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Abstract 20 

Statistical analysis has become increasingly important in Optically Stimulated Luminescence (OSL) 21 

dating since it has become possible to measure signals at the single grain scale. The accuracy of large 22 

chronological datasets can benefit from the inclusion, in chronological modelling, of stratigraphic 23 

constraints and shared systematic errors. Recently, a number of Bayesian models have been developed 24 

for OSL age calculation; the R package ‘BayLum’ presented herein allows implementing different such 25 

models, particularly for samples in stratigraphic order which share systematic errors. We first show 26 

how to introduce stratigraphic constraints in ‘BayLum’; then, we focus on the construction, based on 27 

measurement uncertainties, of dose covariance matrices to account for systematic errors specific to 28 

OSL dating. The nature (systematic versus random) of errors affecting OSL ages is discussed, based – 29 

as an example – on the dose rate determination procedure at the IRAMAT-CRP2A laboratory 30 

(Bordeaux). The effects of the stratigraphic constraints and dose covariance matrices are illustrated on 31 

example datasets. In particular, the interest of combining the modelling of systematic errors with 32 

independent ages, unaffected by these errors, is demonstrated. Finally, we discuss other common 33 

ways of estimating dose rates and how they may be taken into account in the covariance matrix by 34 

other potential users and laboratories. Test datasets are provided as supplementary material to the 35 

reader, together with an R Markdown tutorial allowing the reproduction of all calculations and figures 36 

presented in this study. 37 

  38 
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1. Introduction 39 

Optically stimulated luminescence (OSL, called optical dating in Huntley et al., 1985) allows the 40 

dating of the last exposure of quartz grains to sunlight. The Single Aliquot Regenerative (SAR) dose 41 

protocol consists of comparing the natural luminescence signal to laboratory-generated signals 42 

induced by artificial irradiations (Murray and Wintle, 2000; Wintle and Murray, 2006). The 43 

corresponding measurements, in particular at the single-grain scale, result in large datasets 44 

characterised by significant scatter, owing to a number of dispersion factors (see, e.g. Thomsen et al., 45 

2005). An OSL age is then obtained by dividing the equivalent dose (i.e. in the case of coarse quartz 46 

grains, the dose absorbed by the mineral) by the dose rate to which quartz grains were exposed since 47 

the last exposure to light.  48 

Statistical analysis, in geochronology, generally aims to improve the precision, accuracy, 49 

and/or range of dating methods. In the case of OSL dating, calibration errors on the laboratory source 50 

dose rate for natural dose estimation, and geochemical standards for dose rate assessment, have so 51 

far resulted in age uncertainties (at 1 sigma or 68 % confidence) of, at best, ~5% (see, e.g., Duller, 2008; 52 

Guérin et al., 2013). 53 

 Note that in what follows, the unit of analysis is a sediment sample; we assume that each 54 

sample corresponds to a deposition event, and thus to a single age (no post-depositional mixing is 55 

considered). The system of analysis is the laboratory in which the measurements are performed and 56 

includes both the apparatus and associated calibration standards. It should be emphasised here that 57 

field equipment is part of what we call the laboratory; this is important for the definition of what we 58 

call systematic errors. By definition, an error is the difference between the measured or observed value 59 

of a physical quantity, and its true (but unknown) value. Thus, by systematic errors, we refer to random 60 

errors affecting equipment calibration: whereas each of these errors may be assigned a Gaussian 61 

probability density function with zero mean and a known variance (the square root of the variance 62 

being generally referred to as uncertainty), at the scale of the laboratory this error takes a fixed, 63 

unknown value that affects all measurements in the same direction. Of course, other sources of errors 64 

may exist (for example when using the infinite matrix assumption to calculate grain size attenuation 65 

factors, see e.g., Guérin et al., 2012), but in this article, we consider only known, quantified sources of 66 

errors. 67 

Over the past few years, several models for routine Bayesian analysis of SAR OSL and dose rate 68 

data were developed to reflect better, and take advantage of, the measurement procedures 69 

implemented to calculate OSL ages. Among those models, Combès et al. (2015) proposed one for 70 

calculating the central dose values for well-bleached samples, leading to higher overall accuracy (see 71 

Guérin et al., 2015a) compared to the most commonly used model for OSL data analysis (the Central 72 

Dose Model: CDM, Galbraith et al., 1999; note: we changed the original terminology following 73 

Galbraith and Roberts, 2012). Combès and Philippe (2017) developed models capable of dealing with 74 

individual and systematic multiplicative errors for OSL age calculation including stratigraphic 75 

constraints (for general introductions on a statistical analysis of OSL data, but also the statistical 76 

models discussed hereafter and associated prior distributions, the reader is referred to Combès et al., 77 

2015; Combès and Philippe, 2017, and references therein). 78 

To implement the Bayesian models of Combès et al. (2015) and Combès and Philippe (2017) in 79 

practice, and provide easy access to the community, an R package (R Core Team, 2020) named 80 

‘BayLum’ (Christophe et al., 2020; version 0.2.0) has been developed and released on the 81 

Comprehensive R Archive Network (CRAN; see also Mercier et al., 2017, for a first implementation of 82 

the central dose model developed by Combès et al., 2015). First features of this ‘BayLum’ package 83 
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were presented by Philippe et al. (2019) and its performances, when one is confronted either with 84 

large dose values or with dose variability issues, were tested in laboratory-controlled experiments 85 

(Heydari and Guérin, 2018) and later applied to various case studies (Lahaye et al., 2018; Carter et al., 86 

2019; Heydari et al., 2020, 2021; Chevrier et al., 2020). 87 

The purpose of this paper is to focus on the treatment of stratigraphic constraints and 88 

systematic errors for chronological modelling using ‘BayLum’, i.e. it goes beyond than what was first 89 

demonstrated by Philippe et al. (2019); together with the association of independent, more precise 90 

ages (14C in this work), such modelling is expected to reduce OSL age uncertainties. In the past, other 91 

approaches to model systematic and random, individual errors in the field of palaeodosimetric dating 92 

methods were proposed; in particular, Millard (2006a, 2006b) developed a Bayesian approach quite 93 

close to that presented here, but which – among different other things (see Combès and Philippe, 94 

2017, for a more detailed discussion) – is limited in its applicability.  95 

Herein we present a Bayesian modelling case study. (1) We start with how data should be pre-96 

treated prior to using the ‘BayLum’ package; a simple example of chronological modelling (samples 97 

considered independent, i.e. without stratigraphic constraints and shared errors) is first presented, 98 

yielding an output from the ‘BayLum’ package to serve as a reference for the following, more elaborate 99 

models. (2) In the next step, we detail how the user can integrate stratigraphic constraints and the 100 

effect on the chronological inference. It should be noted that we take here the stratigraphic 101 

information for granted, but we warn the user against treating such information lightly, as it bears 102 

great consequences on the age calculation (cf. discussions in Heydari et al., 2020, 2021). (3) Then, most 103 

importantly we explain how to build a dose covariance matrix in practice to take into account 104 

systematic errors (for the definition of this matrix, the reader is referred to Combès and Philippe, 2017) 105 

and what effect it has on a series of ages. (4) For this purpose, we base our approach on dose rate 106 

measurements as performed by Guérin et al. (2015b) at the IRAMAT-CRP2A laboratory. The effect of 107 

integrating independent data such as radiocarbon ages, which usually do not share systematic errors 108 

affecting OSL data, is then illustrated. (5) Finally, we discuss different ways to measure dose rates and 109 

various assumptions that can be made regarding the nature (systematic or random) of additional 110 

sources of errors in OSL dating (see also Rhodes et al., 2003 for a similar discussion). 111 

To help the reader, we provide as supplementary information an R markdown document with 112 

commented lines of code and example datasets, so that everything presented here may be 113 

reproduced. 114 

2. Samples and methods 115 

2.1. Case study  116 

To illustrate how to model OSL ages, both in stratigraphic constraints and sharing systematic 117 

errors, using the R ‘BayLum’ package, we use the data from two sediment samples (FER 1 and FER 3) 118 

already dated by quartz OSL (Guérin et al., 2015b). These samples were taken from the archaeological 119 

site of La Ferrassie (France) and prepared following standard chemical preparation procedures applied 120 

to luminescence-dating samples. While modelling with ‘BayLum’ may be applied to both multi-grain 121 

and single-grain OSL datasets, in the following we only focus on single-grain data, as this is probably 122 

where the need for appropriate statistical models is most acute (the reliability of multi-grain OSL has 123 

been demonstrated when using a plain average (mean) for palaeodose estimation; see, e.g., Murray 124 

and Olley, 2002; for theoretical justification, see Guérin et al., 2017). Single-grain OSL data were 125 

measured using an automated Risø TL/OSL reader (DA 20) fitted with a single grain attachment (Duller 126 

et al., 1999; Bøtter-Jensen et al., 2000). A standard SAR protocol (Murray and Wintle, 2000; 2003) was 127 

used to measure single-grain equivalent doses, after checking its suitability for the samples under 128 
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investigation. A comparison between quartz OSL and feldspar IRSL signals for these two samples, as 129 

well as comparison with radiocarbon, showed that these samples were well-bleached at the time of 130 

deposition and unaffected by post-depositional mixing. As a result, the use of central dose models is 131 

fully justified (it should be noted here that at the time of writing, ‘BayLum’ does not yet include the 132 

Bayesian model of Christophe et al., 2018, allowing the analysis of poorly bleached samples).  133 

2.2. Data pre-treatment 134 

The Bayesian modelling implemented in ‘BayLum’ requires information of different natures: (i) 135 

raw OSL data in the form of BIN/BINX file(s), (ii) list(s) of grains to be included in the modelling (based 136 

on pre-defined selection criteria, e.g. on recycling and/or recuperation ratios), (iii) file(s) indicating how 137 

the data should be processed (signal integration channels, reproducibility of the instrument(s), etc.) 138 

and (iv) both natural (in Gy.ka-1) and laboratory (in Gy.s-1) dose rates. Based on these data, the 139 

calculations are performed all at once using Markov Chain Monte Carlo (MCMC) computations; as a 140 

result, unlike in standard frequentist data processing, there is no succession of steps in data analysis 141 

(for example, individual equivalent dose estimates are not parameterised, unlike when the CDM is 142 

used). While Combès et al. (2015) argue that this results in a better statistical inference about the age 143 

(or palaeodose), it also comes with a downside: the user cannot visualise the data during the statistical 144 

analysis. In particular, the fact that the user must specify the list of grains to be included in the analysis 145 

implies that one should always pre-treat the samples in a standard way, by using, e.g. Analyst (Duller, 146 

2015) or the R ‘Luminescence’ package (Kreutzer et al., 2012; Kreutzer et al., 2020) to visually check 147 

the data but also investigate the effect of various selection criteria on the datasets (see for example 148 

Thomsen et al., 2016, on the effect of applying various selection criteria when with frequentist 149 

statistical models; see Heydari and Guérin, 2018, for a similar study in a Bayesian framework).  150 

In other words, using ‘BayLum’ for age calculation should not, and does not, prevent the user 151 

from a careful and critical examination of the measured OSL data. In particular, before running age 152 

calculations using the ‘BayLum’ package, it is important that the user already has identified potential 153 

problems – e.g., saturation and/or dose rate variability (see Heydari and Guérin, 2018, for adapted 154 

modelling solutions). 155 

3. First simple model and output 156 

We first ran the function Generate_DataFile() for the OSL samples FER 1 and FER 3, 157 

with the same lists of grains as those used for age calculation by Guérin et al. (2015b): all grains with 158 

an uncertainty smaller than 20% on the first test dose signal were selected. A large number of grains 159 

appeared to be in saturation for these samples (in Analyst, there is no intersection of the natural L/T 160 

signal, or the sum of this sensitivity corrected natural signal and its uncertainty, with the dose-response 161 

curve). As a result, following Thomsen et al. (2016), an additional selection criterion was added, based 162 

on the curvature parameter of the dose-response curves. All grains for which the D0 value, obtained 163 

with Analyst as described by Guérin et al. (2015b), was smaller than 100 Gy, were rejected from the 164 

analysis (note however that such a selection criterion may not be necessary when working with 165 

‘BayLum’: Heydari and Guérin, 2018). 166 

In practice, the data is contained in two folders named after the samples and provided as 167 

Supplementary Material. Each folder contains one BIN/BINX-file (i.e. OSL measurements; note that 168 

only a small fraction of the measured grains is included in the Supplementary Material) and four CSV- 169 

files:  170 

- ‘DiscPos.csv’ lists all selected grains;  171 
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- ‘Rule.csv’ gives the rules for generating Lx/Tx data (integration channels for both the natural 172 

or regenerated and test dose signals, uncertainty arising from the reproducibility of the OSL 173 

measurements, and number of SAR cycles to remove for curve fitting, if any - it may, for example, be 174 

desirable to remove recycled points and/or IR depletion points);  175 

- ‘DoseSource.csv’ gives the laboratory source dose rate and its variance;  176 

 177 

- ‘DoseEnv.csv’ gives the dose rate to which the sample was exposed during burial. 178 

We ran the function AgeS_Computation() with a prior age interval limited to between 179 

10 ka and 100 ka for each sample (so that the bounds are far from the age values obtained using the 180 

arithmetic mean of equivalent doses, namely 37 ± 2 ka and 40 ± 2 ka, respectively). The dose-response 181 

curves were fitted, as in Analyst in our previous study, with single saturating exponential functions 182 

passing through the origin. All uncertainties, affecting both environmental and laboratory dose rates, 183 

were included in the calculation, as is common practice in luminescence dating; however, the 184 

covariance of ages was not modelled here, so the results are equivalent to those one would obtain by 185 

running subsequent individual age calculations for each of the two samples.  186 

To run the AgeS_Computation() function, the user must choose a model for the 187 

distribution of individual equivalent doses around the central dose; the different options are Cauchy, 188 

Gaussian or lognormal distribution (in the latter case, the central dose may be estimated either by the 189 

mean or the median of the distribution). A Cauchy distribution (sometimes also called Lorentz 190 

distribution) is a symmetric distribution which was chosen by Combès et al. (2015) because it has heavy 191 

tails, i.e. extreme values have a non-zero probability. Hence, the Cauchy distribution seemed to be 192 

well-suited for the analysis of widely-dispersed datasets including outlier values such as single grain De 193 

distributions. 194 

Coming back to the samples from La Ferrassie, on top of saturation problems Guérin et al. 195 

(2015b) also identified dose rate variability as an important factor of dispersion in equivalent doses: 196 

the values of the CDM overdispersion parameter for the De distributions of the samples were equal to 197 

29 ± 3 % and 35 ± 3 %, respectively. If we assume that this overdispersion arises from dose rate 198 

variability to single grains of quartz, Heydari and Guérin (2018) using laboratory-controlled 199 

experiments showed that the Cauchy distribution and the CDM should both lead to ~5-10% age 200 

underestimation, because both models are biased. Consequently, we did not use the Cauchy 201 

distribution model. Instead, we modelled the equivalent dose distribution by a lognormal distribution 202 

(one could also have chosen a Gaussian function) from which the mean (rather than the median) was 203 

used to estimate the central dose. Indeed, Guérin et al. (2017) formally demonstrated that the median 204 

of the lognormal distribution (as used in the CDM) is a biased estimator and leads to age 205 

underestimates when dose rates are dispersed.  206 

After 5,000 iterations of 3 independent Markov Chains, we observed good convergence, as 207 

seen in the Markdown document provided as supplementary material (for a discussion of the 208 

convergence of the Markov Chains, the reader is referred to Philippe et al., 2019). The upper limit of 209 

the 95% Confidence Intervals for the Gelman and Rubin indexes of convergence (Gelman and Rubin, 210 

1992) were all smaller than 1.05, also indicating satisfying convergence of the 3 independent Markov 211 

Chains (here again, the reader is referred to Philippe et al., 2019, who suggested 1.05 as the maximum 212 

acceptable value). The obtained 95% Credible Intervals (C.I.) for the ages of samples FER 1 and FER 3 213 

are [34.1; 43.3] ka and [36.6; 47.8] ka, respectively (Fig. 1; Table 1) and are consistent with the ages 214 

obtained by Guérin et al. (2015b) with a much simpler approach (unweighted arithmetic mean of 215 

equivalent doses). It should be emphasised here that the two 95% C.I. for ages overlap. Fig. 2 shows a 216 
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bivariate scatter plot of a sample of observations from the joint posterior distribution of the two ages, 217 

as generated by the Markov Chains; in such a plot, each point corresponds to one realisation of the 218 

ages of the two samples investigated in the MCMC. Fig. 3 shows the corresponding probability 219 

densities for the ages estimated jointly, based on kernel density estimates (KDE), and the marginal 220 

probability densities. No correlation is observed on the joint probability density, which is symmetrical 221 

and bell-shaped. One can already compare the results obtained with this Bayesian model (lognormal-222 

average) for sample FER 3 with the radiocarbon ages obtained independently for the same layer by 223 

Guérin et al. (2015b). The 95% C.I. for the 3 14C ages are bound by the interval [44.4; 47.3] ka, which 224 

means that the OSL and radiocarbon ages are in good agreement, which was not the case when 225 

calculating the ages with the CDM (38 ± 2 ka; this OSL age corresponds to ~15 % underestimation and 226 

is broadly consistent, within uncertainties, with theoretical predictions stated above). Thus, even 227 

without further modelling, the ‘BayLum’ lognormal-average model seems to provide OSL ages in better 228 

agreement with radiocarbon. 229 

4. Stratigraphic constraints 230 

Samples FER 1 and 3 belong to two different stratigraphic layers: sample FER 1 (Layer 7) lies 231 

stratigraphically above sample FER 3 (Layer 5B), so we know that the age of sample FER 1 must be less 232 

than that of sample FER 3 (i.e. sample FER 1 is younger than sample FER 3; for detailed stratigraphic 233 

information on the site of La Ferrassie, which is of paramount importance in this section, the reader is 234 

referred to Guérin et al., 2015b). To encode this information, the function AgeS_Computation() 235 

takes as argument the object StratiConstraints, which is a matrix whose size depends on the 236 

number of analysed samples. First, the data in the DATA object (which is the output of the function 237 

Generate_DataFile()) must be ordered in stratigraphic order from top to bottom: thus, in our 238 

case the list of names used by the function Generate_DataFile()is FER 1, FER 3 (rather than FER 239 

3, FER 1). Then, the stratigraphic matrix contains numbers equal to 0 or 1, indicating the applied 240 

bounds to the age of each sample. The matrix contains a number of rows equal to the number of 241 

samples plus one and a number of columns equal to the number of samples. The first row contains the 242 

value 1 in each column, which indicates that the younger age bound specified as prior information (10 243 

ka in our example, cf. section 3 above) when running the function AgeS_Computation() applies 244 

to all samples. Then, for all j in {2, ..., Nb_Sample+1} and all i in {j, ..., Nb_Sample}, 245 

StratiConstraints[j,i]=1 if the age of sample whose number ID is equal to j-1 is less than 246 

the age of sample whose number ID is equal to i. Otherwise, StratiConstraints[j,i]=0. In 247 

practice, in our case StratiConstraints [1,] = (1,1), StratiConstraints [2,] = (0,1) 248 

(which means that sample FER 1 is not younger than itself but is younger than sample FER 3) and 249 

StratiConstraints [3,] = (0,0) (which means that sample FER-3 is neither younger than 250 

sample FER-1 nor than itself). Note: in the markdown document provided as Supplementary Material, 251 

the corresponding code lines are commented to make this description easier to follow. 252 

 Running the function AgeS_Computation() with this matrix of stratigraphic constraints 253 

only marginally affects the ages, in this case, the 95% C.I. become [34.3; 42.9] ka and [38.1; 48.5] for 254 

samples FER-1 and FER-3, respectively (Table 1). One can also look at the bivariate scatter plot of 255 

observations from the joint posterior distribution (Fig. 4): one can see that this scatter plot is truncated 256 

in the upper left-hand corner – illustrating the fact that the age of sample FER 1 can never be greater 257 

than that of sample FER 3 (see Fig. 2 for comparison). By contrast, the KDE estimate (Fig. 5) also shows 258 

a positive correlation but does not reveal the truncation (whereas the stratigraphic constraint imposes 259 

a null probability for all pairs of ages above the 1:1 line).  260 

 261 
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5. Dealing with multiple sources of errors through a covariance matrix 262 

5.1. General considerations 263 

In the previous calculations, all the variance is treated as random, whereas common, systematic errors 264 

affect all ages in the same direction, although to varying degrees (so systematic errors are unlikely to 265 

result in stratigraphic inversions). One of the main advantages of applying the models implemented in 266 

the ‘BayLum’ package – contrary to other chronological modelling tools such as OxCal (Bronk Ramsey 267 

and Lee, 2013) or Chronomodel (Lanos and Philippe, 2018) – lies in the possibility to include the 268 

structure of uncertainties specific to OSL dating. For instance, a radiocarbon age is derived only from 269 

the ratio of 14C to 12C (on top of which comes the more complex problem of calibration), whereas an 270 

OSL age involves a large number of measurements, each with its uncertainty (Aitken, 1985; 1998). The 271 

OSL measurements required for the determination of the palaeodose are relatively standardised 272 

through the widespread use of the SAR protocol (Murray and Wintle, 2000; Wintle and Murray, 2006). 273 

Conversely, there are several approaches – each with its equipment and standards – to determine the 274 

various dose rate components. Given that these dose rates derive from different types of radiation 275 

(alpha, beta, gamma and cosmic radiation) and are of various origins (mainly from potassium and the 276 

uranium and thorium decay chains), there are many more contributions to the age uncertainty from 277 

the dose rate term than from the palaeodose term, even though the size of the uncertainty on dose 278 

rate is of the same order of magnitude as that on palaeodose – see for example Murray et al., 2015). 279 

As a result, there are almost as many ways of estimating systematic and random uncertainties as there 280 

are (combinations of) ways to determine dose rates; in any case, the notion of systematic error is only 281 

valid in a given context, which must always be made explicit. Combès and Philippe (2017) detailed the 282 

mathematical formulation of the dose covariance matrix, which links the ages of several samples 283 

measured using the same equipment and standards through common (systematic) errors (see also 284 

Philippe et al., 2019). Nevertheless, the equations provided in this article are somewhat difficult to 285 

translate in practice; here, we propose to outline how we implement a covariance matrix adapted to 286 

(one example of) the measurements leading to OSL age calculation at the IRAMAT-CRP2A laboratory 287 

(Bordeaux). We emphasise that what follows is not prescriptive; it should be viewed as an example of 288 

a model of uncertainties. For alternative ways of estimating systematic and random errors, for 289 

example, due to different dose rates measurements, the reader is referred to the discussion (section 290 

7.1).  291 

Here, we consider the case of a series of n sediment samples taken from one unique site and all 292 

measured using the same equipment and standards. Let us consider the following relationship 293 

between palaeodoses, dose rates and ages (Combès and Philippe, 2017): 294 

(𝐷1, … , 𝐷𝑛) ∼ 𝒩 ((𝐴1𝑑̇1, … , 𝐴𝑛𝑑̇𝑛),Σ)  (Eq. 1) 295 

where 𝐷𝑖 is a random variable modelling the unknown palaeodose of sample i, 𝒩 is the symbol for a 296 

Gaussian distribution, 𝐴𝑖  is the unknown age estimate of sample i (that we are trying to determine), 297 

𝑑̇𝑖  the total dose rate to which this sample was exposed since burial (𝑑̇𝑖  is the observed dose rate, i.e. 298 

the result of the measurements) and Σ is the dose covariance matrix (for the full definition of the 299 

model, we refer the reader to Combès and Philippe, 2017). This covariance matrix verifies, for all (i,j): 300 

Σ𝑖,𝑗 =  𝐴𝑖𝐴𝑗𝜃𝑖,𝑗   (Eq. 2) 301 

where 𝜃 is the matrix that the user needs to specify to run the calculations with ‘BayLum’. It should be 302 

noted here that by default when running age calculations with ‘BayLum’, the off-diagonal elements 303 

are set to zero, i.e. the covariance in ages is not modelled. 304 
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Before entering the details specific to luminescence dating, let us consider a simple example of two 305 

measurements y1 = µ1 + e1 + f and y2 = µ2 + e2 + f where µ1 and µ2 are fixed measurands and e1, e2 and 306 

f are all independent random errors from distributions with mean zero. The covariance of y1 and y2 is 307 

the variance of f (so the off-diagonal elements of the matrix are equal to this variance). For each 308 

sample, the diagonal element of the corresponding covariance matrix is the sum of all the components 309 

of variance for that sample. The variety of physical quantities to measure to determine dose rate, and 310 

their relationship with the dose rate contributions, will now be discussed with this simple definition in 311 

mind. 312 

5.2. Implementation in practice 313 

First, we detail the series of measurements carried out, and we introduce the corresponding 314 

notations for the estimates and associated uncertainties. Table 2 summarises all physical units and 315 

associated error standard deviations; as a general rule, we assume that all error terms are Gaussian 316 

variables with the expected value (mean) equal to zero and a fixed, known standard deviation (see for 317 

example Eq. 2 in Combès and Philippe, 2017). For clarity, in the following relative standard deviations 318 

are described by the letter 𝜎, while absolute standard deviations are denoted by s; moreover, each 319 

standard deviation corresponding to random errors (i.e., when the error varies from sample to sample) 320 

is identified by the letter i in the subscript. The absence of this letter in the subscript indicates that the 321 

measurement error affects all samples.  322 

5.2.1. Equivalent doses and OSL measurements 323 

Equivalent doses are determined from OSL measurements performed on a luminescence 324 

reader equipped with a radioactive beta source, whose dose rate and associated relative standard 325 

deviation of the error, noted 𝑑̇lab and 𝜎lab, are known. There are several ways the latter term can be 326 

determined; in its simplest form, it includes the standard deviation of the error on the absolute dose 327 

absorbed by the standard reference material (in our case calibration quartz provided by DTU Nutech, 328 

cf. Hansen et al., 2015) and an error term due to replicate measurements of several aliquots of this 329 

calibration material. Using a large number of measurements repeated in time, as suggested by Hansen 330 

et al. (2015), may somewhat complicate the matter, but this goes beyond the scope of the present 331 

study.  332 

In practice, regeneration doses are delivered by irradiating the aliquots for a given duration (in 333 

s). This duration is converted to absorbed energy dose (Gy) by multiplication with the source dose rate 334 

(Gy.s-1). Strictly speaking, the error on the source dose rate affects all regeneration doses, and so this 335 

error term should appear in the dose/luminescence relationship (right side of the directed acyclic 336 

graph shown in Fig. 7 of Combès and Philippe, 2017). However, it is common practice in luminescence 337 

dating to first calculate an equivalent dose in seconds of irradiation for each aliquot, then convert this 338 

to Gy and calculate an average (or determine another central parameter such as with the CDM), and 339 

only then consider 𝜎lab. This is what led, e.g., Jacobs et al. (2008), to exclude the associated standard 340 

deviation from the total OSL age uncertainties, to test the assumption of a time gap between two 341 

series of ages. Here, for simplicity, we take the same route, and hence the relative error on the 342 

laboratory source dose rate becomes a relative, systematic error on the equivalent doses. 343 

One may thus write that the error on the dose 𝐷𝑖 arising from the calibration of the source 344 

follows a Gaussian distribution with mean 0 and variance (𝜎lab 𝐴𝑖𝑑̇𝑖)2.  345 

 346 

5.2.2. Dose rates 347 
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When it comes to the dose rate term, here we restrict ourselves to the case of coarse quartz 348 

grains measured after HF etching to remove the alpha dose rate component: the total natural dose 349 

rate is the sum of an internal dose rate, external beta and gamma dose rates, and cosmic dose rates.  350 

Cosmic dose rates 351 

We consider that cosmic dose rates are determined following Prescott and Hutton (1994) 352 

based on the burial depth of the dated samples, which may be different from the present-day thickness 353 

of the overburden. As a result, the error on cosmic dose rate estimates depends on the error 354 

estimation of this effective burial depth since the dated sediment was deposited. Because the 355 

relationship between cosmic dose rates and burial depths is not linear, and because the error on this 356 

burial depth may not be systematic (e.g. in cases where successive, yet of unknown duration, erosion 357 

and deposition events happened between the deposition of superimposed sedimentary layers – see 358 

Aitken, 1998, p. 65, for a discussion) even at the scale of a site the error associated to cosmic dose 359 

rates cannot easily be treated as systematic. For i={1,…,n}, 𝑑̇cosmic,𝑖 and 𝑠cosmic,𝑖 denote the estimate 360 

of the average cosmic dose rate to which sample i has been exposed and its associated standard 361 

deviation.  362 

Beta dose rates 363 

We consider the beta dose rates as determined from concentrations (or activities) of 40K and 364 

in radioelements from the U- and Th- decay chains, converted to dose rates using specific conversion 365 

factors (e.g., Guérin et al., 2011). At the IRAMAT-CRP2A laboratory, these concentrations are usually 366 

determined with low-background, high-resolution gamma-ray spectrometry following Guibert and 367 

Schvoerer (1991). The simplest case is that of 40K, since only one peak is used (at 1.461 MeV); the 368 

concentration in sample i, denoted [K]i is equal to the concentration in the standard multiplied by the 369 

ratio in count rates (the count rate observed for the investigated sample is divided by the count rate 370 

observed for a reference material). Thus, we consider in this paper that the standard deviation of the 371 

error on the 40K concentration includes three components: the standard deviation of the error on the 372 

concentration in the standard, and the counting uncertainties both on the standard and on the 373 

measured sample. The counting uncertainties are calculated, assuming Poisson statistics. Of these 374 

three sources of errors, only one is treated as random – namely the counting uncertainty of the sample; 375 

the other two standard deviations (corresponding to the counting of the standard and to the error of 376 

the radioelement concentration in the standard) are quadratically summed and considered as a 377 

systematic source of error. One considers for sample i the beta dose rate from potassium 𝑑̇𝛽,K,𝑖 – after 378 

correction for grain size-dependent attenuation using the factors from Guérin et al., (2012a); and for 379 

moisture content following Nathan and Mauz (2008) (see the discussion section below regarding 380 

uncertainties on these correction factors). Neglecting uncertainties in the dose rate conversion factors, 381 

we call 𝜎K,𝑖 the relative random standard deviation of the error on the 40K concentration; its systematic 382 

counterpart 𝜎K is common to all samples. It should be emphasised here that systematic errors on 383 

radioelement concentrations, although being shared by all samples, will affect all ages in the same 384 

direction but not necessarily by the same amount (even in relative terms, contrary to the error on 385 

laboratory beta source calibration) because the relative contribution of beta dose rate from potassium 386 

to the total dose rate may vary from one sample to another. The beta dose rates from the U- and Th-387 

series come from a number of radioelements in the corresponding chains; here, for simplicity we 388 

consider each series to be in secular equilibrium (this is generally the case for 232Th but may not be 389 

true for the U-series, see, e.g. Guibert et al., 1994; 2009; Lahaye et al., 2012). Thus, for each sample, 390 

the concentrations in 238U and 232Th are converted to dose rate contributions denoted 𝑑̇𝛽,U,𝑖 and 391 

𝑑̇𝛽,Th,𝑖. In contrast to the case of 40K, the analysis of the high-resolution spectra for these radioactive 392 
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chains is based on a number of primary gamma rays (whereas there is only one ray for K); more 393 

specifically, a weighted mean of the concentrations determined from each ray included in the analysis 394 

(after taking interference into account) is calculated to estimate the concentration of U and that of Th. 395 

As a result, the standard deviation of the error on the concentration in U (and that of Th) in the sample 396 

comes from two sources: the relative standard deviation on the concentration of the standard 397 

corresponds to a systematic error and is denoted 𝜎U for U (𝜎Th for Th); conversely, the other relative 398 

standard deviations (arising from the counting of the standards and of the sample) are treated as 399 

random and quadratically summed to obtain 𝜎U,𝑖 (and 𝜎Th,𝑖). 400 

Internal dose rates 401 

Unless the internal radioelement concentration is experimentally determined (in which case 402 

one needs to consider both systematic and random sources of error for each sample, as is done for 403 

beta dose rates), some have suggested using a fixed internal dose rate of 0.06 ± 0.03 Gy.ka-1 (Mejdahl, 404 

personal communication to Murray, based on Mejdahl, 1987). In this case, we may assume that the 405 

dated quartz grains are all of the same origin, and have the same internal radioelement concentration; 406 

as a result, we associate a systematic standard deviation 𝑠int with the internal dose rate 𝑑̇int. 407 

Gamma dose rates 408 

Gamma dose rates 𝑑̇𝛾,𝑖 may be determined, as beta dose rates, from K, U and Th 409 

concentrations in the sediment. In this case, the reader is referred to the corresponding section above. 410 

However, it is relatively frequent, in the case of heterogeneous configurations at the 10 cm scale, that 411 

gamma dose rates received by the samples do not correspond to the infinite matrix gamma dose rates 412 

of the samples (see for example large gamma dose rate variations at the interface between sediment 413 

and bedrock in a cave reported by Guérin et al., 2012b: Fig. 7). In such contexts, gamma dose rates 414 

may be determined by in situ measurements with Al2O3:C artificial dosimeters: these dosimeters are 415 

measured with green-light stimulation and their calibration is based on a block of homogeneous bricks 416 

located in the basement of IRAMAT-CRP2A (Richter et al., 2010; Kreutzer et al., 2018; note: we also 417 

discuss below – section 7.1 – the use of portable spectrometers). Two sources of relative errors are 418 

taken into account: a random standard deviation (𝜎𝛾,𝑖) accounting for measurement uncertainties, and 419 

a shared calibration error including both standard deviations on (i) the true gamma dose rate in the 420 

block of bricks and on (ii) the measurement of the dosimeters irradiated inside the block for calibration 421 

of the source (𝜎𝛾). 422 

Water content 423 

To account for the effect of water on dose rates, one commonly considers the following 424 

equation (Zimmerman, 1971; Aitken, 1985): 425 

𝑑̇𝛽,𝑖 =
𝑑̇𝛽,𝑖,drγ

1+𝑥𝛽𝑊𝐹𝑖
 ,  Eq. (3) 426 

where 𝑑̇𝛽,𝑖,drγ is the beta dose rate in the dry sediment, WFi represents the effective mass fraction of 427 

water in the sediment during burial, and 𝑥𝛽 is a water correction coefficient accounting for the fact 428 

that water absorbs more beta dose than typical sedimentary elements, due to lower atomic numbers 429 

(Nathan and Mauz, 2008). A similar equation applies to gamma dose rates, with a corresponding factor 430 

𝑥𝛾 (see Guérin and Mercier, 2012). The determination of the water content in the sediment over time 431 

is a challenging task as it involves many different parameters, including past rainfall – see for example 432 

Nelson and Rittenour (2015) for a discussion on how to determine water contents depending on 433 

sediment grain size, hydrometric regimes, etc. One commonly employed solution is to measure the 434 



11 
 

water content at the time of sampling and assume it to be representative of that in the past; measuring 435 

the water content at saturation may then be a solution to evaluate an upper limit to this value; and 436 

depending on the context one may also propose a lower limit to the water content. One then obtains 437 

a way of quantifying the standard deviation of the error on the water content, although necessarily 438 

imperfect. Neglecting uncertainties on the water correction factors (𝑥𝛽  and𝑥𝛾) and calling 𝑠𝑊𝐹,𝑖 the 439 

absolute standard deviation of the mass fraction WFi for sample i, one may write: 440 

𝑠𝛽,𝐻2𝑂,𝑖 = 𝑑̇𝛽,𝑖
𝑠𝑊𝐹,𝑖

1+𝑥𝛽𝑊𝐹𝑖
  (Eq. 4) 441 

where 𝑠𝛽,𝐻2𝑂,𝑖  is the standard deviation of the beta dose rate for sample i due to the uncertainty on 442 

its water mass fraction. 443 

 Similarly, one may write:  444 

𝑠𝛾,H2O,𝑖 = 𝑑̇𝛾,𝑖
𝑠𝑊𝐹,𝑖

1+𝑥𝛾𝑊𝐹𝑖
  (Eq. 5) 445 

where 𝑠𝛾,H2O,𝑖 is the standard deviation of the gamma dose rate for sample i due to the uncertainty on 446 

its water mass fraction. As a result, 447 

𝑠𝛾,H2O,𝑖 =
𝑑̇𝛾,𝑖

𝑑̇𝛽,𝑖

1+𝑥𝛽𝑊𝐹𝑖

1+𝑥𝛾𝑊𝐹𝑖
𝑠𝛽,H2O,𝑖.  (Eq. 6) 448 

To simplify the following equations, which are meant to be those used in practice, we introduce the 449 

relative standard deviation of the beta dose rate due to water content errors (𝜎𝛽,H2O,𝑖) and a parameter 450 

called 𝜆𝑖 defined by: 451 

𝜆𝑖 =
1+𝑥𝛽𝑊𝐹𝑖

1+𝑥𝛾𝑊𝐹𝑖
  (Eq. 7) 452 

 Finally, it should be emphasized that uncertainty on water content may well correspond to 453 

errors which are neither really random nor really systematic; in our view different modelling choices 454 

may be put forward and implemented, depending on the particular sedimentological and pedological 455 

context. 456 

The 𝜽 matrix 457 

With these considerations in mind on errors and their nature, the corresponding 𝜃 matrix (Eq. 458 

2) to model these uncertainties is a square matrix containing one line (and column) per sample. The 459 

diagonal elements correspond to the sum of a term arising from the error on the laboratory source 460 

dose rate (𝑑̇𝑖
2𝜎lab

2 ) and the total dose rate variance for each sample, for each i: 461 

𝜃𝑖,𝑖 = 𝑑̇𝑖
2𝜎lab

2 + 𝑠cosmic,𝑖
2 + 𝑑̇𝛽,U,𝑖

2 (𝜎U,𝑖
2 + 𝜎U

2) + 𝑑̇𝛽,K,𝑖
2 (𝜎K,𝑖

2 + 𝜎K
2) + 𝑑̇𝛽,Th,𝑖

2 (𝜎Th,𝑖
2 + 𝜎Th

2 ) + 𝑠int
2 +462 

𝑑̇𝛾,𝑖
2 (𝜎𝛾,𝑖

2 + 𝜎𝛾
2) + (𝑑̇𝛽,U,𝑖 + 𝑑̇𝛽,K,𝑖 + 𝑑̇𝛽,Th,𝑖 + 𝜆𝑖𝑑̇𝛾,𝑖)

2
𝜎𝛽,H2O,𝑖

2 .  (Eq. 8) 463 

This long list of variance terms may seem rather complicated. However, it corresponds to the total 464 

variance arising from the laboratory beta source calibration, the errors on cosmic dose rates, 465 

environmental beta dose rates, internal dose rates, gamma dose rates, and finally the error arising 466 

from uncertainties in water content. In other words, we can also write  467 

𝜃𝑖,𝑖 = 𝑑̇𝑖
2𝜎lab

2 + 𝑠𝑑̇𝑖 
2   (Eq. 9), 468 

where 𝑠𝑑̇𝑖 
2  is the variance of the dose rate to which sample i was exposed to during burial (it is the 469 

square of the uncertainty appearing next to the dose rate value in every luminescence dating article; 470 
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in our example, this term is the second one in the files DoseEnv.csv provided in Supplementary 471 

Material). 472 

 Then, for 𝑖 ≠ 𝑗: 473 

𝜃𝑖,𝑗 = 𝑑̇𝛾,𝑖 𝑑̇𝛾,𝑗𝜎𝛾
2 +  𝑑̇𝛽,U,𝑖𝑑̇𝛽,U,𝑗𝜎U

2 + 𝑑̇𝛽,K,𝑖𝑑̇𝛽,K,𝑗𝜎K
2 + 𝑑̇𝛽,Th,𝑖𝑑̇𝛽,Th,𝑗𝜎Th

2 + 𝑠int
2 + 𝑑̇𝑖 𝑑̇𝑗𝜎lab

2         (Eq. 474 

10), 475 

which characterises the amount of correlation between the doses of samples i and j, multiplied by their 476 

ages. The 𝜃 matrix, like the dose covariance matrix Σ, is a symmetric matrix. The diagonal members 477 

correspond to individual variances, while the non-diagonal terms express the fact that systematic, 478 

shared errors link the measurements of the series of samples. As a result, running the functions 479 

AgeS_Computation() and Age_OSLC14() with a 𝜃 matrix in which all non-diagonal members 480 

are set to zero would be equivalent to running the same functions without the correlation matrix, or 481 

running the function Age_Computation() independently for each sample – in which case all 482 

sources of error are treated as random. 483 

  5.3. Examples 484 

5.3.1. An illustrative, simplistic example without stratigraphic constraints 485 

For illustration purposes, first, we did not apply stratigraphic constraints. We started with a 486 

simplistic 𝜃 matrix containing in the diagonal the real error variances (Eq. 9) as determined by Guérin 487 

et al. (2015); the 𝜎lab value was equal to 0.02 (2% relative standard deviation of the calibration of the 488 

laboratory beta source). The simplification comes from the off-diagonal members, for which in Eq. (10) 489 

we set all s and 𝜎 values equal to 0, except for the 𝜎lab value, set to 0.05. Obviously, this is not self-490 

consistent, but it corresponds to (i) random and systematic errors of approximately the same 491 

magnitude (in practice, these two sources of errors are of the same order of magnitude – a few %) and 492 

(ii) the simplest form of systematic errors. Indeed, in such a case, all ages are affected by the same 493 

relative amount in the same direction.  494 

Here again, after 5,000 iterations of 3 independent Markov Chains, we observed good 495 

convergence. The obtained 95% C.I. are [33.9; 43.8] and [36.7; 48.1] ka for samples FER 1 and FER 3, 496 

respectively. Fig. 6 shows bivariate scatter plots corresponding to the sampling of the Markov Chains 497 

for the ages of samples FER 1 and FER 3 (which are calculated simultaneously) and Fig. 7 displays the 498 

KDE together with the marginal probability densities. This set of figures illustrate the reason for the 499 

generation of the two types of figures: the bivariate scatter plot is most appropriate for visualising the 500 

effect of stratigraphic constraints (Fig. 4 above), whereas probability density figures best illustrate the 501 

effect of modelling systematic errors. Indeed, as can be seen, there is a positive correlation between 502 

the ages of samples FER 1 and FER 3: the greater the age of sample FER 1, the greater is the mean age 503 

of sample FER 3. In other words, if the age of sample FER 1 were underestimated, then in all likelihood, 504 

so would be the age of sample FER 3. Furthermore, the length of the C.I. for the age of each sample is 505 

slightly larger than without modelling the covariance (cf. Table 1), i.e. modelling the covariances 506 

slightly increases the age uncertainties. However, the positive correlation of ages has other, direct 507 

consequences.  508 

First, let us suppose that we have no knowledge of a stratigraphic link between the two 509 

investigated samples, and wish to test the hypothesis that sample FER 1 is younger than sample FER 3. 510 

The credibility of such an assumption can be tested using the function MarginalProbability() 511 

of the ‘Archaeophases’ R package (Philippe and Vibet, 2020) devoted to the analysis of MCMC chains 512 

for chronological inference. Without using the covariance matrix, the credibility of this hypothesis is 513 
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0.83; with the simplistic 𝜃 matrix, the credibility becomes 0.94; in other words, modelling the age 514 

covariance reflects more faithfully the measurements and their uncertainties for such tests. 515 

The second consequence concerns the duration of a hypothetical phase that would encompass 516 

the deposition of sample FER 1 and that of sample FER 3. Indeed, since the ages vary together in the 517 

MCMC, the duration of such a phase should be smaller when modelling the covariance than when all 518 

the variance in ages is treated as random. Indeed, we could verify this assertion using the function 519 

PhaseStatistics() of ‘ArchaeoPhases’ (Philippe and Vibet, 2020): with the simplistic covariance 520 

matrix, the 95 % C.I. for the duration of this phase is [-1.4; 9.7] ka, whereas it is [-0.6; 7.6] ka when the 521 

ages are calculated using the simplistic 𝜃 matrix. 522 

5.3.2. A real example, including stratigraphic constraints 523 

In a real case, since the relative contributions of the different dose rate components vary from 524 

one sample to another, the correlation will be less pronounced. For more realistic calculations of the 525 

ages of samples FER 1 and FER 3, we took the same values as above for the diagonal terms of the 𝜃 526 

matrix (Eq. 9); on the other hand, for the non-diagonal, covariance terms, we used the following values: 527 

𝜎lab = 0.02 (which corresponds to the experimentally determined calibration standard deviation, 528 

including the uncertainty of the dose delivered to calibration quartz; Hansen et al., 2015), 𝜎K = 0.012, 529 

𝜎U = 0.007 , 𝜎Th = 0.007 (for these values, which also include counting of the standards used, the 530 

reader is referred to Guibert et al., 2009; Guibert, 2002), and 𝑠int = 0.003 Gy.ka-1. We provide as 531 

Supplementary Information a calculation spreadsheet allowing to build the covariance matrix, 532 

intended for adaptation to the user-specific needs. 533 

At the site of La Ferrassie, the uncertainties associated with the gamma dose rate observations 534 

are more complex. Al2O3:C dosimeters were placed at the end of 25 cm long aluminium tubes and 535 

inserted horizontally in the stratigraphic section at the location of sediment sampling. In an ideal case, 536 

sediment should be uniform in a horizontal plane; however, for samples FER 1 and FER 3 only a rather 537 

thin layer of sediment remained against the cliff wall (the layers of the sample were not present at the 538 

site in any other location), which resulted in the dosimeters being inserted either in the karstic cliff 539 

(the limestone contains little radioelements compared to the sediments, as shown in Fig. 5 of Guérin 540 

et al., 2015b) or at the interface between the cliff and the sediment. As a result, we took for 𝑑̇𝛾,𝑖  the 541 

average between the gamma dose rates measured in situ (which underestimate the real gamma dose 542 

rate because the effect of the cliff is over-represented) and the gamma dose rates derived from the K, 543 

U and Th concentrations in the samples. The associated standard deviation, 𝜎𝛾,𝑖, was calculated as the 544 

difference between these two extreme values divided by 4, so that the 95% C.I. covers all possible 545 

values. As this standard deviation is much larger than the analytical uncertainties, we neglected the 546 

latter and considered 𝜎𝛾,𝑖 to characterise random sources of errors since each sample has a different 547 

environment and may be more or less far from the cliff.  548 

The samples FER 1 and FER 3 are directly above and below, respectively, the Châtelperronian 549 

layer at the site (layer 6). Sample FER 2 from this layer being poorly bleached, it is at present impossible 550 

to model with ‘BayLum’. However, an alternative to estimate the age of FER 2 consists of supposing 551 

that it has a uniform prior probability density between the ages of samples FER 1 and FER 3: 552 

𝑃(𝐴2|𝑑𝑎𝑡𝑎)~ ∬
𝕀[𝐴1;𝐴3]

𝐴3−𝐴1
𝜋(𝐴1, 𝐴3|𝑑𝑎𝑡𝑎)𝑑𝐴1𝑑𝐴3  (Eq. 11) 553 

where 𝐴𝑖 is the age of sample i, 𝕀[𝐴1;𝐴3] is the indicator function between 𝐴1 and 𝐴3, and 554 

𝜋(𝐴1, 𝐴3|𝑑𝑎𝑡𝑎) is the posterior joint density of 𝐴1 and 𝐴3 knowing the data (i.e. the density estimated 555 

with ‘BayLum’). Doing so (see the markdown file for the corresponding code lines), working from the 556 
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output of ‘BayLum’ one obtains a 95% C.I. of [36; 46] ka, which can be compared with the confidence 557 

interval of [36; 48] ka obtained by Guérin et al. (2015) with minimum age modelling. 558 

6. Integration of independent chronological data (radiocarbon) 559 

The ‘BayLum’ package also offers the possibility to include radiocarbon ages in the chronological 560 

models (Philippe et al., 2018); more specifically, radiocarbon ages are calibrated within ‘BayLum’, using 561 

the function AgeC14_Computation() or Age_OSLC14() (in the latter case the function 562 

necessitates at least one OSL age calculation). Introducing covariance matrices to account for 563 

systematic errors on OSL data does not reduce the OSL age uncertainties; however, it becomes 564 

particularly useful to correct for estimation biases when more precise ages, unaffected by these 565 

systematic errors, are integrated into the models. To illustrate this, we decided to construct two 566 

models constraining the age of FER 3; for illustration purposes, in this section, we used the simplistic 567 

𝜃 matrix described above in section 5.3.1. In the first case, we constrained the age of this sample by 568 

imposing that a ‘young’ radiocarbon age (young compared to the age of sample FER 3 considered 569 

alone) has an age greater than sample FER 3. In practice, we arbitrarily took a radiocarbon age of 570 

38,000 ± 400 BP, which corresponds to [37.6; 39.9] ka cal. BP (95% C.I. using the IntCal20 curve, Reimer 571 

et al., 2020; the calibration was performed using ‘BayLum’, see Philippe et al., 2018). Naturally, the 572 

credible intervals (both 68% and 95%) for sample FER 3 are shifted towards younger age values (cf. 573 

truncation of the scatter plot illustrated in Fig. 3). So do the credible intervals for sample FER 1, since 574 

the ages of the two OSL samples are close to each other even when considered independently of 575 

radiocarbon data (in other words, the radiocarbon age ‘pushes’ the age of sample FER 3, which in turn 576 

‘pushes’ the age of sample FER 1). In practice, the 95% C.I. become [33.3; 41.2] ka and [36.9; 42.3] ka 577 

for samples FER 1 and FER 3, respectively. It can be noted here that in such a case the precision of the 578 

age of sample FER 3 is increased (i.e. the length of the C.I. is much smaller than without the constraining 579 

radiocarbon age). More interestingly, in the second case, we constrained the age of sample FER 3 by 580 

imposing that an ‘old’ radiocarbon age (old compared to the age of sample FER 3 considered alone) 581 

has an age younger than sample FER 3. In practice we – again, arbitrarily – took a radiocarbon age 582 

equal to 44,000 ± 400 BP, which corresponds to [45.4; 47.4] ka cal. BP (95% C.I.). Here again, the effect 583 

on the age of sample FER 3 is straightforward: the credible intervals are shifted towards older ages 584 

(the 95% C.I. for the age of sample FER 3 becomes [45.7; 51.2] ka). Perhaps less intuitive is the effect 585 

on the age of sample FER 1, which is not directly constrained by radiocarbon: because the ages of the 586 

three samples are estimated jointly, and because of the systematic errors on the OSL ages, the age of 587 

sample FER 1 is also shifted towards older ages: the corresponding 95% C.I. becomes [36.7; 45.8] ka.  588 

7. Discussion 589 

 7.1. Differing ways of estimating dose rates 590 

 Every laboratory uses its specific equipment and calibration standards; if similar equipment as 591 

described above is used, then only the values of the different terms need be changed. This case is 592 

particularly relevant for equivalent dose measurements, and hence the term 𝜎𝑙𝑎𝑏 associated with 𝑑̇𝑙𝑎𝑏. 593 

Conversely, for dose rate determination, several other experimental devices and techniques are 594 

commonly used. If beta and/or gamma dose rates are determined based on the determination of 595 

concentration in K, U and Th, (for example by mass spectrometry, neutron activation, etc.), then the 596 

situation is similar as that described for beta dose rates above.  597 

Counting techniques (alpha, beta, and gamma in the case of the threshold technique: Løvborg 598 

et al., 1974) may also be used for beta and gamma dose rate estimation. In the case of beta counting, 599 

the conversion factor from count rate to dose rate depends on the emitting radioelement 600 
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(Ankjærgaard and Murray, 2007; see also Cunningham et al., 2018). This dependency is a source of 601 

error that may not easily be characterised by a systematic error (so there is no contribution to the dose 602 

covariance matrix); indeed, this error on the conversion factor will vary from one site to another 603 

depending on the concentrations in K, U and Th (which are generally unknown if a counting technique 604 

is used), and even within one site from one sample to another (again by unknown amounts since the 605 

variability in K, U and Th is unknown).  606 

The data acquired with field gamma spectrometers may be analysed in two ways: the ‘window’ 607 

technique (see, e.g., Aitken, 1985) corresponds to classical spectrometry analysis; in this case, the 608 

structure of uncertainties is the same as that for beta dose rates determined from high-resolution 609 

gamma spectrometry (Eq. 11). On the other hand, threshold techniques consist of taking advantage of 610 

proportionality between gamma dose rates and (i) the number of counts recorded per unit time above 611 

a threshold (Løvborg and Kirkegaard, 1974) or (ii) the energy deposited per unit time above a threshold 612 

(energy threshold: Guérin and Mercier, 2011; Miallier et al., 2009). In the former case, the conversion 613 

from count rate to dose rate depends on the emitting radioelement, so no systematic error term may 614 

be isolated. Conversely, in the latter case (energy threshold), this dependency is negligible (Guérin and 615 

Mercier, 2011). As a result, the error on the dose rate of the calibration standard may be considered 616 

as systematic, and thus contribute one term in the non-diagonal elements of the covariance matrix. 617 

Difficulties in implementing the threshold technique may occur in low dose rates environments, 618 

because energy calibration may not be straightforward if the probe is not self-stabilised. In such cases, 619 

routines such as those implemented in the R package ‘gamma’ (Lebrun et al., 2020) may be put to 620 

profit. Finally, ageing of the crystal may also result in time-dependent errors – the latter must be taken 621 

care of by regular calibration experiments.  622 

 7.2. Error terms neglected in this study 623 

As mentioned earlier in the section devoted to dose rate uncertainties, there are many 624 

possibilities to quantify, but also to consider errors on dose rate measurements; one could mention 625 

here the uncertainties on attenuation factors and water correction factors. However, both of these 626 

factors are dependent on the infinite matrix assumption: attenuation in grains implies that something 627 

other than the grains does not attenuate radiation (i.e. conservation of energy implies that if there is 628 

lower dose rate inside a quartz grain, there must be a higher dose rate somewhere else – cf. Guérin et 629 

al., 2012a) ; water correction factors are often calculated assuming a homogeneous mixture of water 630 

and other sedimentary components (Zimmerman, 1971; Aitken and Xie, 1990; note: the composition 631 

of the sediment also necessarily affects the ratios of electron stopping powers and photon interaction 632 

cross-sections – see Nathan and Mauz, 2008, for a discussion). Limitations of this infinite matrix 633 

assumption, which is not met in sand samples at the scale of beta dose rates, have already been 634 

pointed out (Guérin and Mercier, 2012; Guérin et al., 2012a; Martin et al., 2015). Consequently, it 635 

seems that routine determination of a realistic standard deviation of the attenuation and water 636 

content correction parameters is not straightforward.  637 

Dose rate conversion factors were assumed above to be known without error; however, 638 

estimation errors affect half-lives, emission probabilities, average emitted energies, etc. Liritzis et al. 639 

(2013) took these uncertainties into account to estimate standard deviations of the dose rate 640 

conversion factors (in practice, these standard deviations amount to ~1% for K dose rates, ~2% for U 641 

and ~2% for Th). These standard deviations could be included as sources of systematic errors when the 642 

contributions of K, U and Th are determined separately (note: when this is not the case, as when 643 

dosimeters are used for gamma dose rate estimation, or when beta counting is implemented for beta 644 

dose rate assessment, these sources of errors should be treated as random). 645 
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In this study, we worked with coarse grain quartz extracts that had been etched with HF to 646 

remove the alpha-irradiated part of the grains. This being said, if alpha dose rates are taken into 647 

account, then the situation becomes similar to that of beta dose rates treated above; however, the 648 

sensitivity to alpha irradiation must then be taken into account. It is rather frequent in such a case to 649 

use published values from the literature (e.g., Tribolo et al., 2001; Mauz et al., 2006). Depending on 650 

the geological origin of the quartz (one or more sources), one may then assume either systematic or 651 

random errors on the alpha sensitivity. 652 

7.3. Publication habits and re-analysis of previously published ages  653 

Compared to other statistical models for OSL dating, the Bayesian models implemented in 654 

‘BayLum’ appear rather complicated, at least partly because modelling starts from the measured OSL 655 

data. By comparison, the input data to the CDM or the Average Dose Model (ADM: Guérin et al., 2017) 656 

are lists of equivalent doses and associated uncertainties, which means that OSL measurements have 657 

already been analysed to derive equivalent doses. Combès et al. (2015) argued that their complete 658 

model (implemented in ‘BayLum’), relating all the variables to one another, produces a more 659 

homogeneous and consistent inference compared to consecutive inferences (and indeed, when 660 

approaching saturation, i.e. when equivalent doses and associated uncertainties can hardly be 661 

parameterised, Heydari and Guérin (2018) demonstrated the advantage of ‘BayLum’ models compared 662 

to parametric models such as the CDM and ADM). However, working with lists of equivalent doses and 663 

uncertainties – or even with estimates of central doses and associated uncertainties – taken as 664 

observations would make the Bayesian modelling proposed in ‘BayLum’ and described in this paper 665 

more straightforward and transparent. Such an approach, called the ‘two-steps’ model by Combès and 666 

Philippe (2017; see also Millard 2006a, 2006b, for earlier, similar models), would also offer the 667 

advantage of allowing re-analysis of already published data to derive more precise chronologies. 668 

However, for this purpose, the breakdown of all uncertainties and related standard deviations of errors 669 

is needed; nowadays, providing such key information for the modelling is not in the luminescence 670 

dating community's publication habits. That being said, with the growing number of meta-analyses of 671 

previously published data, and the availability to use models such as ‘BayLum’ to combine 672 

measurements with systematic errors, these habits might evolve in the future. 673 

7.4. Notes of caution 674 

As always when working with statistical models, one should first and foremost evaluate the 675 

measured data in the light of sampling context. We already mentioned the importance of grain 676 

selection (section 2.2.); but, perhaps more importantly, and especially since users of ‘BayLum’ have to 677 

make modelling choices (e.g., regarding the dose-response curves fitted to OSL measurements or the 678 

distribution of individual equivalent doses around the central dose), it is crucial to carefully examine 679 

data and assess their quality before building potentially sophisticated models.  680 

We would like to emphasise a few warnings regarding modelling samples in stratigraphic 681 

constraints, and the association of ages obtained by different methods. We would advise users, before 682 

combining, e.g. radiocarbon and OSL ages, first to thoroughly examine the corresponding datasets 683 

independently: how were the data produced (with which experimental procedure)? Are the provided 684 

uncertainties reliable (or is there an unrecognised source of error that should be included in the 685 

evaluation of uncertainty)? Users are also encouraged to examine the consistency of results produced 686 

by each method, in light of the stratigraphy. In a second stage, before modelling of independent ages, 687 

we would recommend assessing the consistency of these datasets – do they (at least broadly) agree? 688 

If not, can a parsimonious explanation be found? For example, it is rather common, when performing 689 

Bayesian modelling with tools such as OxCal, to observe a large fraction of ages considered as outliers; 690 
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such observations should urge users to examine their data again and come up with likely explanations 691 

(note: to this date, no outlier model has been developed for the OSL ages in ‘BayLum’). 692 

When it comes to imposing ordering constraints between ages as a result of stratigraphic 693 

observations, it is, of course, essential to leave no doubt about the validity of these stratigraphic 694 

constraints (the results of a model depend on the assumptions that are made, and the order in ages is 695 

a very strong constraint). Perhaps more importantly, even when stratigraphic constraints are valid, it 696 

is possible that applying them will not improve the statistical inference.  697 

A simple example to illustrate this point is that of two superimposed, distinct layers (so that a 698 

stratigraphic order is clear) whose true ages are equal (or in practice, for which the age difference is 699 

negligible compared to the typical uncertainties of the implemented dating method). In such a case, 700 

modelling the ages with stratigraphic constraints is likely to result in a loss of accuracy (the age of the 701 

older layer will be overestimated, and that of the younger layer underestimated) compared to a model 702 

where no stratigraphic constraints are imposed. Future developments of the ‘BayLum’ package might 703 

include the possibility to test different modelling scenarios by comparing the agreement between the 704 

observations and the posterior probability densities, for example using the Bayes Information Criterion 705 

(BIC). 706 

8. Conclusion 707 

New models for building chronologies based on OSL, with the possibility to incorporate 708 

radiocarbon, have been proposed in the literature (Combès et al., 2015; Combès and Philippe, 2017). 709 

These models have been demonstrated to improve the chronological inference based on OSL data and 710 

in particular, the accuracy of OSL ages (Guérin et al., 2015; Heydari and Guérin, 2018). The R package 711 

‘BayLum’ was developed to implement these models; Lahaye et al. (2018), Carter et al. (2019), Heydari 712 

et al. (2020, 2021) have used some of them to establish the chronologies of sedimentary sequences 713 

dated by OSL, resulting in generally more precise chronologies.  714 

In this article, we have presented a case study on how to build simple models and observe 715 

output data, particularly through bivariate plots of age probability densities. Then, we have shown how 716 

to include stratigraphic constraints in the models; we have described how to fill the covariance 717 

matrices to account for systematic errors in OSL age estimation; and we have shown the effect of 718 

including independent age information in the models, namely radiocarbon ages. Different tools to 719 

visualise and further analyse the output of ‘BayLum’ were demonstrated. 720 

As a result, it is now possible to use various information often available in practice when dating 721 

stratigraphic sequences. Age inferences based on OSL and independent data (e.g., radiocarbon) in 722 

stratigraphic constraints are expected to gain in accuracy, precision and robustness, through the 723 

application of such Bayesian models. 724 

 725 
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 727 
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 729 

 730 

 731 
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Figures 934 

 935 

Fig. 1: Age estimates for OSL samples FER 1 and FER 3. The red circles indicate the Bayes estimates of 936 

the age (i.e. the most likely values) for each sample; the cyan and blue bars represent the 68% and 937 

95% credible intervals, respectively. For the two radiocarbon ages (C14-1 and C14-2), the reader is 938 

refereed to section 6. 939 

 940 

 941 
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 942 

Fig. 2: Bivariate scatter plot as hexagon plot presentation of a sample of observations from the joint 943 

posterior distribution of the two OSL ages considered independently (no stratigraphic constraints, no 944 

off-diagonal members in the covariance matrix). In such a plot, each point corresponds to one 945 

realisation of the ages of the two samples generated by the MCMC. Note: the reason for having this 946 

figure in the cell of an array is not visible here; it becomes useful when calculating ages for more than 947 

2 samples, in which case for each pair of samples, a similar plot appears in the appropriate cell. 948 
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 950 

Fig. 3: Probability densities for the OSL ages estimated jointly with the same model as that used to 951 

generate Fig. 2, based on Kernel Density Estimates (KDE), and marginal probability densities. The bell-952 

shape and symmetry of the scatter plot indicate the absence of correlation between the two ages. 953 
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955 
Fig. 4: Bivariate scatter plot from the joint posterior distribution of the ages of samples FER 1 and FER 956 

3 when a stratigraphic constraint is applied (sample FER 1 is younger than sample FER 3) but with no 957 

off-diagonal members in the covariance matrix. The truncation in the upper-left hand corner scatter 958 

plot indicates the effect of the stratigraphic constraint.  959 
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961 
Fig. 5: Probability densities for the OSL ages estimated jointly, using the same model as that 962 

implemented to generate Fig. 4 (stratigraphic constraint, no covariance matrix).  963 
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965 
Fig. 6: Bivariate scatter plot from the joint posterior distribution of the ages of samples FER 1 and FER 966 

3 when a stratigraphic constraint is applied (sample FER 1 is younger than sample FER 3) and off-967 

diagonal members of covariance matrix are used to model systematic errors (note: in this case, for 968 

illustrative purposes we used a simplistic covariance matrix – see section 5.3.1. for details). The 969 

truncation in the upper-left hand corner scatter plot indicates the effect of the stratigraphic constraint.  970 
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972 
Fig. 7: Probability densities for the OSL ages estimated jointly, using the same model as that 973 

implemented to generate Fig. 6 (stratigraphic constraint and off-diagonal members in the covariance 974 

matrix). The positive correlation in the joint posterior density reflects the effect of modelling the 975 

systematic errors with a covariance matrix (and, to some degree, of the stratigraphic constraint).  976 
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Table 1. Summary of Credible Intervals for the ages (in ka) of samples FER 1 and FER 3 estimated in 978 

the different modelled scenarios. 979 

Sample 68% Credible Interval 95% Credible Interval 

 lower upper lower upper 

Independent 

FER 1 36.0 40.5 34.1 43.3 

FER 3 38.9 44.6 36.6 47.8 

In stratigraphy 

FER 1 36.2 40.4 34.3 42.9 

FER 3 40.0 45.0 38.1 48.5 

No stratigraphic constraint, with ‘simplistic’ covariance (section 5.3.1) 

FER 1 36.0 40.8 33.9 43.8 

FER 3 39.2 45.4 36.7 48.1 

In stratigraphy, with realistic covariance (section 5.3.2) 

FER 1 36.1 40.5 34.2 42.6 

FER 3 39.8 45.3 37.8 48.6 

In stratigraphy, with covariance and a ‘young’ radiocarbon age 

FER 1 35.2 39.4 33.3 41.2 

FER 3 39.2 42.2 36.9 42.3 

In stratigraphy, with covariance and an ‘old’ radiocarbon age 

FER 1 38.7 43.5 36.2 46.2 

FER 3 46.1 48.7 46.1 51.5 

 980 
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Table 2. List of physical units and associated uncertainties used in this work. The letter i in subscript 982 

indicates a sample specific value, its absence a common value shared between samples. The letter s 983 

indicates absolute uncertainties, while σ is used for relative uncertainties. 984 

Physical unit  Notation Systematic uncertainty Random uncertainty 

Laboratory source dose rate 𝑑̇𝑙𝑎𝑏 𝜎𝑙𝑎𝑏  

Cosmic dose rate 𝑑̇𝑐𝑜𝑠𝑚𝑖𝑐,𝑖  𝑠𝑐𝑜𝑠𝑚𝑖𝑐,𝑖 

K concentration [K]i 𝜎𝐾 𝜎𝐾,𝑖  

U concentration [U]i 𝜎𝑈 𝜎𝑈,𝑖 

Th concentration [Th]i 𝜎𝑇ℎ 𝜎𝑇ℎ,𝑖 

Internal dose rate 𝑑̇𝑖𝑛𝑡 𝑠𝑖𝑛𝑡  

Gamma dose rate 𝑑̇𝛾,𝑖  𝜎𝛾 𝜎𝛾,𝑖 

Water content WFi  𝑠𝑊𝐹,𝑖  

 985 


