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Abstract

Statistical analysis has become increasingly important in Optically Stimulated Luminescence (OSL)
dating since it has become possible to measure signals at the single grain scale. The accuracy of large
chronological datasets can benefit from the inclusion, in chronological modelling, of stratigraphic
constraints and shared systematic errors. Recently, a number of Bayesian models have been developed
for OSL age calculation; the R package ‘BayLum’ presented herein allows implementing different such
models, particularly for samples in stratigraphic order which share systematic errors. We first show
how to introduce stratigraphic constraints in ‘BayLum’; then, we focus on the construction, based on
measurement uncertainties, of dose covariance matrices to account for systematic errors specific to
OSL dating. The nature (systematic versus random) of errors affecting OSL ages is discussed, based —
as an example — on the dose rate determination procedure at the IRAMAT-CRP2A laboratory
(Bordeaux). The effects of the stratigraphic constraints and dose covariance matrices are illustrated on
example datasets. In particular, the interest of combining the modelling of systematic errors with
independent ages, unaffected by these errors, is demonstrated. Finally, we discuss other common
ways of estimating dose rates and how they may be taken into account in the covariance matrix by
other potential users and laboratories. Test datasets are provided as supplementary material to the

reader, together with an R Markdown tutorial allowing the-userterepreducethe reproduction of all
calculations and figures presented in this study.
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1. Introduction

Optically stimulated luminescence (OSL, called optical dating in Huntley et al., 1985) allows the
dating of the last exposure of quartz grains to sunlight. The Single Aliquot Regenerative (SAR) dose
protocol consists of comparing the natural luminescence signal to laboratory-generated signals
induced by artificial irradiations (Murray and Wintle, 2000; Wintle and Murray, 2006). The
corresponding measurements, in particular at the single-grain scale, result in large datasets
characterised by significant scatter, owing to a number of dispersion factors (see, e.g. Thomsen et al.,
2005). An OSL age is then obtained by dividing the equivalent dose (i.e. in the case of coarse quartz
grains, the dose absorbed by the mineral) by the dose rate to which quartz grains were exposed since
the last exposure to light.

Statistical analysis, in geochronology, generally aims to improve the precision, accuracy,
and/or range of dating methods. In the case of OSL dating, calibration errors on the laboratory source
dose rate for natural dose estimation, and geochemical standards for dose rate assessment, have so
far resulted in age uncertainties (at 1 sigma or 68 % confidence) of, at best, ~5% (see, e.g., Duller, 2008;
Guérin et al., 2013).

Note that in what follows, the unit of analysis is a sediment sample; we assume that each
sample corresponds to a deposition event, and thus to a single age (no post-depositional mixing is
considered). The system of analysis is the laboratory in which the measurements are performed and
includes both the apparatus and associated calibration standards. It should be emphasised here that
field equipment is part of what we call the laboratory; this is important for the definition of what we
call systematic errors. By definition, an error is the difference between the measured or observed value
of a physical quantity, and its true (but unknown) value. Thus, by systematic errors, we refer to random
errors affecting equipment calibration: whereas each of these errors may be assigned a Gaussian
probability density function with zero mean and a known variance (the square root of the variance
being generally referred to as uncertainty), at the scale of the laboratory this error takes a fixed,
unknown value that affects all measurements in the same direction. Of course, other sources of errors
may exist (for example when using the infinite matrix assumption to calculate grain size attenuation
factors, see e.g., Guérin et al., 2012), but in this article, we consider only known, quantified sources of
errors.

Over the past few years, several models for routine Bayesian analysis of SAR OSL and dose rate
data were developed to reflect better, and take advantage of, the measurement procedures
implemented to calculate OSL ages. Among those models, Combeés et al. (2015) proposed one for
calculating the central dose values for well-bleached samples, leading to higher overall accuracy (see
Guérin et al., 2015a) compared to the most commonly used model for OSL data analysis (the Central
Dose Model: CDM, Galbraith et al., 1999; note: we changed the original terminology following
Galbraith and Roberts, 2012). Combes and Philippe (2017) developed models capable of dealing with
individual and systematic multiplicative errors for OSL age calculation including stratigraphic
constraints (for general introductions on a statistical analysis of OSL data, but also the statistical
models discussed hereafter and associated prior distributions, the reader is referred to Combes et al.,
2015; Combeés and Philippe, 2017, and references therein).

To implement the Bayesian models of Combeés et al. (2015) and Combeés and Philippe (2017) in
practice, and provide easy access to the community, an R package (R Core Team, 2020) named
‘BayLum’ (Christophe et al., 2020; version 0.2.0) has been developed and released on the
Comprehensive R Archive Network (CRAN; see also Mercier et al., 2017, for a first implementation of
the central dose model developed by Combés et al., 2015). First features of this ‘BayLum’ package
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were presented by Philippe et al. (2019) and its performances, when one is confronted either with
large dose values or with dose variability issues, were tested in laboratory-controlled experiments
(Heydari and Guérin, 2018) and later applied to various case studies (Lahaye et al., 2018; Carter et al.,
2019; Heydari et al., 2020, 2021; Chevrier et al., 2020).

The purpose of this paper is to focus on the treatment of stratigraphic constraints and
systematic errors for chronological modelling using ‘BayLum’, i.e. it goes beyond than what was first
demonstrated by Philippe et al. (2019); together with the association of independent, more precise
ages (*C in this work), such modelling is expected to reduce OSL age uncertainties. In the past, other
approaches to model systematic and random, individual errors in the field of palaesodosimetric dating
methods were proposed; in particular, Millard (2006a, 2006b) developed a Bayesian approach quite
close to that presented here, but which — among different other things (see Combés and Philippe,
2017, for a more detailed discussion) —is limited in its applicability.

Herein we present a Bayesian modelling case study. (1) We start with how data should be pre-
treated prior to using the ‘BayLum’ package; a simple example of chronological modelling (samples
considered independent, i.e. without stratigraphic constraints and shared errors) is first presented,
yielding an output from the ‘BayLum’ package to serve as a reference for the following, more elaborate
models. (2) In the next step, we detail how the user can integrate stratigraphic constraints and the
effect on the chronological inference. It should be noted that we take here the stratigraphic
information for granted, but we warn the user against treating such information lightly, as it bears
great consequences on the age calculation (cf. discussions in Heydari et al., 2020, 2021). (3) Then, most
importantly we explain how to build a dose covariance matrix in practice to take into account
systematic errors (for the definition of this matrix, the reader is referred to Combés and Philippe, 2017)
and what effect it has on a series of ages. (4) For this purpose, we base our approach on dose rate
measurements as performed by Guérin et al. (2015b) at the IRAMAT-CRP2A laboratory. The effect of
integrating independent data such as radiocarbon ages, which usually do not share systematic errors
affecting OSL data, is then illustrated. (5) Finally, we discuss different ways to measure dose rates and
various assumptions that can be made regarding the nature (systematic or random) of additional
sources of errors in OSL dating (see also Rhodes et al., 2003 for a similar discussion).

To help the reader, we provide as supplementary information an R markdown document with
commented lines of code and example datasets, so that everything presented here may be
reproduced.

2. Samples and methods
2.1. Case study

To illustrate how to model OSL ages, both in stratigraphic constraints and sharing systematic
errors, using the R ‘BayLum’ package, we use the data from two sediment samples (FER 1 and FER 3)
already dated by quartz OSL (Guérin et al., 2015b). These samples were taken from the archaeological
site of La Ferrassie (France) and prepared following standard chemical preparation procedures applied
to luminescence-dating samples. While modelling with ‘BayLum’ may be applied to both multi-grain
and single-grain OSL datasets, in the following we only focus on single-grain data, as this is probably
where the need for appropriate statistical models is most acute (the reliability of multi-grain OSL has
been demonstrated when using a plain average (mean) for palaeodose estimation; see, e.g., Murray
and Olley, 2002; for theoretical justification, see Guérin et al., 2017). Single-grain OSL data were
measured using an automated Risg TL/OSL reader (DA 20) fitted with a single grain attachment (Duller
et al., 1999; Bgtter-Jensen et al., 2000). A standard SAR protocol (Murray and Wintle, 2000; 2003) was
used to measure single-grain equivalent doses, after checking its suitability for the samples under
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investigation. A comparison between quartz OSL and feldspar IRSL signals for these two samples, as
well as comparison with radiocarbon, showed that these samples were well-bleached at the time of
deposition and unaffected by post-depositional mixing. As a result, the use of central dose models is
fully justified (it should be noted here that at the time of writing, ‘BayLum’ does not yet include the
Bayesian model of Christophe et al., 2018, allowing the analysis of poorly bleached samples).

2.2. Data pre-treatment

The Bayesian modelling implemented in ‘BayLum’ requires information of different natures: (i)
raw OSL data in the form of BIN/BINX file(s), (ii) list(s) of grains to be included in the modelling (based
on pre-defined selection criteria, e.g. on recycling and/or recuperation ratios), (iii) file(s) indicating how
the data should be processed (signal integration channels, reproducibility of the instrument(s), etc.)
and (iv) both natural (in Gy.ka) and laboratory (in Gy.s) dose rates. Based on these data, the
calculations are performed all at once using Markov Chain Monte Carlo (MCMC) computations; as a
result, unlike in standard frequentist data processing, there is no succession of steps in data analysis
(for example, individual equivalent dose estimates are not parameterised, unlike when the CDM is
used). While Combeés et al. (2015) argue that this results in a better statistical inference about the age
(or palaeodose), it also comes with a downside: the user cannot visualise the data during the statistical
analysis. In particular, the fact that the user must specify the list of grains to be included in the analysis
implies that one should always pre-treat the samples in a standard way, by using, e.g. Analyst (Duller,
2015) or the R ‘Luminescence’ package (Kreutzer et al., 2012; Kreutzer et al., 2020) to visually check
the data but also investigate the effect of various selection criteria on the datasets (see for example
Thomsen et al., 2016, on the effect of applying various selection criteria when with frequentist
statistical models; see Heydari and Guérin, 2018, for a similar study in a Bayesian framework).

In other words, using ‘BayLum’ for age calculation should not, and does not, prevent the user
from a careful and critical examination of the measured OSL data. In particular, before running age
calculations using the ‘BayLum’ package, it is important that the user already has identified potential
problems — e.g., saturation and/or dose rate variability (see Heydari and Guérin, 2018, for adapted
modelling solutions).

3. First simple model and output

We first ran the function Generate DataFile () for the OSL samples FER 1 and FER 3,
with the same lists of grains as those used for age calculation by Guérin et al. (2015b): all grains with
an uncertainty smaller than 20% on the first test dose signal were selected. A large number of grains
appeared to be in saturation for these samples (in Analyst, there is no intersection of the natural L/T
signal, or the sum of this sensitivity corrected natural signal and its uncertainty, with the dose-response
curve). As a result, following Thomsen et al. (2016), an additional selection criterion was added, based
on the curvature parameter of the dose-response curves. All grains for which the Do value, obtained
with Analyst as described by Guérin et al. (2015b), was smaller than 100 Gy, were rejected from the
analysis (note however that such a selection criterion may not be necessary when working with
‘BayLum’: Heydari and Guérin, 2018).

In practice, the data is contained in two folders named after the samples and provided as
Supplementary Material. Each folder contains one BIN/BINX-file (i.e. OSL measurements; note that
only a small fraction of the measured grains is included in the Supplementary Material) and four CSV-
files:

- ‘DiscPos.csV’ lists all selected grains;
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- ‘Rule.csVv’ gives the rules for generating L,/Tx data (integration channels for both the natural
or regenerated and test dose signals, uncertainty arising from the reproducibility of the OSL
measurements, and number of SAR cycles to remove for curve fitting, if any - it may, for example, be
desirable to remove recycled points and/or IR depletion points);

- ‘DoseSource.csV’ gives the laboratory source dose rate and its variance;

- ‘DoseEnv.csV’ gives the dose rate to which the sample was exposed during burial.

We ran the function AgeS Computation () with a prior age interval limited to between
10 ka and 100 ka for each sample (so that the bounds are far from the age values obtained using the
arithmetic mean of equivalent doses, namely 37 + 2 ka and 40 * 2 ka, respectively). The dose-response
curves were fitted, as in Analyst in our previous study, with single saturating exponential functions
passing through the origin. All uncertainties, affecting both environmental and laboratory dose rates,
were included in the calculation, as is common practice in luminescence dating; however, the
covariance of ages was not modelled here, so the results are equivalent to those one would obtain by
running subsequent individual age calculations for each of the two samples.

To run the AgeS Computation() function, the user must choose a model for the
distribution of individual equivalent doses around the central dose; the different options are Cauchy,
Gaussian or lognormal distribution (in the latter case, the central dose may be estimated either by the
mean or the median of the distribution). A Cauchy distribution (sometimes also called Lorentz
distribution) is a symmetric distribution which was chosen by Combeés et al. (2015) because it has heavy
tails, i.e. extreme values have a non-zero probability. Hence, the Cauchy distribution seemed to be
well-suited for the analysis of widely-dispersed datasets including outlier values such as single grain De
distributions.

Coming back to the samples from La Ferrassie, on top of saturation problems Guérin et al.
(2015b) also identified dose rate variability as an important factor of dispersion in equivalent doses:
the values of the CDM overdispersion parameter for the D. distributions of the samples were equal to
29 + 3 % and 35 + 3 %, respectively. If we assume that this overdispersion arises from dose rate
variability to single grains of quartz, Heydari and Guérin (2018) using laboratory-controlled
experiments showed that the Cauchy distribution and the CDM should both lead to ~5-10% age
underestimation, because both models are biased. Consequently, we did not use the Cauchy
distribution model. Instead, we modelled the equivalent dose distribution by a lognormal distribution
(one could also have chosen a Gaussian function) from which the mean (rather than the median) was
used to estimate the central dose. Indeed, Guérin et al. (2017) formally demonstrated that the median
of the lognormal distribution (as used in the CDM) is a biased estimator and leads to age
underestimates when dose rates are dispersed.

After 5,000 iterations of 3 independent Markov Chains, we observed good convergence, as
seen in the Markdown document provided as supplementary material (for a discussion of the
convergence of the Markov Chains, the reader is referred to Philippe et al., 2019). The upper limit of
the 95% Confidence Intervals for the Gelman and Rubin indexes of convergence (Gelman and Rubin,
1992) were all smaller than 1.05, also indicating satisfying convergence of the 3 independent Markov
Chains (here again, the reader is referred to Philippe et al., 2019, who suggested 1.05 as the maximum
acceptable value). The obtained 95% Credible Intervals (C.l.) for the ages of samples FER 1 and FER 3
are [34.1; 43.3] ka and [36.6; 47.8] ka, respectively (Fig. 1; Table 1) and are consistent with the ages
obtained by Guérin et al. (2015b) with a much simpler approach (unweighted arithmetic mean of
equivalent doses). It should be emphasised here that the two 95% C.I. for ages overlap. Fig. 2 shows a
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bivariate scatter plot of a sample of observations from the joint posterior distribution of the two ages,
as generated by the Markov Chains; in such a plot, each point corresponds to one realisation of the
ages of the two samples investigated in the MCMC. Fig. 3 shows the corresponding probability
densities for the ages estimated jointly, based on kernel density estimates (KDE), and the marginal
probability densities. No correlation is observed on the joint probability density, which is symmetrical
and bell-shaped. One can already compare the results obtained with this Bayesian model (lognormal-
average) for sample FER 3 with the radiocarbon ages obtained independently for the same layer by
Guérin et al. (2015b). The 95% C.I. for the 3 1“C ages are bound by the interval [44.4; 47.3] ka, which
means that the OSL and radiocarbon ages are in good agreement, which was not the case when
calculating the ages with the CDM (38 + 2 ka; this OSL age corresponds to ~15 % underestimation and
is broadly consistent, within uncertainties, with theoretical predictions stated above). Thus, even
without further modelling, the ‘BayLum’ lognormal-average model seems to provide OSL ages in better
agreement with radiocarbon.

4. Stratigraphic constraints

Samples FER 1 and 3 belong to two different stratigraphic layers: sample FER 1 (Layer 7) lies
stratigraphically above sample FER 3 (Layer 5B), so we know that the age of sample FER 1 must be less
than that of sample FER 3 (i.e. sample FER 1 is younger than sample FER 3; for detailed stratigraphic
information on the site of La Ferrassie, which is of paramount importance in this section, the reader is
referred to Guérin et al., 2015b). To encode this information, the function AgeS Computation ()
takes as argument the object StratiConstraints, which is a matrix whose size depends on the
number of analysed samples. First, the data in the DATA object (which is the output of the function
Generate DataFile ()) must be ordered in stratigraphic order from top to bottom: thus, in our
case the list of names used by the function Generate DataFile ()isFER1, FER 3 (rather than FER
3, FER 1). Then, the stratigraphic matrix contains numbers equal to 0 or 1, indicating the applied
bounds to the age of each sample. The matrix contains a number of rows equal to the number of
samples plus one and a number of columns equal to the number of samples. The first row contains the
value 1 in each column, which indicates that the younger age bound specified as prior information (10
ka in our example, cf. section 3 above) when running the function AgeS Computation () applies
to all samples. Then, for all j in {2, .., Nb_Sample+1} and all i in {j .., Nb_Sample},
StratiConstraints[j, 1]=1 if the age of sample whose number ID is equal to j-1 is less than
the age of sample whose number ID is equal to i. Otherwise, StratiConstraints[j,1]=0. In
practice, in our case StratiConstraints [1,] =(1,1), StratiConstraints [2,] =(0,1)
(which means that sample FER 1 is not younger than itself but is younger than sample FER 3) and
StratiConstraints [3,] =(0,0) (which means that sample FER-3 is neither younger than
sample FER-1 nor than itself). Note: in the markdown document provided as Supplementary Material,
the corresponding code lines are commented to make this description easier to follow.

Running the function AgeS Computation () with this matrix of stratigraphic constraints
only marginally affects the ages, in this case, the 95% C.I. become [34.3; 42.9] ka and [38.1; 48.5] for
samples FER-1 and FER-3, respectively (Table 1). One can also look at the bivariate scatter plot of
observations from the joint posterior distribution (Fig. 4): one can see that this scatter plot is truncated
in the upper left-hand corner —illustrating the fact that the age of sample FER 1 can never be greater
than that of sample FER 3 (see Fig. 2 for comparison). By contrast, the KDE estimate (Fig. 5) also shows
a positive correlation but does not reveal the truncation (whereas the stratigraphic constraintimposes
a null probability for all pairs of ages above the 1:1 line).



262 5. Dealing with multiple sources of errors through a covariance matrix
263 5.1. General considerations

264 In the previous calculations, all the variance is treated as random, whereas common, systematic errors
265  affect all ages in the same direction, although to varying degrees (so systematic errors are unlikely to
266  result in stratigraphic inversions). One of the main advantages of applying the models implemented in
267  the ‘BayLum’ package — contrary to other chronological modelling tools such as OxCal (Bronk Ramsey
268  and Lee, 2013) or Chronomodel (Lanos and Philippe, 2018) — lies in the possibility to include the
269  structure of uncertainties specific to OSL dating. For instance, a radiocarbon age is derived only from
270  the ratio of *C to *?C (on top of which comes the more complex problem of calibration), whereas an
271  OSLage involves a large number of measurements, each with its uncertainty (Aitken, 1985; 1998). The
272 OSL measurements required for the determination of the palaeodose are relatively standardised
273  through the widespread use of the SAR protocol (Murray and Wintle, 2000; Wintle and Murray, 2006).
274  Conversely, there are several approaches — each with its equipment and standards — to determine the
275  various dose rate components. Given that these dose rates derive from different types of radiation
276  (alpha, beta, gamma and cosmic radiation) and are of various origins (mainly from potassium and the
277 uranium and thorium decay chains), there are many more contributions to the age uncertainty from
278  the dose rate term than from the palaeodose term, even though the size of the uncertainty on dose
279 rate is of the same order of magnitude as that on palaeodose — see for example Murray et al., 2015).
280  Asaresult, there are almost as many ways of estimating systematic and random uncertainties as there
281 are (combinations of) ways to determine dose rates; in any case, the notion of systematic error is only
282  valid in a given context, which must always be made explicit. Combeés and Philippe (2017) detailed the
283 mathematical formulation of the dose covariance matrix, which links the ages of several samples
284  measured using the same equipment and standards through common (systematic) errors (see also
285 Philippe et al., 2019). Nevertheless, the equations provided in this article are somewhat difficult to
286  translate in practice; here, we propose to outline how we implement a covariance matrix adapted to
287 (one example of) the measurements leading to OSL age calculation at the IRAMAT-CRP2A laboratory
288  (Bordeaux). We emphasise that what follows is not prescriptive; it should be viewed as an example of
289 a model of uncertainties. For alternative ways of estimating systematic and random errors, for
290 example, due to different dose rates measurements, the reader is referred to the discussion (section
291 7.1).

292 Here, we consider the case of a series of n sediment samples taken from one unique site and all
293 measured using the same equipment and standards. Let us consider the following relationship
294  between palaeodoses, dose rates and ages (Combeés and Philippe, 2017):

295 (Dq, ..., Dy) ~ N ((Aldl, ...,Andn), Z) (Eq. 1) < {Mis en forme : Centré

296  where D; is a random variable modelling the unknown palaeodose of sample i, V' is the symbol for a
297  Gaussian distribution, 4; is the unknown age estimate of sample i (that we are trying to determine),
298 di the total dose rate to which this sample was exposed since burial (di is the observed dose rate, i.e.
299 the result of the measurements) and X is the dose covariance matrix (for the full definition of the
300 model, we refer the reader to Combeés and Philippe, 2017). This covariance matrix verifies, for all (i,j):

301 Zi,j = ALAJQL,] (qu'})

302  where 6 is the matrix that the user needs to specify to run the calculations with ‘BayLum’. It should be
303 noted here that by default when running age calculations with ‘BayLum’, the off-diagonal elements
304  are set to zero, i.e. the covariance in ages is not modelled.
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Before entering the details specific to luminescence dating, let us consider a simple example of two
measurements y; = s + e; + fand y, = u, + e, + f where p; and p; are fixed measurands and e;, e; and
fare all independent random errors from distributions with mean zero. The covariance of y; and y; is
the variance of f (so the off-diagonal elements of the matrix are equal to this variance). For each
sample, the diagonal element of the corresponding covariance matrix is the sum of all the components
of variance for that sample. The variety of physical quantities to measure to determine dose rate, and
their relationship with the dose rate contributions, will now be discussed with this simple definition in
mind.

5.2. Implementation in practice

First, we detail the series of measurements carried out, and we introduce the corresponding
notations for the estimates and associated uncertainties. Table 2 summarises all physical units and
associated error standard deviations; as a general rule, we assume that all error terms are Gaussian
variables with the expected value (mean) equal to zero and a fixed, known standard deviation (see for
example Eqg. 2 in Combeés and Philippe, 2017). For clarity, in the following relative standard deviations
are described by the letter o, while absolute standard deviations are denoted by s; moreover, each
standard deviation corresponding to random errors (i.e., when the error varies from sample to sample)
is identified by the letter / in the subscript. The absence of this letter in the subscript indicates that the
measurement error affects all samples.

5.2.1. Equivalent doses and OSL measurements

Equivalent doses are determined from OSL measurements performed on a luminescence
reader equipped with a radioactive beta source, whose dose rate and associated relative standard
deviation of the error, noted dj,p, and aj,p, are known. There are several ways the latter term can be
determined; in its simplest form, it includes the standard deviation of the error on the absolute dose
absorbed by the standard reference material (in our case calibration quartz provided by DTU Nutech,
c¢f. Hansen et al., 2015) and an error term due to replicate measurements of several aliquots of this
calibration material. Using a large number of measurements repeated in time, as suggested by Hansen
et al. (2015), may somewhat complicate the matter, but this goes beyond the scope of the present
study.

In practice, regeneration doses are delivered by irradiating the aliquots for a given duration (in
s). This duration is converted to absorbed energy dose (Gy) by multiplication with the source dose rate
(Gy.s™h). Strictly speaking, the error on the source dose rate affects all regeneration doses, and so this
error term should appear in the dose/luminescence relationship (right side of the directed acyclic
graph shown in Fig. 7 of Combeés and Philippe, 2017). However, it is common practice in luminescence
dating to first calculate an equivalent dose in seconds of irradiation for each aliquot, then convert this
to Gy and calculate an average (or determine another central parameter such as with the CDM), and
only then consider oy, This is what led, e.g., Jacobs et al. (2008), to exclude the associated standard
deviation from the total OSL age uncertainties, to test the assumption of a time gap between two
series of ages. Here, for simplicity, we take the same route, and hence the relative error on the
laboratory source dose rate becomes a relative, systematic error on the equivalent doses.

One may thus write that the error on the dose D; arising from the calibration of the source
follows a Gaussian distribution with mean 0 and variance (oy,p, 4;d;)?.

5.2.2. Dose rates
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When it comes to the dose rate term, here we restrict ourselves to the case of coarse quartz
grains measured after HF etching to remove the alpha dose rate component: the total natural dose
rate is the sum of an internal dose rate, external beta and gamma dose rates, and cosmic dose rates.

Cosmic dose rates

We consider that cosmic dose rates are determined following Prescott and Hutton (1994)
based on the burial depth of the dated samples, which may be different from the present-day thickness
of the overburden. As a result, the error on cosmic dose rate estimates depends on the error
estimation of this effective burial depth since the dated sediment was deposited. Because the
relationship between cosmic dose rates and burial depths is not linear, and because the error on this
burial depth may not be systematic (e.g. in cases where successive, yet of unknown duration, erosion
and deposition events happened between the deposition of superimposed sedimentary layers — see
Aitken, 1998, p. 65, for a discussion) even at the scale of a site the error associated to cosmic dose
rates cannot easily be treated as systematic. For i={1,...,n}, dcosmic_i and Scosmic,i denote the estimate
of the average cosmic dose rate to which sample i has been exposed and its associated standard
deviation.

Beta dose rates

We consider the beta dose rates as determined from concentrations (or activities) of “°K and
in radioelements from the U- and Th- decay chains, converted to dose rates using specific conversion
factors (e.g., Guérin et al., 2011). At the IRAMAT-CRP2A laboratory, these concentrations are usually
determined with low-background, high-resolution gamma-ray spectrometry following Guibert and
Schvoerer (1991). The simplest case is that of %K, since only one peak is used (at 1.461 MeV); the
concentration in sample i, denoted [K]; is equal to the concentration in the standard multiplied by the
ratio in count rates (the count rate observed for the investigated sample is divided by the count rate
observed for a reference material). Thus, we consider in this paper that the standard deviation of the
error on the “°K concentration includes three components: the standard deviation of the error on the
concentration in the standard, and the counting uncertainties both on the standard and on the
measured sample. The counting uncertainties are calculated, assuming Poisson statistics. Of these
three sources of errors, only one is treated as random —namely the counting uncertainty of the sample;
the other two standard deviations (corresponding to the counting of the standard and to the error of
the radioelement concentration in the standard) are quadratically summed and considered as a
systematic source of error. One considers for sample i the beta dose rate from potassium dﬁ,K,i — after
correction for grain size-dependent attenuation using the factors from Guérin et al., (2012a); and for
moisture content following Nathan and Mauz (2008) (see the discussion section below regarding
uncertainties on these correction factors). Neglecting uncertainties in the dose rate conversion factors,
we call o ; the relative random standard deviation of the error on the “°K concentration; its systematic
counterpart ok is common to all samples. It should be emphasised here that systematic errors on
radioelement concentrations, although being shared by all samples, will affect all ages in the same
direction but not necessarily by the same amount (even in relative terms, contrary to the error on
laboratory beta source calibration) because the relative contribution of beta dose rate from potassium
to the total dose rate may vary from one sample to another. The beta dose rates from the U- and Th-
series come from a number of radioelements in the corresponding chains; here, for simplicity we
consider each series to be in secular equilibrium (this is generally the case for 22Th but may not be
true for the U-series, see, e.g. Guibert et al., 1994; 2009; Lahaye et al., 2012). Thus, for each sample,
the concentrations in 22U and 22Th are converted to dose rate contributions denoted dgy; and

dﬁ_Th,i. In contrast to the case of “°K, the analysis of the high-resolution spectra for these radioactive
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chains is based on a number of primary gamma rays (whereas there is only one ray for K); more
specifically, a weighted mean of the concentrations determined from each ray included in the analysis
(after taking interference into account) is calculated to estimate the concentration of U
{respeetivelyand that of Th). As a result, the standard deviation of the error on the concentration in U
(resp-and that of Th) in the sample comes from two sources: the relative standard deviation on the
concentration of the standard corresponds to a systematic error and is denoted oy for U (resp-opy, for
Th); conversely, the other relative standard deviations (arising from the counting of the standards and
of the sample) are treated as random and quadratically summed to obtain oy ; (resp-and oy, ;).

Internal dose rates

Unless the internal radioelement concentration is experimentally determined (in which case
one needs to consider both systematic and random sources of error for each sample, as is done for
beta dose rates), some have suggested using a fixed internal dose rate of 0.06 + 0.03 Gy.ka™ (Mejdahl,
personal communication to Murray, based on Mejdahl, 1987). In this case, we may assume that the
dated quartz grains are all of the same origin, and have the same internal radioelement concentration;
as a result, we associate a systematic standard deviation s;j,,; with the internal dose rate dint.

Gamma dose rates

Gamma dose rates dy_l- may be determined, as beta dose rates, from K, U and Th
concentrations in the sediment. In this case, the reader is referred to the corresponding section above.
However, it is relatively frequent, in the case of heterogeneous configurations at the 10 cm scale, that
gamma dose rates received by the samples do not correspond to the infinite matrix gamma dose rates
of the samples (see for example large gamma dose rate variations at the interface between sediment
and bedrock in a cave reported by Guérin et al., 2012b: Fig. 7). In such contexts, gamma dose rates
may be determined by in situ measurements with Al,0s:C artificial dosimeters: these dosimeters are
measured with green-light stimulation and their calibration is based on a block of homogeneous bricks
located in the basement of IRAMAT-CRP2A (Richter et al., 2010; Kreutzer et al., 2018; note: we also
discuss below — section 7.1 — the use of portable spectrometers). Two sources of relative errors are
taken into account: a random standard deviation (g, ;) accounting for measurement uncertainties, and
a shared calibration error including both standard deviations on (i) the true gamma dose rate in the
block of bricks and on (ii) the measurement of the dosimeters irradiated inside the block for calibration
of the source (gy ).

Water content

To account for the effect of water on dose rates, one commonly considers the following
equation (Zimmerman, 1971; Aitken, 1985):

K _ dﬁ,i,dry
dﬁ,l - 1+xgWF; " Eq. (3)

where dﬁ,i,dry is the beta dose rate in the dry sediment, WF; represents the effective mass fraction of
water in the sediment during burial, and xg is a water correction coefficient accounting for the fact
that water absorbs more beta dose than typical sedimentary elements, due to lower atomic numbers
(Nathan and Mauz, 2008). A similar equation applies to gamma dose rates, with a corresponding factor
x, (see Guérin and Mercier, 2012). The determination of the water content in the sediment over time
is a challenging task as it involves many different parameters, including past rainfall — see for example
Nelson and Rittenour (2015) for a discussion on how to determine water contents depending on
sediment grain size, hydrometric regimes, etc. One commonly employed solution is to measure the
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water content at the time of sampling and assume it to be representative of that in the past; measuring
the water content at saturation may then be a solution to evaluate an upper limit to this value; and
depending on the context one may also propose a lower limit to the water content. One then obtains
a way of quantifying the standard deviation of the error on the water content, although necessarily
imperfect. Neglecting uncertainties on the water correction factors (xg andx,) and calling sy ; the
absolute standard deviation of the mass fraction WF; for sample i, one may write:

. swri
S0, =dgi—=—  (Eq.4)

1+xpWF;

where sg ,0,; is the standard deviation of the beta dose rate for sample i due to the uncertainty on
its water mass fraction.

Similarly, one may write:
s =d C_Swri (Eq. 5)
VH00 ™ Bl g, Wy :
where s, i, 0,; is the standard deviation of the gamma dose rate for sample / due to the uncertainty on

its water mass fraction. As a result,

dy; 1+xgWF;

SyH.0i = dpg,i 1+x,WF; sgu,0,i— (Eq.6)

To simplify the following equations, which are meant to be those used in practice, we introduce the
relative standard deviation of the beta dose rate due to water content errors (dg 11, 0,;) and a parameter
called 4; defined by:

1+xgWF;

i = — (Ea.7) -
1+x,WF;

Finally, it should be emphasized that uncertainty on water content may well correspond to
errors which are neither really random nor really systematic; in our view different modelling choices
may be put forward and implemented, depending on the particular sedimentological and pedological
context.

The 6 matrix

With these considerations in mind on errors and their nature, the corresponding 6 matrix (Eq.
21) to model these uncertainties is a square matrix containing one line (and column) per sample. The
diagonal elements correspond to the sum of a term arising from the error on the laboratory source
dose rate (d?02;,) and the total dose rate variance for each sample, for each i:

0i; = dfoian + Stosmici + dfui(0G; + 08) + df ki (0% + 0F) + df i (0Fn; + 0fn) + She + <
. . . . . 2
d2 (o7 +0f) + (dgu + dpki + dgani + Aidy,i) 0f 00 (Eq.8)

This long list of variance terms may seem rather complicated. However, it corresponds to the total
variance arising from the laboratory beta source calibration, the errors on cosmic dose rates,
environmental beta dose rates, internal dose rates, gamma dose rates, and finally the error arising
from uncertainties in water content. In other words, we can also write

6;; = diopay + 51211. (Eq. 92),

where slzii is the variance of the dose rate to which sample i was exposed to during burial (it is the

square of the uncertainty appearing next to the dose rate value in every luminescence dating article;
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in our example, this term is the second one in the files DoseEnv.csv provided in Supplementary
Material).

Then, for i # j:

91"1' = dy,i dy,jof + dﬁ,U,idﬁ,U,joﬁ + dB,K,id[)’,K,ja—I% + dﬁ,Th,idﬁ,Th,jo-’Iz‘h + Siznt + di djalzab (Eq
103),

which characterises the amount of correlation between the doses of samples i and j, multiplied by their
ages. The 6 matrix, like the dose covariance matrix X, is a symmetric matrix. The diagonal members
correspond to individual variances, while the non-diagonal terms express the fact that systematic,
shared errors link the measurements of the series of samples. As a result, running the functions
AgeS Computation () and Age OSLC14 () with a & matrix in which all non-diagonal members
are set to zero would be equivalent to running the same functions without the correlation matrix, or
running the function Age Computation () independently for each sample — in which case all
sources of error are treated as random.

5.3. Examples
5.3.1. An illustrative, simplistic example without stratigraphic constraints

For illustration purposes, first, we did not apply stratigraphic constraints. We started with a
simplistic 8 matrix containing in the diagonal the real error variances (Eq. 92) as determined by Guérin
et al. (2015); the gy, value was equal to 0.02 (2% relative standard deviation of the calibration of the
laboratory beta source). The simplification comes from the off-diagonal members, for which in Eq.
(103) we set all s and ¢ values equal to 0, except for the oy, value, set to 0.05. Obviously, this is not
self-consistent, but it corresponds to (i) random and systematic errors of approximately the same
magnitude (in practice, these two sources of errors are of the same order of magnitude — a few %) and
(i) the simplest form of systematic errors. Indeed, in such a case, all ages are affected by the same
relative amount in the same direction.

Here again, after 5,000 iterations of 3 independent Markov Chains, we observed good
convergence. The obtained 95% C.I. are [33.9; 43.8] and [36.7; 48.1] ka for samples FER 1 and FER 3,
respectively. Fig. 6 shows bivariate scatter plots corresponding to the sampling of the Markov Chains
for the ages of samples FER 1 and FER 3 (which are calculated simultaneously) and Fig. 7 displays the
KDE together with the marginal probability densities. This set of figures illustrate the reason for the
generation of the two types of figures: the bivariate scatter plot is most appropriate for visualising the
effect of stratigraphic constraints (Fig. 4 above), whereas probability density figures best illustrate the
effect of modelling systematic errors. Indeed, as can be seen, there is a positive correlation between
the ages of samples FER 1 and FER 3: the greater the age of sample FER 1, the greater is the mean age
of sample FER 3. In other words, if the age of sample FER 1 were underestimated, then in all likelihood,
so would be the age of sample FER 3. Furthermore, the length of the C.I. for the age of each sample is
slightly larger than without modelling the covariance (cf. Table 1), i.e. modelling the covariances
slightly increases the age uncertainties. However, the positive correlation of ages has other, direct
consequences.

First, let us suppose that we have no knowledge of a stratigraphic link between the two
investigated samples, and wish to test the hypothesis that sample FER 1 is younger than sample FER 3.
The credibility of such an assumption can be tested using the function MarginalProbability ()
of the ‘Archaeophases’ R package (Philippe and Vibet, 2020) devoted to the analysis of MCMC chains
for chronological inference. Without using the covariance matrix, the credibility of this hypothesis is
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514  0.83; with the simplistic 8 matrix, the credibility becomes 0.94; in other words, modelling the age
515 covariance reflects more faithfully the measurements and their uncertainties for such tests.

516 The second consequence concerns the duration of a hypothetical phase that would encompass
517 the deposition of sample FER 1 and that of sample FER 3. Indeed, since the ages vary together in the
518  MCMC, the duration of such a phase should be smaller when modelling the covariance than when all
519  the variance in ages is treated as random. Indeed, we could verify this assertion using the function
520 PhaseStatistics () of ‘ArchaeoPhases’ (Philippe and Vibet, 2020): with the simplistic covariance
521 matrix, the 95 % C.I. for the duration of this phase is [-1.4; 9.7] ka, whereas it is [-0.6; 7.6] ka when the
522 ages are calculated using the simplistic 8 matrix.

523 5.3.2. A real example, including stratigraphic constraints

524 In a real case, since the relative contributions of the different dose rate components vary from
525  one sample to another, the correlation will be less pronounced. For more realistic calculations of the
526  ages of samples FER 1 and FER 3, we took the same values as above for the diagonal terms of the 6
527 matrix (Eq. 92); on the other hand, for the non-diagonal, covariance terms, we used the following
528  values: oy, = 0.02 (which corresponds to the experimentally determined calibration standard
529  deviation, including the uncertainty of the dose delivered to calibration quartz; Hansen et al., 2015),
530 ok =0.012, 0y = 0.007, o, = 0.007 (for these values, which also include counting of the standards
531 used, the reader is referred to Guibert et al., 2009; Guibert, 2002), and s;j,; = 0.003 Gy.ka™. We
532 provide as Supplementary Information a calculation spreadsheet allowing to build the covariance
533 matrix, intended for adaptation to the user-specific needs.

534 At the site of La Ferrassie, the uncertainties associated with the gamma dose rate observations
535  are more complex. Al,05:C dosimeters were placed at the end of 25 cm long aluminium tubes and
536 inserted horizontally in the stratigraphic section at the location of sediment sampling. In an ideal case,
537  sediment should be uniform in a horizontal plane; however, for samples FER 1 and FER 3 only a rather
538  thin layer of sediment remained against the cliff wall (the layers of the sample were not present at the
539  site in any other location), which resulted in the dosimeters being inserted either in the karstic cliff
540 (the limestone contains little radioelements compared to the sediments, as shown in Fig. 5 of Guérin
541 et al., 2015b) or at the interface between the cliff and the sediment. As a result, we took for dy_i the
542  average between the gamma dose rates measured in situ (which underestimate the real gamma dose
543 rate because the effect of the cliff is over-represented) and the gamma dose rates derived from the K,
544 U and Th concentrations in the samples. The associated standard deviation, g, ;, was calculated as the
545  difference between these two extreme values divided by 4, so that the 95% C.l. covers all possible
546  values. As this standard deviation is much larger than the analytical uncertainties, we neglected the
547  latter and considered g, ; to characterise random sources of errors since each sample has a different
548  environment and may be more or less far from the cliff.

549 The samples FER 1 and FER 3 are directly above and below, respectively, the Chatelperronian
550 layer at the site (layer 6). Sample FER 2 from this layer being poorly bleached, it is at present impossible
551  to model with ‘BayLum’. However, an alternative to estimate the age of FER 2 consists of supposing
552 that it has a uniform prior probability density between the ages of samples FER 1 and FER 3:

Ia,. . .
553 P(A,|data)~ [f ﬁ”("hﬂ% |data)dA;dAs (Eq. 11) < { Mis en forme : Centré

554  where A;is the age of sample i, 4,4, is the indicator function between A; and A3z, and
555  m(A;, As|data) is the posterior joint density of A; and A3 knowing the data (i.e. the density estimated
556  with ‘BayLum’). Doing so (see the markdown file for the corresponding code lines), working from the
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output of ‘BayLum’ one obtains a 95% C.I. of [36; 46] ka, which can be compared with the confidence
interval of [36; 48] ka obtained by Guérin et al. (2015) with minimum age modelling.

6. Integration of independent chronological data (radiocarbon)

The ‘BayLum’ package also offers the possibility to include radiocarbon ages in the chronological
models (Philippe et al., 2018); more specifically, radiocarbon ages are calibrated within ‘BayLum’, using
the function AgeC14 Computation() or Age OSLC14 () (in the latter case the function
necessitates at least one OSL age calculation). Introducing covariance matrices to account for
systematic errors on OSL data does not reduce the OSL age uncertainties; however, it becomes
particularly useful to correct for estimation biases when more precise ages, unaffected by these
systematic errors, are integrated into the models. To illustrate this, we decided to construct two
models constraining the age of FER 3; for illustration purposes, in this section, we used the simplistic
6 matrix described above in section 5.3.1. In the first case, we constrained the age of this sample by
imposing that a ‘young’ radiocarbon age (young compared to the age of sample FER 3 considered
alone) has an age greater than sample FER 3. In practice, we arbitrarily took a radiocarbon age of
38,000 + 400 BP, which corresponds to [37.6; 39.9] ka cal. BP (95% C.I. using the IntCal20 curve, Reimer
et al., 2020; the calibration was performed using ‘BayLum’, see Philippe et al., 2018). Naturally, the
credible intervals (both 68% and 95%) for sample FER 3 are shifted towards younger age values (cf.
truncation of the scatter plot illustrated in Fig. 3). So do the credible intervals for sample FER 1, since
the ages of the two OSL samples are close to each other even when considered independently of
radiocarbon data (in other words, the radiocarbon age ‘pushes’ the age of sample FER 3, which in turn
‘pushes’ the age of sample FER 1). In practice, the 95% C.I. become [33.3; 41.2] ka and [36.9; 42.3] ka
for samples FER 1 and FER 3, respectively. It can be noted here that in such a case the precision of the
age of sample FER 3 is increased (i.e. the length of the C.I. is much smaller than without the constraining
radiocarbon age). More interestingly, in the second case, we constrained the age of sample FER 3 by
imposing that an ‘old’ radiocarbon age (old compared to the age of sample FER 3 considered alone)
has an age younger than sample FER 3. In practice we — again, arbitrarily — took a radiocarbon age
equal to 44,000 + 400 BP, which corresponds to [45.4; 47.4] ka cal. BP (95% C.1.). Here again, the effect
on the age of sample FER 3 is straightforward: the credible intervals are shifted towards older ages
(the 95% C.I. for the age of sample FER 3 becomes [45.7; 51.2] ka). Perhaps less intuitive is the effect
on the age of sample FER 1, which is not directly constrained by radiocarbon: because the ages of the
three samples are estimated jointly, and because of the systematic errors on the OSL ages, the age of
sample FER 1 is also shifted towards older ages: the corresponding 95% C.l. becomes [36.7; 45.8] ka.

7. Discussion
7.1. Differing ways of estimating dose rates

Every laboratory uses its specific equipment and calibration standards; if similar equipment as
described above is used, then only the values of the different terms need be changed. This case is
particularly relevant for equivalent dose measurements, and hence the term gy, associated with dlab.
Conversely, for dose rate determination, several other experimental devices and techniques are
commonly used. If beta and/or gamma dose rates are determined based on the determination of
concentration in K, U and Th, (for example by mass spectrometry, neutron activation, etc.), then the
situation is similar as that described for beta dose rates above.

Counting techniques (alpha, beta, and gamma in the case of the threshold technique: Lgvborg
et al., 1974) may also be used for beta and gamma dose rate estimation. In the case of beta counting,
the conversion factor from count rate to dose rate depends on the emitting radioelement
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(Ankjeergaard and Murray, 2007; see also Cunningham et al., 2018). This dependency is a source of
error that may not easily be characterised by a systematic error (so there is no contribution to the dose
covariance matrix); indeed, this error on the conversion factor will vary from one site to another
depending on the concentrations in K, U and Th (which are generally unknown if a counting technique
is used), and even within one site from one sample to another (again by unknown amounts since the
variability in K, U and Th is unknown).

The data acquired with field gamma spectrometers may be analysed in two ways: the ‘window’
technique (see, e.g., Aitken, 1985) corresponds to classical spectrometry analysis; in this case, the
structure of uncertainties is the same as that for beta dose rates determined from high-resolution
gamma spectrometry (Eq. 113). On the other hand, threshold techniques consist of taking advantage
of proportionality between gamma dose rates and (i) the number of counts recorded per unit time
above a threshold (Lgvborg and Kirkegaard, 1974) or (ii) the energy deposited per unit time above a
threshold (energy threshold: Guérin and Mercier, 2011; Miallier et al., 2009). In the former case, the
conversion from count rate to dose rate depends on the emitting radioelement, so no systematic error
term may be isolated. Conversely, in the latter case (energy threshold), this dependency is negligible
(Guérin and Mercier, 2011). As a result, the error on the dose rate of the calibration standard may be
considered as systematic, and thus contribute one term in the non-diagonal elements of the covariance
matrix. Difficulties in implementing the threshold technique may occur in low dose rates
environments, because energy calibration may not be straightforward if the probe is not self-stabilised.
In such cases, routines such as those implemented in the R package ‘gamma’ (Lebrun et al., 2020) may
be put to profit. Finally, ageing of the crystal may also result in time-dependent errors — the latter must
be taken care of by regular calibration experiments.

7.2. Error terms neglected in this study

As mentioned earlier in the section devoted to dose rate uncertainties, there are many
possibilities to quantify, but also to consider errors on dose rate measurements; one could mention
here the uncertainties on attenuation factors and water correction factors. However, both of these
factors are dependent on the infinite matrix assumption: attenuation in grains implies that something
other than the grains does not attenuate radiation (i.e. conservation of energy implies that if there is
lower dose rate inside a quartz grain, there must be a higher dose rate somewhere else — cf. Guérin et
al., 2012a) ; water correction factors are often calculated assuming a homogeneous mixture of water
and other sedimentary components (Zimmerman, 1971; Aitken and Xie, 1990; note: the composition
of the sediment also necessarily affects the ratios of electron stopping powers and photon interaction
cross-sections — see Nathan and Mauz, 2008, for a discussion). Limitations of this infinite matrix
assumption, which is not met in sand samples at the scale of beta dose rates, have already been
pointed out (Guérin and Mercier, 2012; Guérin et al., 2012a; Martin et al., 2015). Consequently, it
seems that routine determination of a realistic standard deviation of the attenuation and water
content correction parameters is not straightforward.

Dose rate conversion factors were assumed above to be known without error; however,
estimation errors affect half-lives, emission probabilities, average emitted energies, etc. Liritzis et al.
(2013) took these uncertainties into account to estimate standard deviations of the dose rate
conversion factors (in practice, these standard deviations amount to ~1% for K dose rates, ~2% for U
and ~2% for Th). These standard deviations could be included as sources of systematic errors when the
contributions of K, U and Th are determined separately (note: when this is not the case, as when
dosimeters are used for gamma dose rate estimation, or when beta counting is implemented for beta
dose rate assessment, these sources of errors should be treated as random).
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In this study, we worked with coarse grain quartz extracts that had been etched with HF to
remove the alpha-irradiated part of the grains. This being said, if alpha dose rates are taken into
account, then the situation becomes similar to that of beta dose rates treated above; however, the
sensitivity to alpha irradiation must then be taken into account. It is rather frequent in such a case to
use published values from the literature (e.g., Tribolo et al., 2001; Mauz et al., 2006). Depending on
the geological origin of the quartz (one or more sources), one may then assume either systematic or
random errors on the alpha sensitivity.

7.3. Publication habits and re-analysis of previously published ages

Compared to other statistical models for OSL dating, the Bayesian models implemented in
‘BayLum’ appear rather complicated, at least partly because modelling starts from the measured OSL
data. By comparison, the input data to the CDM or the Average Dose Model (ADM: Guérin et al., 2017)
are lists of equivalent doses and associated uncertainties, which means that OSL measurements have
already been analysed to derive equivalent doses. Combeés et al. (2015) argued that their complete
model (implemented in ‘BayLum’), relating all the variables to one another, produces a more
homogeneous and consistent inference compared to consecutive inferences (and indeed, when
approaching saturation, i.e. when equivalent doses and associated uncertainties can hardly be
parameterised, Heydari and Guérin (2018) demonstrated the advantage of ‘BayLum’ models compared
to parametric models such as the CDM and ADM). However, working with lists of equivalent doses and
uncertainties — or even with estimates of central doses and associated uncertainties — taken as
observations would make the Bayesian modelling proposed in ‘BayLum’ and described in this paper
more straightforward and transparent. Such an approach, called the ‘two-steps’ model by Combeés and
Philippe (2017; see also Millard 2006a, 2006b, for earlier, similar models), would also offer the
advantage of allowing re-analysis of already published data to derive more precise chronologies.
However, for this purpose, the breakdown of all uncertainties and related standard deviations of errors
is needed; nowadays, providing such key information for the modelling is not in the luminescence
dating community's publication habits. That being said, with the growing number of meta-analyses of
previously published data, and the availability to use models such as ‘BayLum’ to combine
measurements with systematic errors, these habits might evolve in the future.

7.4. Notes of caution

As always when working with statistical models, one should first and foremost evaluate the
measured data in the light of sampling context. We already mentioned the importance of grain
selection (section 2.2.); but, perhaps more importantly, and especially since users of ‘BayLum’ have to
make modelling choices (e.g., regarding the dose-response curves fitted to OSL measurements or the
distribution of individual equivalent doses around the central dose), it is crucial to carefully examine
data and assess their quality before building potentially sophisticated models.

We would like to emphasise a few warnings regarding modelling samples in stratigraphic
constraints, and the association of ages obtained by different methods. We would advise users, before
combining, e.g. radiocarbon and OSL ages, first to thoroughly examine the corresponding datasets
independently: how were the data produced (with which experimental procedure)? Are the provided
uncertainties reliable (or is there an unrecognised source of error that should be included in the
evaluation of uncertainty)? Users are also encouraged to examine the consistency of results produced
by each method, in light of the stratigraphy. In a second stage, before modelling of independent ages,
we would recommend assessing the consistency of these datasets — do they (at least broadly) agree?
If not, can a parsimonious explanation be found? For example, it is rather common, when performing
Bayesian modelling with tools such as OxCal, to observe a large fraction of ages considered as outliers;
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such observations should urge users to examine their data again and come up with likely explanations
(note: to this date, no outlier model has been developed for the OSL ages in ‘BayLum’).

When it comes to imposing ordering constraints between ages as a result of stratigraphic
observations, it is, of course, essential to leave no doubt about the validity of these stratigraphic
constraints (the results of a model depend on the assumptions that are made, and the order in ages is
a very strong constraint). Perhaps more importantly, even when stratigraphic constraints are valid, it
is possible that applying them will not improve the statistical inference.

A simple example to illustrate this point is that of two superimposed, distinct layers (so that a
stratigraphic order is clear) whose true ages are equal (or in practice, for which the age difference is
negligible compared to the typical uncertainties of the implemented dating method). In such a case,
modelling the ages with stratigraphic constraints is likely to result in a loss of accuracy (the age of the
older layer will be overestimated, and that of the younger layer underestimated) compared to a model
where no stratigraphic constraints are imposed. Future developments of the ‘BayLum’ package might
include the possibility to test different modelling scenarios by comparing the agreement between the
observations and the posterior probability densities, for example using the Bayes Information Criterion
(BIC).

8. Conclusion

New models for building chronologies based on OSL, with the possibility to incorporate
radiocarbon, have been proposed in the literature (Combeés et al., 2015; Combeés and Philippe, 2017).
These models have been demonstrated to improve the chronological inference based on OSL data and
in particular, the accuracy of OSL ages (Guérin et al., 2015; Heydari and Guérin, 2018). The R package
‘BayLum’ was developed to implement these models; Lahaye et al. (2018), Carter et al. (2019), Heydari
et al. (2020, 2021) have used some of them to establish the chronologies of sedimentary sequences
dated by OSL, resulting in generally more precise chronologies.

In this article, we have presented a case study on how to build simple models and observe
output data, particularly through bivariate plots of age probability densities. Then, we have shown how
to include stratigraphic constraints in the models; we have described how to fill the covariance
matrices to account for systematic errors in OSL age estimation; and we have shown the effect of
including independent age information in the models, namely radiocarbon ages. Different tools to
visualise and further analyse the output of ‘BayLum’ were demonstrated.

As aresult, it is now possible to use various information often available in practice when dating
stratigraphic sequences. Age inferences based on OSL and independent data (e.g., radiocarbon) in
stratigraphic constraints are expected to gain in accuracy, precision and robustness, through the
application of such Bayesian models.
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Fig. 1: Age estimates for OSL samples FER 1 and FER 3. The red circles indicate the Bayes estimates of
the age (i.e. the most likely values) for each sample; the cyan and blue bars represent the 68% and
95% credible intervals, respectively. For the two radiocarbon ages (C14-1 and C14-2), the reader is
refereed to section 6.
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Fig. 2: Bivariate scatter plot as hexagon plot presentation of a sample of observations from the joint
posterior distribution of the two OSL ages considered independently (no stratigraphic constraints, no
off-diagonal members in the covariance matrix). In such a plot, each point corresponds to one
realisation of the ages of the two samples generated by the MCMC. Note: the reason for having this
figure in the cell of an array is not visible here; it becomes useful when calculating ages for more than
2 samples, in which case for each pair of samples, a similar plot appears in the appropriate cell.
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Fig. 3: Probability densities for the OSL ages estimated jointly with the same model as that used to

generate Fig. 2, based on Kernel Density Estimates (KDE), and marginal probability densities. The bell-

shape and symmetry of the scatter plot indicate the absence of correlation between the two ages.
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Fig. 4: Bivariate scatter plot from the joint posterior distribution of the ages of samples FER 1 and FER
3 when a stratigraphic constraint is applied (sample FER 1 is younger than sample FER 3) but with no
off-diagonal members in the covariance matrix. The truncation in the upper-left hand corner scatter
plot indicates the effect of the stratigraphic constraint.
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Fig. 5: Probability densities for the OSL ages estimated jointly, using the same model as that
implemented to generate Fig. 4 (stratigraphic constraint, no covariance matrix).
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947
948  Fig. 6: Bivariate scatter plot from the joint posterior distribution of the ages of samples FER 1 and FER

949 3 when a stratigraphic constraint is applied (sample FER 1 is younger than sample FER 3) and off-
950  diagonal members of covariance matrix are used to model systematic errors (note: in this case, for
951  illustrative purposes we used a simplistic covariance matrix — see section 5.3.1. for details). The
952  truncation in the upper-left hand corner scatter plot indicates the effect of the stratigraphic constraint.
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Fig. 7: Probability densities for the OSL ages estimated jointly, using the same model as that
implemented to generate Fig. 6 (stratigraphic constraint and off-diagonal members in the covariance
matrix). The positive correlation in the joint posterior density reflects the effect of modelling the
systematic errors with a covariance matrix (and, to some degree, of the stratigraphic constraint).
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960  Table 1. Summary of Credible Intervals for the ages (in ka) of samples FER 1 and FER 3 estimated in
961  the different modelled scenarios.

Sample 68% Credible Interval 95% Credible Interval
lower upper lower upper

Independent

FER1 36.0 40.5 34.1 433

FER3 38.9 44.6 36.6 47.8

In stratigraphy
FER 1 36.2 40.4 34.3 42.9

FER 3 40.0 45.0 38.1 48.5

No stratigraphic constraint, with ‘simplistic’ covariance (section 5.3.1)
FER 1 36.0 40.8 339 43.8

FER 3 39.2 45.4 36.7 48.1

In stratigraphy, with realistic covariance (section 5.3.2)
FER1 36.1 40.5 34.2 42.6

FER 3 39.8 45.3 37.8 48.6

In stratigraphy, with covariance and a ‘young’ radiocarbon age
FER 1 35.2 39.4 33.3 41.2

FER 3 39.2 42.2 36.9 42.3

In stratigraphy, with covariance and an ‘old’ radiocarbon age
FER 1 38.7 43.5 36.2 46.2

FER 3 46.1 48.7 46.1 51.5
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964  Table 2. List of physical units and associated uncertainties used in this work. The letter i in subscript
965 indicates a sample specific value, its absence a common value shared between samples. The letter s

966 indicates absolute uncertainties, while o is used for relative uncertainties.

Random uncertainty

Physical unit Notation  Systematic uncertainty
Laboratory source dose rate dlab Olab

Cosmic dose rate dmsmiai

K concentration [KIi ox

U concentration [ULi oy
Th concentration [Thi; orp
Internal dose rate dint Sint
Gamma dose rate dy; oy

Water content WF;

967

Scosmic,i
OK,i
Ou,i

OTh,i

SwF,i
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