function that is minimised to find the best-fit line can be written
∑
ρ(rk) for both YORK and HUBER. Whereas in65

YORK, ρ(rk) = r2k for all rk (equivalent to the method of least squares), HUBER minimises ρ(rk) = r2k near the centre of the

uncertainty distribution, then downweights datapoints for which the absolute value of the residual is greater than a cut-off

value, h. Formally, the HUBER algorithm minimises ρ(r) where

520 530 540 550

0.555

0.560

0.565

0.570
207Pb
206Pb

238U
206Pb

Figure 1. For an example datapoint, {xk,yk}, the inner ellipse is calculated with the analytical uncertainties, Vk, at the 1σ level (in black).

Given a line, y = a+ bx (in blue), the ellipse must be drawn at the rkσ level (in red) to touch the line, in this case rk = 5.73. The data point

is xk = 529.14, yk = 0.5614, and σxk = 1.870, σyk = 0.00127 and ρxkyk =−0.967.

ρ(rk) =

2hrk −h2 rk <−h
r2k if −h < rk < h

2hrk −h2 rk > h

(1)

as in Fig. 2. In HUBER, for smaller residuals that have an absolute value less than an adjustable constant, h, the contribution to70

the sum being minimised is the same as for YORK, but is linear in the residual for larger absolute value. Note that as h becomes

larger and larger, HUBER converges to YORK. Although not obvious from the form of ρ(rk), HUBER is equivalent to bringing

3

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

-6 -4 -2 0 2 4 6

2

4

6

8

10

12

14

r

ρ(r)

Figure 2. Plots of ρ(r) against r for YORK in red (r2), and for HUBER (eq. 1) in blue, with the two curves coincident for |r|< h, with

h= 1.4 the vertical green lines. See text.

datapoints in to ±h if |rk|> h, in other words truncating the residual (Maronna et al., 2006, Sect. 9.1). The value to use for h

is discussed in Maronna et al. (2006), Sect. 2.2.2.

The algorithm developed in Appendix A minimises
∑
k ρ(rk) with respect to the unknown, θ, a two-element column vector,75

{a,b}T in the line equation, y = a+ bx. The algorithm is applicable to HUBER and also YORK. The minimisation is iterative.

As a starting point, it uses an estimate for θ using least absolute deviations, L1, as advocated by Maronna et al. (2006), Sect.

4.4.2. L1 is a resistant estimator, meaning that it is not sensitive to extra scatter in the data. However it is much less efficient

than HUBER (see below), so HUBER is a better ultimate estimator. A full iteration is envisaged in Appendix A, rather than

1-step reweighted least squares (w-form, as in Maronna et al., 2006, Sect. 9.1).80

The algorithm converges in less than 5 iterations for all the simulations run (see Appendix B). Once θ is calculated, the

measure of scatter used to distinguish an isochron from an errorchron can be calculated. In the case of YORK this is just mswd.

In the case of HUBER, a robust alternative is needed, and this is developed in the next section. If an isochron is deemed to have

been calculated, the uncertainty on θ, Vθ, can be found, as outlined in Appendix A.

2.3 Isochrons and errorchrons85

In YORK, assuming that the data uncertainties are strictly Gaussian distributed, the probability distribution of mswd provides

bounds that can be used to distinguish isochrons from errorchrons (e.g. Wendt & Carl, 1991). These bounds come from the

95% confidence interval on mswd. Datasets whose scatter give mswd outside the bounds are deemed to be errorchrons, not

isochrons. Although focus is usually on mswd that is too large (extra scatter), mswd that is too small identifies the case where

analytical uncertainties have been over-estimated. Mswd is defined as90

mswd =
∑
r2k

n− 2
(2)

4

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

where the residuals, rk, are described as in Section 2.2, depending both on the distance of datapoint k from the best-fit line,

and on the datapoint’s uncertainty ellipse.

If, instead, data uncertainties are c%dN, with unknown c and d, then there is no equivalent of the mswd argument to say

which datasets should give isochrons rather than errorchrons. The approach advocated here is to use a measure that reflects95

whether the dataset has a linear spine of “good” data within it. The measure suggested, s, coined the spine width, is robust, and

is defined as

s= nmad(r) (3)

in which nmad(r) is the median of the absolute values of r, normalised to be the same as the standard deviation for Gaussian-

distributed r. Given that s is based on a median, its magnitude depends on that half of the data that have the smallest absolute100

values of r , in other words those that would define a spine. If the data were in fact Gaussian-distributed, it is expected

that s should be about 1, given that r already involves the analytical uncertainties. The larger is s, greater than 1, the less

pronounced is the linear spine in the data (or the uncertainties have been underestimated). If s, less than 1, is small it suggests

that the uncertainties have been overestimated. Whereas the 95% confidence interval (95%ci) on mswd for Gaussian-distributed

uncertainties comes from a well-established probability distribution (e.g. Wendt & Carl, 1991), the confidence interval on s105

needs to be found by simulation (see Appendix B). The intervals are given in this table, Table 1:
√
mswd 95%ci s 95%ci

n low high low high

5 0.268 1.765 0.16 1.65

6 0.348 1.669 0.25 1.63

8 0.454 1.552 0.32 1.59

10 0.522 1.480 0.37 1.56

15 0.621 1.379 0.45 1.51

30 0.739 1.260 0.60 1.41

60 0.818 1.181 0.71 1.30

For example, for a dataset with 10 datapoints (n= 10), the dataset is deemed to yield an isochron if the observed s lies in the

range 0.37 to 1.56. If s is outside this range the dataset gives an errorchron. For isochrons, the age uncertainty is calculated as

in Appendix A. For errorchrons, the age uncertainty is not calculated.110

2.4 Application of HUBER to simulated datasets

Assessing algorithms for data fitting is best done using simulated datasets. Datasets were generated by drawing data points

from a range of uncertainty distributions, all centred on a linear trend reflecting an age of 4 Ma. Full details are provided in

Appendix B. Two features of the datasets are varied: the number of datapoints in the dataset, and the uncertainty structure

adopted, the latter via varying c and d in c%dN. The algorithm is assessed in terms of its ability to retrieve the specified age of115

the linear trend on which the simulated datasets are built, and on the uncertainty in the age.

5

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

Given that the datasets investigated have fat-tailed contaminated-Gaussian uncertainty distributions, the focus is on the

effect of extra scatter in the data, in other words, data scatter over and above what is expected for Gaussian data uncertainties.

Nevertheless a small proportion of datasets do have small scatter, giving s which is below the lower bound for that number of

datapoints.120

The analysis below compares the results of YORK, applied only to those simulated datasets that lie within the mswd bounds,

with the results of HUBER, applied to those datasets that lie within the spine width (s) bounds. The greatest majority of the

former are included in the latter, e.g. > 97% for n= 10). However, HUBER typically identifies the age information in many

more datasets than YORK. In the following table, m%excl and s%excl are the percentage of simulated datasets excluded on

the basis of the mswd and s bounds, respectively:125

n N 5%3N 25%3N 10%10N

m%excl s%excl m%excl s%excl m%excl s%excl m%excl s%excl

5 2.5 2.5 8.7 4.0 30.2 9.8 32.5 9.5

6 2.5 2.5 9.6 3.9 34.6 13.8 37.3 10.9

8 2.5 2.5 12.7 4.2 44.7 14.5 46.0 10.4

10 2.5 2.5 14.2 4.0 51.8 15.2 53.5 9.7

15 2.5 2.5 17.4 4.2 65.2 17.1 68.2 9.1

Note that, for example, for n= 10, datasets drawn from 5%3N, in fact have 100(100.95) = 59.9% of the datasets having all

uncertainties Gaussian, and 40.1% having at least one uncertainty drawn from 3 times Gaussian (3N). For 25%3N, 5.6% are

Gaussian only, and for 10%10N, 34.9%. The leftmost columns are 2.5% by definition.

The 95% confidence interval on age using HUBER is the same or slightly less than from using YORK for all dataset sizes130

and uncertainty structures studied, noting that this is from a (much) larger proportion of the dataset simulations. Such a 95%

confidence interval is calculated from an ordered list of the ages, with the lower limit at the 2.5% point in the list, and the upper

limit at the 97.5% point.

Even if the age comparison is favourable, it might be expected that the age uncertainty suffers from the extra scatter in

the data. This appears not to be the case, but there is a small degradation in the age uncertainties retrieved caused by an135

unavoidable efficiency loss. Efficiency relates to the number of datapoints that is required in a dataset in order to estimate the

age to a given uncertainty. HUBER has optimal efficiency for all |rk|< h, when it is identical to YORK, but there is an efficiency

loss associated with using HUBER for an isochron-yielding dataset with any |rk|> h.

Figure 3 illustrates the efficiency loss via kernel density estimate (kde) plots of the age uncertainties calculated for simulated

datasets with n= 10. Kde plots are probability distributions akin to smoothed histograms (Wand & Jones, 1995). The red curve140

is the kde for datasets that have all |rk|< h, for which efficiency is optimal. The blue curve is the kde for all datasets with at

least one |rk|> h. The efficiency loss is seen in the displacement of the blue curve to slightly higher age uncertainty than the

red curve. The overall kde, in black, is the kde of all of the datasets in the red and blue kde, in proportion about 30% to 70%.

6

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

0.008 0.010 0.012 0.014 0.016

50

100

150

200

250 a
c

b

p

σt

Figure 3. Kernel density estimates (kde) for age uncertainty calculated with HUBER on 10,000 simulated datasets with n=10 and Gaussian-

distributed uncertainties. (a) Those datasets for which all |rk|<h (in red); (b) those datasets for which at least one |rk|>h (in blue), and (c)

overall result combining a and b in observed proportion (in black).

The relationships shown in Figure 3 for n= 10 can be seen for other n in Figure 4. The pairs of red and black lines, corre-

spond to, and have the same meaning as the red and black lines in Figure 3. As expected, the distribution of age uncertainties145

moves towards larger values as the sample size n decreases.

0.010 0.015 0.020

50

100

150

200

250

300
p

σt

n=15

10

8

6

5

Figure 4. Kernel density estimates for age uncertainty calculated with HUBER on 10,000 simulated datasets with a range of n values and

Gaussian-distributed uncertainties. In each case, the kde for those datasets for which all |rk|<h is in red and the overall kde is in black.

7

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

The ability of HUBER to retrieve age uncertainty information for data with uncertainties from contaminated Gaussian distri-

butions varies with the probability and scale of the contamination, as shown in Figure 5. Not unexpectedly the more seriously

contaminated distributions (25%3N and 10%10N) involve a greater displacement of the kde to higher age uncertainty than

the more weakly contaminated 5%3N distribution. Although the displacement of the blue curves from the black curve is real,150

nevertheless the ability of HUBER to retrieve age uncertainties from datasets with contaminated distributions is good.

0.008 0.010 0.012 0.014 0.016

50

100

150

200

250

p

σt

10%10N

5%3N

25%3N

N

Figure 5. Kernel density estimates for age uncertainty calculated with HUBER on 10,000 simulated datasets with n=10 and several uncertainty

structures. The kde for those datasets for which all |rk|<h is in red, the kde for datasets with Gaussian-distributed uncertainties is in black,

and the kde for all of the datasets for 5%3N, 25%3N and 10%10N respectively are in blue.

2.5 Application of HUBER to a natural dataset

Sample 0708 is a carbonate flowstone from the Riversleigh World Heritage fossil site in Queensland, Australia. Isotope dilution

U-Pb data for the bulk sample were previously published by Woodhead et al. (2016) providing a Model 2 isochron with an age

of 13.72± 0.12 Ma with a mswd of 3.7. The new data presented here were obtained by laser ablation icpms using methods155

outlined in Woodhead & Petrus (2019). Such datasets are typically larger with little error correlation (round error ellipses), but

with larger uncertainties than isotope dilution data. These data define an errorchron under the YORK assumptions, with mswd

= 1.68. With HUBER, s= 1.19, well within the s range for an isochron. The age is 13.69± 0.26 Ma (± is 2σ). The data for

0708 is plotted in Fig. 6, with 95% confidence ellipses on the datapoints.

3 Discussion160

This work was motivated by the belief that many isochron datasets contain meaningful age information that cannot be identified

using classical statistical methods. In such datasets, the age information is contained in a linear spine in the data, but the dataset

8

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8
207Pb
206Pb

238U
206Pb

Figure 6. Laser ablation example 0708. See text.

also contains additional scatter that is inconsistent with a Gaussian uncertainty distribution. A suitably calibrated, statistically-

robust method is able to identify this age information.

Contaminated Gaussian distributions provide a model for a type of dataset with extra scatter relative to a strictly Gaussian-165

distributed one. The robust isochron method presented in this work can however be applied in general to data which is Gaussian-

distributed only in the central spine of the uncertainty distribution, with non-Gaussian scatter occurring in the tails, arising from

analytical or geological uncertainty.

In most robust statistics data fitting approaches, the formal uncertainties output during data measurement are ignored. In-

stead, the scale used in the data fitting is derived from the scatter in the data themselves, an approach used by Powell et al.170

(2002). The approach advocated here does include the data measurement uncertainties, and this allows the results to converge

on those of the YORK method when the data have little excess scatter.

Appendix A: HUBER algorithm

The HUBER algorithm involves minimising
∑
k ρ(rk) with respect to the unknown, θ, a two-element column vector, {a,b}T

in the line equation, y = a+ bx, in order to fit the data. The residual, rk on datapoint k and the function ρ are defined in the175

following below. The HUBER algorithm subsumes YORK.

Writing the kth datapoint as {xk,yk}, generally the isotopic data used in age calculations involve uncertainties in both xk

and yk, and commonly the xk and yk are also correlated. These can be represented by a covariance matrix, Vk,

Vk =

 σ2

xk
σxk

σyk
ρxkyk

σxk
σyk

ρxkyk
σ2
yk

 (A1)

9

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

in which σxk
is the standard deviation on xk, σyk

the standard deviation on yk, σxk
σyk

ρxkyk
the covariance between xk and180

yk, and ρxkyk
the correlation coefficient between xk and yk. The covariance matrix can be represented by an ellipse around the

data point in an x–y diagram, as illustrated in Fig. 1. The residual, rk, a measure of the distance of the point {xk,yk} to the

line, is calculated from the coordinates of the data points, {xk,yk}, and their uncertainties in Vk, by

rk =
ek
σek

(A2)

in which ek is the distance of the datapoint from the line, ek = a+ bxk − yk, and σek
is the standard deviation on ek. The185

standard deviation, σek
, is calculated by error propagation using Vk:

σ2
ek

=
{
∂ek
∂xk

,
∂ek
∂yk

}
Vk

{
∂ek
∂xk

,
∂ek
∂yk

}T

= b2σ2
xk

+σ2
yk
− 2bσxk

σyk
ρxkyk

(A3)

with the term in curly brackets evaluating to {b,−1}. The residual is then

rk =
ek
σek

=
a+ bxk − yk√

b2σ2
xk

+σ2
yk
− 2bσxk

σyk
ρxkyk

(A4)

The minimisation of
∑
k ρ(rk) in the HUBER algorithm is iterative, starting from a resistant estimate of the line, for example190

using least absolute deviations, L1, as advocated by Maronna et al. (2006). At each iteration, the algorithm provides an update

of θ, ∆θ, so that at the ith iteration, θi = θi−1 + ∆θ.

The minimisation of
∑
ρ(rk) is undertaken using the fact that, at the minimum, the derivative of

∑
ρ(rk) with respect to θ

is zero. Defining

2ψ(rk) =
∂ρ(rk)
∂rk

(A5)195

this quantity, for HUBER, is

ψ(rk) =

−h rk <−h
rk if −h < rk < h

h rk > h

For YORK, ψ(rk) = rk, equivalent to HUBER with large h. Then, at the minimum

∑

k

∂ρ(rk)
∂θ

= 0 =
∑

k

(
∂ρ(rk)
∂rk

)(
∂rk
∂θ

)
=
∑

k

ψ(rk)
(
∂rk
∂θ

)
(A6)

Defining the kth row of a matrix C, Ck, to be the derivative of rk with respect to θ then200

Ck =
∂rk
∂θ

=
1
σek

∂ek
∂θ
− rk

∂σek

∂θ
=Bk − rk

∂σek

∂θ
(A7)

with Bk the kth row of B, given by 1/σek
∂ek/∂θ, then at the minimum

∑

k

ψ(rk)
∂rk
∂θ

=
∑

k

ψ(rk)Ck = 0 (A8)

10

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

or in matrix form, CTψ(r) = 0, in which ψ(r) is a column vector whose kth element is ψ(rk). This constitutes two non-linear

equations requiring iteration to solve.205

Now, at iteration i, progressing towards the minimum

ψi(rk)||rk|<h =Bk(θi−1 + ∆θ)− yk
σek

= ψi−1(rk) +Bk∆θ (A9)

and ψi(rk)||rk|>h = ψi−1(rk) otherwise. This can be written

ψi(rk) = ψi−1(rk) + ψ̇i−1(rk)Bk∆θ (A10)

in which ψ̇(rk) = ∂ψ(rk)/∂rk. So, for HUBER, ψ̇(rk) = 1 for |rk|< h, and ψ̇(rk) = 0 otherwise. Substituting (A10) into (A8)210

gives

∑
(ψi−1(rk) + ψ̇i−1(rk)Bk∆θ)Ck = 0 (A11)

or, in matrix form, dropping iteration subscripts

CT(I′B∆θ+ψ(r)) = 0 (A12)

with I′ = diag(ψ̇(r)) a modified identity matrix with its kkth element equal to ψ̇(rk). Equation (A12) can then be rearranged215

to give ∆θ at the current iteration

∆θ =−(CTI′B)−1CTψ(r) (A13)

The iteration works because the changes in B and C between iterations are small, particularly when a good starting guess is

used at the beginning of the iterations. This is the iteration implemented in the python code.

Accepting that an isochron has been calculated, the covariance matrix of θ, Vθ, can be calculated by error propagation of r220

to θ

Vθ =
(
∂θ

∂r

)
Vr

(
∂θ

∂r

)T

(A14)

assuming that θ is approximately linear in rk around the minimum in
∑
ρ(rk). Then, using (A14) with (A13)

Vθ =
(
CTI′B

)−1
CT I′Vr I′C

(
CTI′B

)−T
(A15)

If it is assumed that the uncertainty on a datapoint has the form c%dN, with unknown c and d, then Vr is not specified. However225

those residuals with |rk|> h are likely to be those where d > 1, but these residuals are the ones with ψ̇(rk) = 0. Therefore a

good approximation involves taking Vr = I′. This is identically true in the case of YORK, when Vr = I as then I′ = I. Then

(A15) becomes

Vθ =
(
CTI′B

)−1
CT I′C

(
CTI′B

)−T
(A16)

11

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

In YORK (or if all |rk|< h in HUBER), then I′ = I and ψ(r) = r. So230

∆θ =−(CTB)−1CTr (A17)

Vθ = (CTB)−1CTC(CTB)−T (A18)

If, in addition, all σxk
= 0 then C = B and, as in this case, B does not depend on θ, iteration is not involved, r is replaced by

−y, and235

θ = (BTB)−1BTy (A19)

Vθ = (BTB)−1 (A20)

These are the results for fitting data by simple weighted least squares.

Appendix B: Simulation setup240

This work was originally motivated by the dating of speleothems using the lower intercept with a U-Pb Concordia in Tera-

Wasserburg style plots (e.g. Woodhead et al. 2012). This paper therefore discusses {x,y} data with the expectation that x=238

U/206Pb and y =207 Pb/206Pb, but the logic and the algorithm are in no way restricted to this system.

10,000 simulated datasets, each containing 5, 6, 8, 10 and 15 datapoints, respectively, were used to assess the HUBER

algorithm. Each dataset corresponds to an age of 4 Ma, with an underlying trend chosen to be y = 0.811− 0.000474737x.245

For each dataset, the x-values were drawn from a uniform probability distribution with bounds, {400,1100} (so the x are not

equi-spaced). Datapoints are assigned uncertainty with σxk
= 0 and a fixed σyk

= 0.00125, the latter representing the analytical

uncertainty, propagated from both the x and y measurement into y. In a real {238U/206Pb, 207Pb/206Pb} dataset, σxk
and σyk

would be finite and correlated. However, this makes no difference to the calculations once data is processed into rk form as in

Fig. 1. For a given dataset, scatter is introduced into the data by drawing the y values from an uncertainty distribution, centred on250

the underlying trend, that may be either Gaussian (N) or one of three contaminated Gaussian distributions—5%3N, 25%5N,

or 10%10N—as in Powell et al. (2002). For n= 10 and gaussian-distributed uncertainties, the age uncertainty obtained is

approximately σt = 0.01 Ma.

Results are presented in terms of kernel density estimates using an Epanetchnikov kernel (Wand & Jones, 1995). Kernel

density estimates (kde) are a way of presenting data that could otherwise be plotted as a histogram, normally normalised255

so that—like a probability distribution—the area under the kde curve is 1. The smoothness of the kde is controlled by a

smoothing constant whose value was chosen to be just large enough for the kde to appear smooth, given that 10,000 datasets

are used in each kde.

12

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

Appendix: HUBER code

import sys260

import datetime

import numpy as np

out = open("out.txt", "w") # opening output file

screen = sys.stdout265

standard = [screen, out] # default where print goes

defaulth = 1.4 # default h in huber

def nmad(e):270

return 1.4826 * np.median(np.absolute(e))

def lsq(data):

X = [[1, xk] for xk in data[:,0]]

Y = data[:,2]275

inv = np.linalg.inv(np.dot(np.transpose(X), X))

theta = np.dot(inv, np.dot(np.transpose(X), Y))

e = np.dot(X, theta) - Y

sigfit2 = np.dot(e, e)/(e.shape[0] - 2)

return (theta, sigfit2 * inv)280

def lad(data): # sadovski (1974)

n = data.shape[0]

(x, sdx, y, sdy, cor) = np.transpose(data)

rr = 1e-8 * np.random.random(n-1) # used for naive breaking of x ties285

bi = np.empty(n); bi.fill(False)

k = 0; i = 0; i1 = 0; i2 = 0;

while i != -1 and k < 12:

i2 = i1; i1 = i; k += 1

o = np.delete(np.arange(n), i);290

x1 = np.delete(x - x[i], i) + rr

y1 = np.delete(y - y[i], i)

oo = np.argsort(y1/x1)

x2 = np.abs(x1[oo]); mid = sum(x2)/2

sx = 0; j = 0295

while sx < mid: sx += x2[j]; j += 1

i = o[oo][j-1]

if i == i2: i = -1

elif bi[i]: i = -1

else: bi[i] = True300

return np.array(((x[i1] * y[i2] - x[i2] * y[i1])/(x[i1] - x[i2]),

13

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

(y[i1] - y[i2])/(x[i1] - x[i2])))

def calcage(theta, covtheta = None, method = 1):

function to be added for isotope system of interest305

def rhohub(r, h = 1.4):

v = [rk**2 if abs(rk) < h else 2 * h * abs(rk) - h **2 for rk in r]

return np.array(v)

310

def psihub(r, h = 1.4):

v = [rk if abs(rk) < h else np.sign(rk) * h for rk in r]

return np.array(v)

def dpsihub(r, h = 1.4):315

v = [1 if abs(rk) < h else 0 for rk in r]

return np.array(v)

def sumrho(data, theta, h = 1.4):

(a, b) = theta320

(x, sdx, y, sdy, cor) = np.transpose(data)

e = a + b * x - y

sde = np.sqrt(sdy**2 + b**2 * sdx**2 - 2*b*cor*sdx*sdy)

r = e / sde

return np.sum(rhohub(r, h))325

def sumpsi2(data, theta, h = 1.4):

(a, b) = theta

(x, sdx, y, sdy, cor) = np.transpose(data)

e = a + b * x - y330

sde = np.sqrt(sdy**2 + b**2 * sdx**2 - 2*b*cor*sdx*sdy)

r = e / sde

c = np.transpose([1/sde, (x - r * (b*sdx**2 - cor*sdx*sdy)/sde)/sde])

pc = np.dot(np.transpose(c), psihub(r, h))

return np.sqrt(np.dot(pc, pc))335

def halving(data, theta, deltheta, m, h = 1.4):

naive interval halving to get a better steplength in huber

assumes step will be good for step < 1

kmax = 16340

step1 = 0

s1 = sumrho(data, theta, h)

step2 = 1

s2 = sumrho(data, theta + step2 * deltheta, h)

k = 1345

14

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

while (k < m or step1 < 1e-10) and k < kmax:

if s1 > s2:

step1 = (step1 + step2)/2

s1 = sumrho(data, theta + step1 * deltheta, h)

else:350

step2 = (step1 + step2)/2;

s2 = sumrho(data, theta + step2 * deltheta, h)

(steps, ss) = (step2, s2) if s1 > s2 else (step1, s1);

k += 1

return (steps, ss)355

def huber(data0, h = 1.4):

huber line-fitter

n = data0.shape[0]

itmax = 12; minsump = 1e-5; mindel = 1e-8; mincond = 1e-12360

code = 0;

(x, sdx, y, sdy, cor) = np.transpose(data0)

avx = np.dot(x, np.ones(n))/n; avy = np.dot(y, np.ones(n))/n;

div = np.array([1/avy, avx/avy])365

data = np.copy(data0)

(x, sdx, y, sdy, cor) = np.transpose(data)

x /= avx; sdx /= avx; y /= avy; sdy /= avy

370

th0 = (lad(data), lsq(data)[0])

sr = np.array([sumrho(data, thetak) for thetak in th0])

theta = th0[np.argsort(sr)[0]]

sump = 1e10; step = 1; deltheta = (1e10, 1e10)375

k = 0; bb = 0

while k < itmax and (sump > minsump or \

np.sqrt(np.dot(deltheta,deltheta)) > mindel):

k += 1

(a, b) = theta380

e = a + b * x - y

sde = np.sqrt(b**2*sdx**2 - 2*b*cor*sdx*sdy + sdy**2)

r = e/sde

sum = sumrho(data, theta, h)385

c = np.transpose([1/sde, (x - r * (b*sdx**2 - cor*sdx*sdy)/sde)/sde])

rs = psihub(r, h)

pc = np.dot(np.transpose(c), rs)

15

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

sump = np.sqrt(np.dot(pc, pc)) # same as given by sumpsi2390

drs = dpsihub(r, h)

d = np.transpose([drs/sde, drs * x/sde])

cd = np.dot(np.transpose(c),d)395

(uu, sv, vv) = np.linalg.svd(cd)

if mincond * sv[0] > sv[1]: code = 2; break

inv = np.dot(np.dot(np.transpose(vv), np.diag(1/sv)), np.transpose(uu))

bb = np.dot(inv, np.transpose(c))400

deltheta = np.dot(bb, -rs)

sum1 = sumrho(data, theta + deltheta, h);

(step, sum1) = (1, sum1) if sum1 < 1.01 * sum else \405

halving(data, theta, deltheta, 4, h)

if step == 0: code = 3; break

theta += step * deltheta

410

sump = sumpsi2(data, theta, h)

if step == 0 and sump < np.sqrt(minsump):

code = 0 # not fully converged, but nearly good: ok?

415

if sump > 10: code = 1

rbb = np.dot(bb, np.diag(drs))

theta /= div420

covtheta = np.dot(rbb, np.transpose(rbb)) / \

np.array([[div[0]**2, div[0] * div[1]], [div[0] * div[1],div[1]**2]])

return (code, theta, covtheta, sump, k, sv[1])

425

def recipe(title, data, where = [screen]):

simple calculation driver

h = defaulth

(x, sdx, y, sdy, cor) = np.transpose(data)

n = data.shape[0]430

today = datetime.datetime.now();

pr("==\n"+ \

16

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

"running huber.py on "+today.ctime())

435

res = huber(data)

if res[0] != 0: return res(0) # exit if not converged

(a, b) = theta = res[1]

ucovtheta = res[2]

(age, sdage) = calcage(theta, ucovtheta)440

e = a + b * x - y

sde = np.sqrt(b**2 * sdx**2 - 2 * b * sdx * sdy * cor + sdy**2)

s = nmad(e/sde); slim = 2 - 0.17 * np.log(3 + n)

iso = ": isochron " if s < slim else ": errorchron "445

pr(("sample "+title+": s = %0.2f"+ iso + "age = %0.3f +/- %0.3f Ma") % \

(s, age, 1.96 * sdage), printto = where)

return [0, age, sdage, theta]450

def pr(s, e="\n", printto=standard):

prints a string

for pr in printto: print(s, end=e, file=pr)

455

def pra(x, f, s="", e="\n", printto=standard):

prints an array

for pr in printto:

print(s, end=’’, file=pr)

for xk in np.array(x).flatten():460

print(f % xk, end=’’, file=pr)

print(e, file=pr)

data rows: x sdx y sdy cor

data2 = np.loadtxt("data0708.txt", delimiter=",")465

recipe("0708", data2, where=standard)

Example output, running on the command line

running huber.py on Tue Sep 3 09:47:51 2019

sample 0708: s = 1.19: isochron age = 13.685 +/- 0.260 Ma

Author contributions. Roger Powell created the algorithm and coded the Python script; Eleanor Green helped validate the maths/statistics470

and write the paper; Tephy Marillo Sialer helped with the simulations; and Jon Woodhead oversaw the applicability of the approach.

Competing interests. The authors declare that they have no conflict of interest.

17

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

References

Hampel, F.R., Rousseeuw, P.J., Ronchetti, E.M., and Stahel, W.A.: Robust statistics. Wiley and Sons, New York, 502pp, 1986.

Huber, P.J.: Robust Statistics, John Wiley and Sons, Inc., New York: 305pp, 1981.475

Maronna, R.A., Martin, D., and Yohai, V.J.: Robust statistics. John Wiley and Sons, Chichester. 403pp, 2006.

McLean, N.M.: Straight line regression through data with correlated uncertainties in two or more dimensions. Geochimica et Cosmochimica

Acta, 124, 237–249, 2014.

Powell, R., Woodhead, J, and Hergt, J.: Improving isochron calculations with robust statistics and the bootstrap. Chemical Geology 185,

191–204, 2002.480

Wand, M.P. and Jones, M.C.: Kernel smoothing. Chapman and Hall, London. 212pp, 1995.

Wendt, I., and Carl, C.: The statistical distribution of the mean squared weighted deviation. Chemical Geology (Isotope Geosciences Section)

86, 275–285, 1991.

Woodhead, J., Hand, S.J., Archer, M., Graham, I., Sniderman, K., Arena, D.A., Black, K.H., Godhelp, H., and Price, E.: Developing a

radiometrically-dated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queens-485

land. Gondwana Research 29, 153–167, 2016.

Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and Bajo, P.: U and Pb variability in older speleothems and strategies for

their chronology. Quaternary Geochronology 14, 105–113, 2012.

Woodhead, J. and Petrus, J., Exploring the advantages and limitations of in situ U-Pb carbonate geochronology using speleothems,

Geochronology 1, 67–84,490

https://doi.org/10.5194/gchron-1-69-2019.

York, D.: Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320–324, 1969.

York, D., Evensen, N.M., Martinez, M.L., and Delgado, J.D.: Unified equations for the slope, intercept, and standard errors of the best straight

line. American Journal of Physics 72, 367–375, 2004.

18

https://doi.org/10.5194/gchron-2020-4
Preprint. Discussion started: 14 February 2020
c© Author(s) 2020. CC BY 4.0 License.

