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Abstract 20 

Statistical analysis has become increasingly important in the field of OSL dating since it has become 21 

possible to measure signals at the single grain scale. The accuracy of large chronological datasets can 22 

benefit from the inclusion, in chronological modelling, of stratigraphic constraints and shared 23 

systematic errors. Recently, a number of Bayesian models have been developed for OSL age 24 

calculation; the R package ‘BayLum’ allows implementing different such models, in particular for 25 

samples in stratigraphic order which share systematic errors. We first show how to introduce 26 

stratigraphic constraints in ‘BayLum’; then, we focus on the construction, based on measurement 27 

uncertainties, of dose covariance matrices to account for systematic errors specific to OSL dating. The 28 

nature (systematic versus random) of errors affecting OSL ages is discussed, based – as an example – 29 

on the dose rate determination procedure at the IRAMAT-CRP2A laboratory (Bordeaux). The effects of 30 

the stratigraphic constraints and dose covariance matrices are illustrated on example datasets. In 31 

particular, the interest of combining the modelling of systematic errors with independent ages, 32 

unaffected by these errors, is demonstrated. Finally, we discuss other common ways of estimating 33 

dose rates and how they may be taken into account in the covariance matrix by other potential users 34 

and laboratories. Test datasets are provided as supplementary material to the reader, together with 35 

an R Markdown tutorial allowing to reproduce all calculations and figures presented in this study. 36 
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1. Introduction 38 

Optically stimulated luminescence (OSL; Huntley et al., 1985) allows dating the last exposure 39 

of quartz grains to sunlight. The Single Aliquot Regenerative (SAR) dose protocol consists of comparing 40 

the natural luminescence signal to laboratory-generated signals induced by artificial irradiations 41 

(Murray and Wintle, 2000; Wintle and Murray, 2006). The corresponding measurements, in particular 42 

at the single-grain scale, result in large datasets characterised by important scatter, owing to a number 43 

of dispersion factors (see, e.g. Thomsen et al., 2005). An OSL age is then obtained by dividing the 44 

equivalent dose (i.e. in the case of coarse quartz grains, the dose absorbed by the mineral) by the dose 45 

rate to which quartz grains were exposed since the last exposure to light.  46 

Statistical analysis, in the field of geochronology, generally aims at improving the precision, 47 

accuracy and/or range of dating methods. In the case of OSL dating, calibration errors on the laboratory 48 

source dose rate for natural dose estimation, and geochemical standards for dose rate assessment, 49 

have so far resulted in age uncertainties of, at best, ~5% (see, e.g., Duller, 2008; Guérin et al., 2013). 50 

 Note that in what follows, the unit of analysis is a sediment sample; the system of analysis is 51 

the laboratory in which the measurements are performed and includes both the apparatus and 52 

associated calibration standards. By definition, an error is the difference between the measured or 53 

observed value of a physical quantity, and its true (but unknown) value. Thus, by systematic errors, we 54 

refer to random errors affecting equipment calibration: whereas each of these errors may be assigned 55 

a Gaussian probability density function with zero mean and a known variance (the square root of the 56 

variance being generally referred to as uncertainty), at the scale of the laboratory this error takes a 57 

fixed, unknown value that affects all measurements in the same direction. 58 

Over the past few years, several models for routine Bayesian analysis of SAR OSL and dose rate 59 

data were developed to reflect better, and take advantage of, the measurement procedures 60 

implemented to calculate OSL ages. Among those models, Combès et al. (2015) proposed one for 61 

calculating the central dose values for well-bleached samples, leading to higher overall accuracy (see 62 

Guérin et al., 2015a) compared to the most commonly used model for OSL data analysis (the Central 63 

Dose Model: CDM, Galbraith et al., 1999; note: we changed the original terminology following 64 

Galbraith and Roberts, 2012). Combès and Philippe (2017) developed models capable of dealing with 65 

individual and systematic multiplicative errors for OSL age calculation including stratigraphic 66 

constraints (for general introductions on a statistical analysis of OSL data, but also the statistical 67 

models discussed hereafter and associated prior distributions, the reader is referred to Combès et al., 68 

2015; Combès and Philippe, 2017, and references therein). 69 

To implement the Bayesian models of Combès et al. (2015) and Combès and Philippe (2017) in 70 

practice, and provide easy access to the community, an R package (R Core Team, 2020) named 71 

‘BayLum’ (Christophe et al., 2020; version 0.2.0) has been developed and released on the 72 

Comprehensive R Archive Network (CRAN; see also Mercier et al., 2017, for a first implementation of 73 

the central dose model from Combès et al., 2015). First features of this ‘BayLum’ package were 74 

presented by Philippe et al. (2019) and its performances, when one is confronted either with large 75 

dose values or with dose variability issues, were tested in laboratory-controlled experiments (Heydari 76 

and Guérin, 2018) and later applied to various case studies (Lahaye et al., 2018; Carter et al., 2019; 77 

Heydari et al., 2020; submitted; Chevrier et al., accepted). 78 

The purpose of this paper is to focus on the treatment of stratigraphic constraints and 79 

systematic errors for chronological modelling using ‘BayLum’, i.e. it goes beyond than what was first 80 

demonstrated by Philippe et al. (2019); together with the association of independent, more precise 81 

ages (14C in this work), such modelling is expected to reduce OSL age uncertainties. In the past, other 82 
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approaches to model systematic and random, individual errors in the field of palaeodosimetric dating 83 

methods were proposed; in particular, Millard (2006a, 2006b) developed a Bayesian approach quite 84 

close to that presented here, but which – among different other things (see Combès and Philippe, 85 

2017, for a more detailed discussion) – is limited in its applicability.  86 

Herein we present a Bayesian modelling case study. (1) We start with how data should be pre-87 

treated prior to using the ‘BayLum’ package; a simple example of chronological modelling (samples 88 

considered independent, i.e. without stratigraphic constraints and shared errors) is first presented, 89 

yielding an output from the ‘BayLum’ package to serve as a reference for the following, more elaborate 90 

models. (2) In the next step, we detail how the user can integrate stratigraphic constraints and the 91 

effect on the chronological inference. (3) Then, most importantly we explain how to build a dose 92 

covariance matrix in practice to take into account systematic errors (for the definition of this matrix, 93 

the reader is referred to Combès and Philippe, 2017) and what effect it has on a series of ages. (4) For 94 

this purpose, we base our approach on dose rate measurements as performed by Guérin et al. (2015b) 95 

at the IRAMAT-CRP2A laboratory. The effect of integrating independent data such as radiocarbon ages, 96 

which do not share the systematic errors affecting OSL data, is then illustrated. (5) Finally, we discuss 97 

different ways to measure dose rates and various assumptions that can be made regarding the nature 98 

(systematic or random) of additional sources of errors in OSL dating. 99 

To help the reader, we provide as supplementary information an R markdown document with 100 

commented lines of code and example datasets, so that everything presented here may be 101 

reproduced. 102 

2. Samples and methods 103 

2.1. Case study  104 

To illustrate how to model OSL ages, both in stratigraphic constraints and sharing systematic 105 

errors, using the R ‘BayLum’ package, we use the data from two sediment samples (FER 1 and FER 3) 106 

already dated by quartz OSL (Guérin et al., 2015b). These samples were taken from the archaeological 107 

site of La Ferrassie (France) and prepared following standard chemical preparation procedures applied 108 

to luminescence-dating samples. While modelling with ‘BayLum’ may be applied to both multi-grain 109 

and single-grain OSL datasets, in the following we only focus on single-grain data, as this is probably 110 

where the need for appropriate statistical models is most acute (the reliability of multi-grain OSL has 111 

been demonstrated when using a plain average (mean) for palaeodose estimation; see, e.g., Murray 112 

and Olley, 2002; for theoretical justification, see Guérin et al., 2017). Single-grain OSL data were 113 

measured using an automated Risø TL/OSL reader (DA 20) fitted with a single grain attachment (Duller 114 

et al., 1999; Bøtter-Jensen et al., 2000). A standard SAR protocol (Murray and Wintle, 2000; 2003) was 115 

used to measure single-grain equivalent doses, after checking its suitability for the samples under 116 

investigation. A comparison between quartz OSL and feldspar IRSL signals for these two samples, as 117 

well as comparison with radiocarbon, showed that these samples were well-bleached at the time of 118 

deposition and unaffected by post-depositional mixing. As a result, the use of central dose models is 119 

fully justified (it should be noted here that at the time of writing, ‘BayLum’ does not yet include the 120 

Bayesian model of Christophe et al., 2018, allowing the analysis of poorly bleached samples).  121 

2.2. Data pre-treatment 122 

The Bayesian modelling implemented in ‘BayLum’ requires information of different natures: (i) 123 

raw OSL data in the form of BIN/BINX file(s), (ii) list(s) of grains to be included in the modelling (based 124 

on pre-defined selection criteria, e.g. on recycling and/or recuperation ratios), (iii) file(s) indicating how 125 

the data should be processed (signal integration channels, reproducibility of the instrument(s), etc.) 126 
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and (iv) both natural (in Gy.ka-1) and laboratory (in Gy.s-1) dose rates. Based on these data, the 127 

calculations are performed all at once using Markov Chain Monte Carlo (MCMC) computations; as a 128 

result, unlike in standard frequentist data processing, there is no succession of steps in data analysis 129 

(for example, individual equivalent dose estimates are not parameterised, unlike when the CDM is 130 

used). While Combès et al. (2015) argue that this results in a better statistical inference about the age 131 

(or palaeodose), it also comes with a downside: the user cannot visualise the data during the statistical 132 

analysis. In particular, the fact that the user must specify the list of grains to be included in the analysis 133 

implies that one should always pre-treat the samples in a standard way, by using, e.g. Analyst (Duller, 134 

2015) or the R ‘Luminescence’ package (Kreutzer et al., 2012; Kreutzer et al., 2020) to visually check 135 

the data but also investigate the effect of various selection criteria on the datasets (see for example 136 

Thomsen et al., 2016, on the effect of applying various selection criteria when with frequentist 137 

statistical models; see Heydari and Guérin, 2018, for a similar study in a Bayesian framework).  138 

In other words, using ‘BayLum’ for age calculation should not, and does not, prevent the user 139 

from a careful and critical examination of the measured OSL data. In particular, before running age 140 

calculations using the ‘BayLum’ package, it is important that the user already has identified potential 141 

problems – e.g., saturation and/or dose rate variability (see Heydari and Guérin, 2018, for adapted 142 

modelling solutions). 143 

3. First simple model and output 144 

We first ran the function Generate_DataFile() for the OSL samples FER 1 and FER 3, 145 

with the same lists of grains as those used for age calculation by Guérin et al. (2015b): all grains with 146 

an uncertainty smaller than 20% on the first test dose signal were selected. A large number of grains 147 

appeared to be in saturation for these samples (in Analyst, there is no intersection of the natural L/T 148 

signal, or the sum of this sensitivity corrected natural signal and its uncertainty, with the dose-response 149 

curve). As a result, following Thomsen et al. (2016) an additional selection criterion was added, based 150 

on the curvature parameter of the dose-response curves. All grains for which the D0 value, obtained 151 

with Analyst as described by Guérin et al. (2015b), was smaller than 100 Gy, were rejected from the 152 

analysis (note however that such a selection criterion may not be necessary when working with 153 

‘BayLum’: Heydari and Guérin, 2018). 154 

In practice, the data is contained in two folders named after the samples and provided as 155 

Supplementary Material. Each folder contains one BIN/BINX-file (i.e. OSL measurements; note that 156 

only a small fraction of the measured grains is included here Supplementary Material) and four CSV- 157 

files:  158 

- ‘DiscPos.csv’ lists all selected grains;  159 

- ‘Rule.csv’ gives the rules for generating Lx/Tx data (integration channels for both the natural 160 

or regenerated and test dose signals, uncertainty arising from the reproducibility of the OSL 161 

measurements, and number of SAR cycles to remove for curve fitting, if any - it may, for example, be 162 

desirable to remove recycled points and/or IR depletion points);  163 

- ‘DoseSource.csv’ gives the laboratory source dose rate and its variance;  164 

 165 

- ‘DoseEnv.csv’ gives the dose rate to which the sample was exposed during burial. 166 

We ran the function AgeS_Computation() with a prior age interval limited to between 167 

10 ka and 100 ka for each sample (so that the bounds are far from the age values obtained using 168 

arithmetic mean of equivalent doses, namely 37 ± 2 ka and 40 ± 2 ka, respectively). The dose-response 169 
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curves were fitted, as in Analyst in our previous study, with single saturating exponential functions 170 

passing through the origin. All uncertainties, affecting both environmental and laboratory dose rates, 171 

were included in the calculation, as is common practice in luminescence dating; however, the 172 

covariance of ages was not modelled here, so the results are equivalent to those one would obtain by 173 

running subsequent individual age calculations for each of the two samples.  174 

To run the AgeS_Computation() function, the user must choose a model for the 175 

distribution of individual equivalent doses around the central dose; the different options are Cauchy, 176 

Gaussian or lognormal distribution (in the latter case, the central dose may be estimated either by the 177 

mean or the median of the distribution). On top of saturation problems, Guérin et al. (2015b) also 178 

identified dose rate variability as an important factor of dispersion in equivalent doses: the values of 179 

the CDM overdispersion parameter for the De distributions of the samples were equal to 29 ± 3 % and 180 

35 ± 3 %, respectively. Consequently, to avoid problems of age underestimation, following the results 181 

of laboratory-controlled experiments of Heydari and Guérin (2018), we did not use the Cauchy 182 

distribution model. Instead, we modelled the equivalent dose distribution by a lognormal distribution 183 

(one could also have chosen a Gaussian function) from which the mean (rather than the median) was 184 

used to estimate the central dose. Indeed, Guérin et al. (2017) formally demonstrated that the median 185 

of the lognormal distribution (as used in the CDM) is a biased estimator and leads to age 186 

underestimates when dose rates are dispersed (see Heydari and Guérin, 2018, for experimental 187 

confirmation of this demonstration).  188 

After 5,000 iterations of 3 independent Markov Chains, we observed good convergence, as 189 

seen in the Markdown document provided as supplementary material (for a discussion of the 190 

convergence of the Markov Chains, the reader is referred to Philippe et al., 2019). The upper limit of 191 

the 95% Credible Intervals (C.I.) for the Gelman and Rubin indexes of convergence (Gelman and Rubin, 192 

1992) were all smaller than 1.05, also indicating satisfying convergence of the 3 independent Markov 193 

Chains (here again, the reader is referred to Philippe et al., 2019, who suggested 1.05 as the maximum 194 

acceptable value). The obtained 95% C.I. for the ages of samples FER 1 and FER 3 are [34.1; 43.3] ka 195 

and [36.6; 47.8] ka, respectively (Fig. 1; Table 1) and are consistent with the ages obtained by Guérin 196 

et al. (2015b) with a much simpler approach (unweighted arithmetic mean of equivalent doses). It 197 

should be emphasised here that the two 95% C.I. for ages overlap. Fig. 2 shows a bivariate scatter plot 198 

of a sample of observations from the joint posterior distribution of the two ages, as generated by the 199 

Markov Chains; in such a plot, each point corresponds to one realisation of the ages of the two samples 200 

investigated in the MCMC. Fig. 3 shows the corresponding probability densities for the ages estimated 201 

jointly, based on kernel density estimates (KDE), and the marginal probability densities. No correlation 202 

is observed on the joint probability density, which is symmetrical and bell-shaped. One can already 203 

compare here the results obtained with this Bayesian model (lognormal-average) for sample FER 3 204 

with the radiocarbon ages obtained independently for the same layer by Guérin et al. (2015b). The 205 

95% C.I. for the 3 14C ages are bound by the interval [44.4; 47.3] ka, which means that the OSL and 206 

radiocarbon ages are in good agreement, which was not the case when calculating the ages with the 207 

CDM (38 ± 2 ka). Thus, even without further modelling, the ‘BayLum’ lognormal-average model seems 208 

to provide OSL ages in better agreement with radiocarbon. 209 

4. Stratigraphic constraints 210 

Samples FER 1 and 3 belong to two different stratigraphic layers: sample FER 1 (Layer 7) lies 211 

above sample FER 3 (Layer 5B), so we know that the age of sample FER 1 must be less than that of 212 

sample FER 3. To encode this information, the function AgeS_Computation() takes as argument 213 

the object StratiConstraints, which is a matrix whose size depends on the number of analysed 214 

samples. First, the data in the DATA object (which is the output of the function 215 
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Generate_DataFile()) must be ordered in stratigraphic order from top to bottom: thus, in our 216 

case the list of names used by the function Generate_DataFile()is FER 1, FER 3 (rather than FER 217 

3, FER 1). Then, the stratigraphic matrix contains numbers equal to 0 or 1 indicating the applied bounds 218 

to the age of each sample. The matrix contains a number of rows equal to the number of samples plus 219 

one and a number of columns equal to the number of samples. The first row only contains 1 values, 220 

which indicates that the lower age bound specified as prior information (10 ka in our example, cf. 221 

section 3 above) when running the function AgeS_Computation() applies to all samples. Then, 222 

for all j in {2, ..., Nb_Sample+1} and all i in {j, ..., Nb_Sample}, StratiConstraints[j,i]=1 if the 223 

age of sample whose number ID is equal to j-1 is smaller than the age of sample whose number ID is 224 

equal to i. Otherwise, StratiConstraints[j,i]=0. In practice, in our case 225 

StratiConstraints [1,] = (1,1), StratiConstraints [2,] = (0,1) (which means that 226 

the age of sample FER 1 is not less than itself but is less than that of sample FER 3) and 227 

StratiConstraints [3,] = (0,0) (which means that sample FER-3 is neither younger than 228 

sample FER-1 nor itself). Note: in the markdown document provided as Supplementary Material, the 229 

corresponding code lines are commented and perhaps make this description easier to follow. 230 

 Running the function AgeS_Computation() with this matrix of stratigraphic constraints 231 

only marginally affects the ages, in this case, the 95% C.I. become [34.3; 42.9] ka and [38.1; 48.5] for 232 

samples FER-1 and FER-3, respectively (Table 1). One can also look at the bivariate scatter plot of 233 

observations from the joint posterior distribution (Fig. 4): one can see that this scatter plot is truncated 234 

in the upper left-hand corner – illustrating the fact that the age of sample FER 1 can never be greater 235 

than that of sample FER 3 (see Fig. 2 for comparison). By contrast, the KDE estimate (Fig. 5) also shows 236 

a positive correlation but does not reveal the truncation (whereas the stratigraphic constraint imposes 237 

a null probability for all pairs of ages above the 1:1 line).  238 

 239 

5. Dealing with multiple sources of errors through a covariance matrix 240 

5.1. General considerations 241 

In the previous calculations, all the variance is treated as random, whereas common, systematic errors 242 

should not allow solving stratigraphic inversions (they affect all ages in the same direction, although 243 

to varying degrees). One of the main advantages of applying the models implemented in the ‘BayLum’ 244 

package – contrary to other chronological modelling tools such as OxCal (Bronk Ramsey and Lee, 2013) 245 

or Chronomodel (Lanos and Philippe, 2018) – lies in the possibility to include the structure of 246 

uncertainties specific to OSL dating. For instance, a radiocarbon age is derived only from the ratio of 247 
14C to 12C (on top of which comes the more complex problem of calibration), whereas an OSL age 248 

involves a large number of measurements, each with its uncertainty (Aitken, 1985; 1998). The OSL 249 

measurements required for the determination of the palaeodose are relatively standardised through 250 

the widespread use of the SAR protocol (Murray and Wintle, 2000; Wintle and Murray, 2006). 251 

Conversely, there are several approaches – each with its equipment and standards – to determine the 252 

various dose rate components. Given that these dose rates derive from different types of radiation 253 

(alpha, beta, gamma and cosmic radiation) and are of various origins (mainly from potassium and the 254 

uranium and thorium radioactive chains), there are many more contributions to the age uncertainty 255 

from the dose rate term than from the palaeodose term, even though the size of the uncertainty on 256 

dose rate is of the same order of magnitude as that on palaeodose – see for example Murray et al., 257 

2015). As a result, there are almost as many ways of estimating systematic and random uncertainties 258 

as there are (combinations of) ways to determine dose rates. Combès and Philippe (2017) detailed the 259 

mathematical formulation of the dose covariance matrix, which links the ages of several samples 260 
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measured using the same equipment and standards through common (systematic) errors (see also 261 

Philippe et al., 2019). Nevertheless, the equations provided in this article are somewhat difficult to 262 

translate in practice; here, we propose to outline how we implement a covariance matrix adapted to 263 

(one example of) the measurements leading to OSL age calculation at the IRAMAT-CRP2A laboratory 264 

(Bordeaux). We emphasise that what follows is not prescriptive; it should be viewed as an example of 265 

a model of uncertainties. For alternative ways of estimating systematic and random errors, for 266 

example, due to different measurements of dose rates, the reader is referred to the discussion (section 267 

7.1).  268 

Here, we consider the case of a series of n sediment samples taken from one unique site and all 269 

measured using the same equipment and standards. Let us consider the following relationship 270 

between palaeodoses, dose rates and ages (Combès and Philippe, 2017): 271 

(𝐷1, … , 𝐷𝑛) ∼ 𝒩 ((𝐴1�̇�1, … , 𝐴𝑛�̇�𝑛),Σ) 272 

where 𝐷𝑖 is a random variable modelling the unknown palaeodose of sample i, 𝒩 is the symbol for a 273 

Gaussian distribution, 𝐴𝑖  is the unknown age estimate of sample i (that we are trying to determine), 274 

�̇�𝑖  the total dose rate to which this sample was exposed since burial (�̇�𝑖  is the observed dose rate, i.e. 275 

the result of the measurements) and Σ is the dose covariance matrix (for the full definition of the 276 

model, we refer the reader to Combès and Philippe, 2017). This covariance matrix verifies, for all (i,j): 277 

Σ𝑖,𝑗 =  𝐴𝑖𝐴𝑗𝜃𝑖,𝑗   (Eq. 1) 278 

where 𝜃 is the matrix, the user needs to specify to run the calculations with ‘BayLum’. It should be 279 

noted here that by default when running age calculations with ‘BayLum’, the off-diagonal elements 280 

are set to zero, i.e. the covariance in ages is not modelled. 281 

Before entering the details specific to luminescence dating, let us consider a simple example of two 282 

measurements y1 = µ1 + e1 + f and y2 = µ2 + e2 + f where µ1 and µ2 are fixed measurands and e1, e2 and 283 

f are all independent random errors from distributions with mean zero. The covariance of y1 and y2 is 284 

the variance of f (so the off-diagonal elements of the matrix are equal to this variance). For each 285 

sample, the diagonal element of the corresponding covariance matrix is the sum of all the components 286 

of variance for that sample. The variety of physical quantities to measure to determine dose rate, and 287 

their relationship with the dose rate contributions, will now be discussed with this simple definition in 288 

mind. 289 

5.2. Implementation in practice 290 

First, we detail the series of measurements carried out, and we introduce the corresponding 291 

notations for the estimates and associated uncertainties. Table 2 summarises all physical units and 292 

associated error standard deviations; as a general rule, we assume that all error terms are Gaussian 293 

variables with the expected value (mean) equal to zero and a fixed, known standard deviation (see for 294 

example Eq. 2 in Combès and Philippe, 2017). For clarity, in the following relative standard deviations 295 

are described by the letter 𝜎, while absolute standard deviations are denoted by s; moreover, each 296 

standard deviation corresponding to random errors (i.e., when the error varies from sample to sample) 297 

is identified by the letter i in the subscript. The absence of this letter in the subscript indicates that the 298 

measurement error affects all samples.  299 

5.2.1. Equivalent doses and OSL measurements 300 

Equivalent doses are determined from OSL measurements performed on a luminescence 301 

reader equipped with a radioactive beta source, whose dose rate and associated relative standard 302 
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deviation of the error, noted �̇�lab and 𝜎lab, are known. There are several ways the latter term can be 303 

determined; in its simplest form, it includes the standard deviation of the error on the absolute dose 304 

absorbed by the standard reference material (in our case calibration quartz provided by DTU Nutech, 305 

cf. Hansen et al., 2015) and an error term due to replicate measurements of several aliquots of this 306 

calibration material. Using a large number of measurements repeated in time, as suggested by Hansen 307 

et al. (2015), may somewhat complicate the matter, but this goes beyond the scope of the present 308 

study.  309 

In practice, regeneration doses are delivered by irradiating the aliquots for a given duration (in 310 

s). This duration is converted to absorbed energy dose (Gy) by multiplication with the source dose rate 311 

(Gy.s-1). Strictly speaking, the error on the source dose rate affects all regeneration doses, and so this 312 

error term should appear in the dose/luminescence relationship (right side of the directed acyclic 313 

graph shown in Fig. 7 of Combès and Philippe, 2017). However, it is common practice in the field of 314 

luminescence dating to first calculate an equivalent dose in seconds of irradiation for each aliquot, 315 

then convert this to Gy and calculate an average (or determine another central parameter such as with 316 

the CDM), and only then consider 𝜎lab. This is what led, e.g., Jacobs et al. (2008), to exclude the 317 

associated standard deviation from the total OSL age uncertainties, to test the assumption of a time 318 

gap between two series of ages. Here, for simplicity, we take the same route, and hence the relative 319 

error on the laboratory source dose rate becomes a relative, systematic error on the equivalent doses. 320 

One may thus write that the error on the dose 𝐷𝑖 arising from the calibration of the source 321 

follows a Gaussian distribution with mean 0 and variance (𝜎lab 𝐴𝑖�̇�𝑖)2.  322 

 323 

5.2.2. Dose rates 324 

When it comes to the dose rate term, here we restrict ourselves to the case of coarse quartz 325 

grains measured after HF etching to remove the alpha dose rate component: the total natural dose 326 

rate is the sum of an internal dose rate, external beta and gamma dose rates, and cosmic dose rates.  327 

Cosmic dose rates 328 

We consider that cosmic dose rates are determined following Prescott and Hutton (1994) 329 

based on the burial depth of the dated samples, which may be different from the present-day thickness 330 

of the overburden. As a result, the error on cosmic dose rate estimates depends on the error 331 

estimation of this effective burial depth since the dated sediment was deposited. Because the 332 

relationship between cosmic dose rates and burial depths is not linear, and because the error on this 333 

burial depth may not be systematic (e.g. in cases where successive, yet of unknown duration, erosion 334 

and deposition events happened between the deposition of superimposed sedimentary layers – see 335 

Aitken, 1998, p. 65, for a discussion) even at the scale of a site the error associated to cosmic dose 336 

rates cannot easily be treated as systematic. For i={1,…,n}, �̇�cosmic,𝑖 and 𝑠cosmic,𝑖 denote the estimate 337 

of the average cosmic dose rate to which sample i has been exposed and its associated standard 338 

deviation.  339 

Beta dose rates 340 

We consider the beta dose rates as determined from concentrations (or activities) of 40K and 341 

in radioelements from the U- and Th- decay chains, converted to dose rates using specific conversion 342 

factors (e.g.,  Guérin et al., 2011). At the IRAMAT-CRP2A laboratory, these concentrations are usually 343 

determined with low-background, high-resolution gamma-ray spectrometry following Guibert and 344 

Schvoerer (1991). The simplest case is that of 40K, since only one peak is used (at 1.461 MeV); the 345 
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concentration in sample i, denoted [K]i is equal to the concentration in the standard multiplied by the 346 

ratio in count rates (the count rate observed for the investigated sample is divided by the count rate 347 

observed for a reference material). Thus, we consider in this paper that the standard deviation of the 348 

error on the 40K concentration includes three components: the standard deviation of the error on the 349 

concentration in the standard, and the counting uncertainties both on the standard and on the 350 

measured sample. The counting uncertainties are calculated, assuming Poisson statistics. Of these 351 

three sources of errors, only one is treated as random – namely the counting uncertainty of the sample; 352 

the other two standard deviations (corresponding to the counting of the standard and to the error of 353 

the radioelement concentration in the standard) are quadratically summed and considered as a 354 

systematic source of error. One considers for sample i the beta dose rate from potassium �̇�𝛽,K,𝑖 – after 355 

correction for grain size-dependent attenuation using the factors from Guérin et al., (2012a); and for 356 

moisture content following Nathan and Mauz (2008) (see the discussion section below regarding 357 

uncertainties on these correction factors). Neglecting uncertainties in the dose rate conversion factors, 358 

we call 𝜎K,𝑖 the relative random standard deviation of the error on the 40K concentration; its systematic 359 

counterpart 𝜎K is common to all samples. It should be emphasised here that systematic errors on 360 

radioelement concentrations, although being shared by all samples, will affect all ages in the same 361 

direction but not necessarily by the same amount (even in relative terms, contrary to the error on 362 

laboratory beta source calibration) because the relative contribution of beta dose rate from potassium 363 

to the total dose rate may vary from one sample to another. The beta dose rates from the U- and Th-364 

series come from a number of radioelements in the corresponding chains; here, for simplicity we 365 

consider each series to be in secular equilibrium (this is generally the case for 232Th but may not be 366 

true for the U-series, see, e.g. Guibert et al., 1994; 2009; Lahaye et al, 2012). Thus, for each sample, 367 

the concentrations in 238U and 232Th are converted to dose rate contributions denoted �̇�𝛽,U,𝑖 and 368 

�̇�𝛽,Th,𝑖. In contrast to the case of 40K, the analysis of the high-resolution spectra for these radioactive 369 

chains is based on a number of primary gamma rays; more specifically, a weighted mean of the 370 

concentrations determined from each ray included in the analysis (after taking interference into 371 

account) is calculated to estimate the concentration of U (resp. Th). As a result, the standard deviations 372 

of the errors on these concentrations are the contributions of two sources: the relative standard 373 

deviation on the concentrations of the standards correspond, on the one hand, to systematic sources 374 

of errors and are denoted 𝜎U and 𝜎Th; conversely, all other relative standard deviations (arising from 375 

the counting of the standards and of the sample) are treated as random and denoted 𝜎U,𝑖 and 𝜎Th,𝑖. 376 

Internal dose rates 377 

Unless the internal radioelement concentration is experimentally determined (in which case 378 

one needs to consider both systematic and random sources of error for each sample, as is done for 379 

beta dose rates), some have suggested using a fixed internal dose rate of 0.06 ± 0.03 Gy.ka-1 (Mejdahl, 380 

personal communication to Murray, based on Mejdahl, 1987). In this case, we may assume that the 381 

dated quartz grains are all of the same origin, and have the same internal radioelement concentration; 382 

as a result, we associate a systematic standard deviation 𝑠int with the internal dose rate �̇�int. 383 

Gamma dose rates 384 

Gamma dose rates �̇�𝛾,𝑖 may be determined, as beta dose rates, from K, U and Th 385 

concentrations in the sediment. In this case, the reader is referred to the corresponding section above. 386 

However, it is relatively frequent, in the case of heterogeneous configurations at the 10 cm scale, that 387 

gamma dose rates received by the samples do not correspond to the infinite matrix gamma dose rates 388 

of the samples (see for example large gamma dose rate variations at the interface between sediment 389 

and bedrock in a cave reported by Guérin et al., 2012b: Fig. 7). In such contexts, gamma dose rates 390 
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may be determined by in situ measurements with Al2O3:C artificial dosimeters: these dosimeters are 391 

measured with green-light stimulation and their calibration is based on a block of homogeneous bricks 392 

located in the basement of IRAMAT-CRP2A (Richter et al., 2010; Kreutzer et al., 2018). Two sources of 393 

relative errors are taken into account: a random standard deviation (𝜎𝛾,𝑖) accounting for measurement 394 

uncertainties, and a shared calibration error including both standard deviations on (i) the true gamma 395 

dose rate in the block of bricks and on (ii) the measurement of the dosimeters irradiated inside the 396 

block for calibration of the source (𝜎𝛾). 397 

Water content 398 

To account for the effect of water on dose rates, one commonly considers the following 399 

equation (Zimmerman, 1971; Aitken, 1985): 400 

�̇�𝛽,𝑖 =
�̇�𝛽,𝑖,drγ

1+𝑥𝛽𝑊𝐹𝑖
 , 401 

where �̇�𝛽,𝑖,drγ is the beta dose rate in the dry sediment, WFi represents the effective mass fraction of 402 

water in the sediment during burial, and 𝑥𝛽 is a water correction coefficient accounting for the fact 403 

that water absorbs more beta dose than typical sedimentary elements, due to lower atomic numbers 404 

(Nathan and Mauz, 2008). A similar equation applies to gamma dose rates, with a corresponding factor 405 

𝑥𝛾 (see Guérin and Mercier, 2012). The determination of the water content in the sediment over time 406 

is a very difficult task as it involves many different parameters, including past rainfall. One commonly 407 

employed solution is to measure the water content at the time of sampling and assume it to be 408 

representative of that in the past; measuring the water content at saturation may then be a solution 409 

to evaluate an upper limit to this value; and depending on the context one may also propose a lower 410 

limit to the water content. One then obtains a way of quantifying the standard deviation of the error 411 

on the water content, although necessarily imperfect (see Nelson and Rittenour, 2015, for a 412 

discussion). Neglecting uncertainties on the water correction factors (𝑥𝛽  and𝑥𝛾) and calling 𝑠𝑊𝐹,𝑖 the 413 

absolute standard deviation of the mass fraction WFi for sample i, one may write: 414 

𝑠𝛽,𝐻2𝑂,𝑖 = �̇�𝛽,𝑖

𝑠𝑊𝐹,𝑖

1 + 𝑥𝛽𝑊𝐹𝑖
 415 

where 𝑠𝛽,𝐻2𝑂,𝑖  is the standard deviation of the beta dose rate for sample i due to the uncertainty on 416 

its water mass fraction. 417 

 Similarly, one may write:  418 

𝑠𝛾,H2O,𝑖 = �̇�𝛾,𝑖

𝑠𝑊𝐹,𝑖

1 + 𝑥𝛾𝑊𝐹𝑖
 419 

where 𝑠𝛾,H2O,𝑖 is the standard deviation of the gamma dose rate for sample i due to the uncertainty on 420 

its water mass fraction. As a result, 421 

𝑠𝛾,H2O,𝑖 =
�̇�𝛾,𝑖

�̇�𝛽,𝑖

1+𝑥𝛽𝑊𝐹𝑖

1+𝑥𝛾𝑊𝐹𝑖
𝑠𝛽,H2O,𝑖. 422 

To simplify the following equations, which are meant to be those used in practice, we introduce the 423 

relative standard deviation of the beta dose rate due to water content errors (𝜎𝛽,H2O,𝑖) and a parameter 424 

called 𝜆𝑖 defined by: 425 

𝜆𝑖 =
1 + 𝑥𝛽𝑊𝐹𝑖

1 + 𝑥𝛾𝑊𝐹𝑖
 426 
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 The 𝜽 matrix 427 

With these considerations in mind on errors and their nature, the corresponding 𝜃 matrix (Eq. 428 

1) to model these uncertainties is a square matrix containing one line (and column) per sample. The 429 

diagonal elements correspond to the sum of a term arising from the error on the laboratory source 430 

dose rate (�̇�𝑖
2𝜎lab

2 ) and the total dose rate variance for each sample, for each i: 431 

𝜃𝑖,𝑖 = �̇�𝑖
2𝜎lab

2 + 𝑠cosmic,𝑖
2 + �̇�𝛽,U,𝑖

2 (𝜎U,𝑖
2 + 𝜎U

2) + �̇�𝛽,K,𝑖
2 (𝜎K,𝑖

2 + 𝜎K
2) + �̇�𝛽,Th,𝑖

2 (𝜎Th,𝑖
2 + 𝜎Th

2 ) + 𝑠int
2432 

+ �̇�𝛾,𝑖
2 (𝜎𝛾,𝑖

2 + 𝜎𝛾
2) + (�̇�𝛽,U,𝑖 + �̇�𝛽,K,𝑖 + �̇�𝛽,Th,𝑖 + 𝜆𝑖�̇�𝛾,𝑖)

2
𝜎𝛽,H2O,𝑖

2 . 433 

This long list of variance terms may seem rather complicated, but it corresponds to the total variance 434 

arising from the laboratory beta source calibration, the errors on cosmic dose rates, environmental 435 

beta dose rates internal dose rates, gamma dose rates, and finally the error arising from uncertainties 436 

in water content. In other words, we can also write  437 

𝜃𝑖,𝑖 = �̇�𝑖
2𝜎lab

2 + 𝑠�̇�𝑖 
2   (Eq. 2), 438 

where 𝑠�̇�𝑖 
2  is the variance of the dose rate to which sample i was exposed to during burial (it is the 439 

square of the uncertainty appearing next to the dose rate value in every luminescence dating article; 440 

in our example, this term is the second one in the files DoseEnv.csv provided in Supplementary 441 

Material). 442 

 Then, for 𝑖 ≠ 𝑗: 443 

𝜃𝑖,𝑗 = �̇�𝛾,𝑖 �̇�𝛾,𝑗𝜎𝛾
2 +  �̇�𝛽,U,𝑖�̇�𝛽,U,𝑗𝜎U

2 + �̇�𝛽,K,𝑖�̇�𝛽,K,𝑗𝜎K
2 + �̇�𝛽,Th,𝑖�̇�𝛽,Th,𝑗𝜎Th

2 + 𝑠int
2 + �̇�𝑖 �̇�𝑗𝜎lab

2         (Eq. 3), 444 

which characterises the amount of correlation between the doses of samples i and j, multiplied by their 445 

ages. The 𝜃 matrix, like the dose covariance matrix Σ, is a symmetric matrix. The diagonal members 446 

correspond to individual variances, while the non-diagonal terms express the fact that systematic, 447 

shared errors link the measurements of the series of samples. As a result, running the functions 448 

AgeS_Computation() and Age_OSLC14() with a 𝜃 matrix in which all non-diagonal members 449 

are set to zero would be equivalent to running the same functions without the correlation matrix, or 450 

running the function Age_Computation() independently for each sample – in which case all 451 

sources of error are treated as random. 452 

  5.3. Examples 453 

5.3.1. An illustrative, simplistic example without stratigraphic constraints 454 

For illustration purposes, first, we did not apply stratigraphic constraints. We started with a 455 

simplistic 𝜃 matrix containing in the diagonal the real error variances (Eq. 2) as determined by Guérin 456 

et al. (2015); the 𝜎lab value was equal to 0.02 (2% relative standard deviation of the calibration of the 457 

laboratory beta source). The simplification comes from the off-diagonal members, for which in Eq. (3) 458 

we set all s and 𝜎 values equal to 0, except for the 𝜎lab value, set to 0.05. Obviously, this is not self-459 

consistent, but it corresponds to (i) random and systematic errors of approximately the same 460 

magnitude (in practice, these two sources of errors are of the same order of magnitude – a few %) and 461 

(ii) the simplest form of systematic errors. Indeed, in such a case, all ages are affected by the same 462 

relative amount in the same direction.  463 

Here again, after 5,000 iterations of 3 independent Markov Chains, we observed good 464 

convergence. The obtained 95% C.I. are [33.9; 43.8] and [36.7; 48.1] ka for samples FER 1 and FER 3, 465 

respectively. Fig. 6 shows bivariate scatter plots corresponding to the sampling of the Markov Chains 466 
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for the ages of samples FER 1 and FER 3 (which are calculated simultaneously) and Fig. 7 displays the 467 

KDE together with the marginal probability densities. This set of figures illustrate the reason for the 468 

generation of the two type of figures: the bivariate scatter plot is most appropriate to visualise the 469 

effect of stratigraphic constraints (Fig. 4 above), whereas probability density figures best illustrate the 470 

effect of modelling systematic errors. Indeed, as can be seen, there is a positive correlation between 471 

the ages of samples FER 1 and FER 3: the greater the age of sample FER 1, the greater is the mean age 472 

of sample FER 3. In other words, if the age of sample FER 1 was underestimated, then in all likelihood, 473 

so would be the age of sample FER 3. Furthermore, the length of the C.I. for the age of each sample is 474 

slightly larger than without modelling the covariance (cf. Table 1), i.e. modelling the covariances 475 

slightly increases the age uncertainties. However, the positive correlation of ages has other, direct 476 

consequences.  477 

First, let us suppose that we have no knowledge of a stratigraphic link between the two 478 

investigated samples, and wish to test the hypothesis that sample FER 1 is younger than sample FER 3. 479 

The credibility of such an assumption can be tested using the function MarginalProbability() 480 

of the ‘Archaeophases’ R package (Philippe and Vibet, 2020) devoted to the analysis of MCMC chains 481 

for chronological inference. Without using the covariance matrix, the credibility of this hypothesis is 482 

0.83; with the simplistic 𝜃 matrix, the credibility becomes 0.94; in other words, modelling the age 483 

covariance reflects more faithfully the measurements and their uncertainties for such tests. 484 

The second consequence concerns the duration of a hypothetical phase that would encompass 485 

the deposition of sample FER 1 and that of sample FER 3. Indeed, since the ages vary together in the 486 

MCMC, the duration of such a phase should be smaller when modelling the covariance than when all 487 

the variance in ages is treated as random. Indeed, we could verify this assertion using the function 488 

PhaseStatistics() of ‘ArchaeoPhases’ (Philippe and Vibet, 2020): with the simplistic covariance 489 

matrix, the 95 % C.I. for the duration of this phase is [-1.4; 9.7] ka, whereas it is [-0.6; 7.6] ka when the 490 

ages are calculated using the simplistic 𝜃 matrix. 491 

5.3.2. A real example, including stratigraphic constraints 492 

In a real case, since the relative contributions of the different dose rate components vary from 493 

one sample to another, the correlation will be less pronounced. For more realistic calculations of the 494 

ages of samples FER 1 and FER 3, we took the same values as above for the diagonal terms of the 𝜃 495 

matrix (Eq. 2); on the other hand, for the non-diagonal, covariance terms, we used the following values: 496 

𝜎lab = 0.02 (which corresponds to the experimentally determined calibration standard deviation, 497 

including the uncertainty of the dose delivered to calibration quartz; Hansen et al., 2015), 𝜎K = 0.012, 498 

𝜎U = 0.007 , 𝜎Th = 0.007 (for these values, which also include counting of the standards used, the 499 

reader is referred to Guibert et al., 2009; Guibert, 2002), and 𝑠int = 0.003 Gy.ka-1. We provide as 500 

Supplementary Information a calculation spreadsheet allowing to build the covariance matrix, 501 

intended for adaptation to the user-specific needs. 502 

At the site of La Ferrassie, the uncertainties associated with the gamma dose rate observations 503 

are more complex. Al2O3:C dosimeters were placed at the end of 25 cm long aluminium tubes and 504 

inserted horizontally in the stratigraphic section at the location of sediment sampling. In an ideal case, 505 

sediment should be uniform in a horizontal plane; however, for samples FER 1 and FER 3 only a rather 506 

thin layer of sediment remained against the cliff wall (the layers of the sample were not present at the 507 

site in any other location), which resulted in the dosimeters being inserted either in the karstic cliff 508 

(the limestone contains little radioelements compared to the sediments, as shown in Fig. 5 of Guérin 509 

et al., 2015b) or at the interface between the cliff and the sediment. As a result, we took for �̇�𝛾,𝑖  the 510 

average between the gamma dose rates measured in situ (which underestimate the real gamma dose 511 
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rate because the effect of the cliff is over-represented) and the gamma dose rates derived from the K, 512 

U and Th concentrations in the samples. The associated standard deviation, 𝜎𝛾,𝑖, was calculated as the 513 

difference between these two extreme values divided by 4, so that the 95% C.I. covers all possible 514 

values. As this standard deviation is much larger than the analytical uncertainties, we neglected the 515 

latter and considered 𝜎𝛾,𝑖 to characterise random sources of errors since each sample has a different 516 

environment and may be more or less far from the cliff.  517 

The samples FER 1 and FER 3 are directly above and below, respectively, the Châtelperronian 518 

layer at the site (layer 6). Sample FER 2 from this layer being poorly bleached, it is at present impossible 519 

to model with ‘BayLum’. However, an alternative to estimate the age of FER 2 consists of supposing 520 

that it has a uniform prior probability density between the ages of samples FER 1 and FER 3: 521 

𝑃(𝐴2|𝑑𝑎𝑡𝑎)~ ∬
𝕀[𝐴1;𝐴3]

𝐴3 − 𝐴1
𝜋(𝐴1, 𝐴3|𝑑𝑎𝑡𝑎)𝑑𝐴1𝑑𝐴3 522 

where 𝐴𝑖 is the age of sample i, 𝕀[𝐴1;𝐴3] is the indicator function between 𝐴1 and 𝐴3, and 523 

𝜋(𝐴1, 𝐴3|𝑑𝑎𝑡𝑎) is the posterior joint density of 𝐴1 and 𝐴3 knowing the data (i.e. the density estimated 524 

with ‘BayLum’). Doing so (see the markdown file for the corresponding code lines), working from the 525 

output of ‘BayLum’ one obtains a 95% C.I. of [36; 46] ka, which can be compared with the confidence 526 

interval of [36; 48] ka obtained by Guérin et al. (2015) with minimum age modelling. 527 

6. Integration of independent chronological data (radiocarbon) 528 

The ‘BayLum’ package also offers the possibility to include radiocarbon ages in the chronological 529 

models (Philippe et al., 2018); more specifically, radiocarbon ages are calibrated within ‘BayLum’, using 530 

the function AgeC14_Computation() or Age_OSLC14() (in the latter case the function 531 

necessitates at least one OSL age calculation). Introducing covariance matrices to account for 532 

systematic errors on OSL data does not reduce the OSL age uncertainties; however, it becomes 533 

particularly useful to correct for estimation biases when more precise ages, unaffected by these 534 

systematic errors, are integrated into the models. To illustrate this, we decided to construct two 535 

models constraining the age of FER 3; for illustration purposes, in this section, we used the simplistic 536 

𝜃 matrix described above in section 5.3.1. In the first case, we constrained the age of this sample by 537 

imposing that a ‘young’ radiocarbon age (young compared to the age of sample FER 3 considered 538 

alone) has an age greater than sample FER 3. In practice, we arbitrarily took a radiocarbon age of 539 

38,000 ± 400 BP, which corresponds to [37.6; 39.9] ka cal. BP (95% C.I. using the IntCal20 curve, Reimer 540 

et al., 2020; the calibration was performed using ‘BayLum’, see Philippe et al., 2018). Naturally, the 541 

credible intervals (both 68% and 95%) for sample FER 3 are shifted towards younger age values (cf. 542 

truncation of the scatter plot illustrated in Fig. 3). So do the credible intervals for sample FER 1, since 543 

the ages of the two OSL samples are close to each other even when considered independently of 544 

radiocarbon data (in other words, the radiocarbon age ‘pushes’ the age of sample FER 3, which in turn 545 

‘pushes’ the age of sample FER 1). In practice, the 95% C.I. become [33.3; 41.2] ka and [36.9; 42.3] ka 546 

for samples FER 1 and FER 3, respectively. It can be noted here that in such a case the precision of the 547 

age of sample FER 3 is increased (i.e. the length of the C.I. is much smaller than without the constraining 548 

radiocarbon age). More interestingly, in the second case, we constrained the age of sample FER 3 by 549 

imposing that an ‘old’ radiocarbon age (old compared to the age of sample FER 3 considered alone) 550 

has an age younger than sample FER 3. In practice we – again, arbitrarily – took a radiocarbon age 551 

equal to 44,000 ± 400 BP, which corresponds to [45.4; 47.4] ka cal. BP (95% C.I.). Here again, the effect 552 

on the age of sample FER 3 is straightforward: the credible intervals are shifted towards older ages 553 

(the 95% C.I. for the age of sample FER 3 becomes [45.7; 51.2] ka). Perhaps less intuitive is the effect 554 

on the age of sample FER 1, which is not directly constrained by radiocarbon: because the ages of the 555 
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three samples are estimated jointly, and because of the systematic errors on the OSL ages, the age of 556 

sample FER 1 is also shifted towards older ages: the corresponding 95% C.I. becomes [36.7; 45.8] ka.  557 

7. Discussion 558 

 7.1. Differing ways of estimating dose rates 559 

 Every laboratory uses its specific equipment and calibration standards; if similar equipment as 560 

described above is used, then only the values of the different terms need be changed. This case is 561 

particularly relevant for equivalent dose measurements, and hence the term 𝜎𝑙𝑎𝑏 associated with �̇�𝑙𝑎𝑏. 562 

Conversely, for dose rate determination, several other experimental devices and techniques are 563 

commonly used. If beta and/or gamma dose rates are determined based on the determination of 564 

concentration in K, U and Th, (for example by mass spectrometry, neutron activation, etc.), then the 565 

situation is similar as that described for beta dose rates above.  566 

Counting techniques (alpha, beta, and gamma in the case of the threshold technique: Løvborg 567 

et al., 1974) may also be used for beta and gamma dose rate estimation. In the case of beta counting, 568 

the conversion factor from count rate to dose rate depends on the emitting radioelement 569 

(Ankjærgaard and Murray, 2007; see also Cunningham et al., 2018). This dependency is a source of 570 

error that may not be characterised by a systematic error (so there is no contribution to the dose 571 

covariance matrix). The data acquired with field gamma spectrometers may be analysed in two ways: 572 

the ‘window’ technique (see, e.g., Aitken, 1985) corresponds to classical spectrometry analysis; in this 573 

case, the structure of uncertainties is the same as that for beta dose rates determined from high-574 

resolution gamma spectrometry (Eq. 3). On the other hand, threshold techniques consist of taking 575 

advantage of proportionality between gamma dose rates and (i) the number of counts recorded per 576 

unit time above a threshold (Løvborg and Kirkegaard, 1974) or (ii) the energy deposited per unit time 577 

above a threshold (energy threshold: Guérin and Mercier, 2011; Miallier et al., 2009). In the former 578 

case, the conversion from count rate to dose rate depends on the emitting radioelement, so no 579 

systematic error term may be isolated. Conversely, in the latter case (energy threshold), this 580 

dependency is negligible (Guérin and Mercier, 2011). As a result, the error on the dose rate of the 581 

calibration standard may be considered as systematic, and thus contribute one term in the non-582 

diagonal elements of the covariance matrix. 583 

 7.2. Error terms neglected in this study 584 

As mentioned earlier in the section devoted to dose rate uncertainties, there are many 585 

possibilities to quantify, but also to consider errors on dose rate measurements; one could mention 586 

here the uncertainties on attenuation factors and water correction factors. However, both of these 587 

factors are dependent on the infinite matrix assumption: attenuation in grains implies that something 588 

other than the grains does not attenuate radiation; water correction factors are often calculated 589 

assuming a homogeneous mixture of water and other sedimentary components (Zimmerman, 1971; 590 

Aitken and Xie, 1990; note: the composition of the sediment also necessarily affects the ratios of 591 

electron stopping powers and photon interaction cross-sections – see Nathan and Mauz, 2008, for a 592 

discussion). Limitations of this infinite matrix assumption, which is not met in sand samples at the scale 593 

of beta dose rates, have already been pointed out (Guérin and Mercier, 2012; Guérin et al., 2012a; 594 

Martin et al., 2015). Consequently, it seems that routine determination of a realistic standard deviation 595 

of the attenuation and water content correction parameters is not straightforward.  596 

Dose rate conversion factors were assumed above to be known without error; however, 597 

estimation errors do affect half-lives, emission probabilities, average emitted energies, etc. Liritzis et 598 

al. (2013) took these uncertainties into account to estimate standard deviations of the dose rate 599 
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conversion factors (in practice, these standard deviations amount to ~1% for K dose rates, ~2% for U 600 

and ~2% for Th). These standard deviations could be included as sources of systematic errors when the 601 

contributions of K, U and Th are determined separately (note: when this is not the case, as when 602 

dosimeters are used for gamma dose rate estimation, or when beta counting is implemented for beta 603 

dose rate assessment, these sources of errors should be treated as random). 604 

In this study, we worked with coarse grain quartz extracts that had been etched with HF to 605 

remove the alpha-irradiated part of the grains. This being said, if alpha dose rates are taken into 606 

account, then the situation becomes similar to that of beta dose rates treated above; however, the 607 

sensitivity to alpha irradiation must then be taken into account. It is rather frequent in such a case to 608 

use published values from the literature (e.g., Tribolo et al., 2001; Mauz et al., 2006). Depending on 609 

the geological origin of the quartz (one or more sources), one may then assume either systematic or 610 

random errors on the alpha sensitivity. 611 

7.3. Publication habits and re-analysis of previously published ages  612 

Compared to other statistical models for OSL dating, the Bayesian models implemented in 613 

‘BayLum’ appear rather complicated, at least partly because modelling starts from the measured OSL 614 

data. By comparison, the input data to the CDM or the Average Dose Model (ADM: Guérin et al., 2017) 615 

are lists of equivalent doses and associated uncertainties, which means that OSL measurements have 616 

already been analysed to derive equivalent doses. Combès et al. (2015) argued that their complete 617 

model (implemented in ‘BayLum’), relating all the variables to one another, produces a more 618 

homogeneous and consistent inference compared to consecutive inferences (and indeed, when 619 

approaching saturation, i.e. when equivalent doses and associated uncertainties can hardly be 620 

parameterised, Heydari and Guérin (2018) demonstrated the advantage of ‘BayLum’ models compared 621 

to parametric models such as the CDM and ADM in particular settings. However, working with lists of 622 

equivalents doses and uncertainties – or even with estimates of central doses and associated 623 

uncertainties – taken as observations would make the Bayesian modelling proposed in ‘BayLum’ and 624 

described in this paper more straightforward and transparent. Such an approach, called the ‘two-steps’ 625 

model by Combès and Philippe (2017; see also Millard 2006a, 2006b, for earlier, similar models), would 626 

also offer the advantage of allowing re-analysis of already published data to derive more precise 627 

chronologies. However, for this purpose the breakdown of all uncertainties and related standard 628 

deviations of errors is needed; nowadays, providing such key information for the modelling is not in 629 

the publication habits of the luminescence dating community. That being said, with the growing 630 

number of meta-analyses of previously published data, and the availability to use models such as 631 

BayLum to combine measurements with systematic errors, these habits might evolve in the future. 632 

7.4. Notes of caution 633 

As always when working with statistical models, one should first and foremost evaluate the 634 

measured data in the light of sampling context. We already mentioned the importance of grain 635 

selection (section 2.2.); but, perhaps more importantly, and especially since users of ‘BayLum’ have to 636 

make modelling choices (e.g., regarding the dose-response curves fitted to OSL measurements or the 637 

distribution of individual equivalent doses around the central dose), it is crucial to carefully examine 638 

data and assess their quality before building potentially sophisticated models.  639 

We would like here to emphasise a few warnings regarding modelling samples in stratigraphic 640 

constraints, and the association of ages obtained by different methods. We would advise users, before 641 

combining, e.g. radiocarbon and OSL ages, first to thoroughly examine the corresponding datasets 642 

independently: how were the data produced (with which experimental procedure)? Are the provided 643 

uncertainties reliable (or is there an unrecognised source of error that should be included in the 644 
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evaluation of uncertainty)? Users are also encouraged to examine the consistency of results produced 645 

by each method, in light of the stratigraphy. In a second stage, before modelling of independent ages, 646 

we would recommend assessing the consistency of these datasets – do they (at least broadly) agree? 647 

And if not, can a parsimonious explanation be found? For example, it is rather common, when 648 

performing Bayesian modelling with tools such as OxCal, to observe a large fraction of ages considered 649 

as outliers; such observations should urge users to examine their data again and come up with likely 650 

explanations (note: to this date, no outlier model has been developed for the OSL ages in ‘BayLum’). 651 

When it comes to imposing ordering constraints between ages as a result of stratigraphic observations, 652 

it is, of course, essential to leave no doubt about the validity of these stratigraphic constraints (the 653 

results of a model depend on the assumptions that are made, and the order in ages is a very strong 654 

constraint). Perhaps more importantly, even when stratigraphic constraints are valid, it is possible that 655 

applying them will not improve the statistical inference.  656 

A simple example to illustrate this point is that of two superimposed, distinct layers (so that a 657 

stratigraphic order is clear) whose true ages are equal (or in practice, for which the age difference is 658 

negligible compared to the typical uncertainties of the implemented dating method). In such a case, 659 

modelling the ages with stratigraphic constraints is likely to result in a loss of accuracy (the age of the 660 

older layer will be overestimated, and that of the younger layer underestimated) compared to a model 661 

where no stratigraphic constraints are imposed. Future developments of the ‘BayLum’ package might 662 

include the possibility to test different modelling scenarios by comparing the agreement between the 663 

observations and the posterior probability densities, for example using the Bayes Information Criterion 664 

(BIC). 665 

8. Conclusion 666 

New models for building chronologies based on OSL, with the possibility to incorporate radiocarbon, 667 

have been proposed in the literature (Combès et al., 2015; Combès and Philippe, 2017). These models 668 

have been demonstrated to improve the chronological inference based on OSL data and in particular, 669 

the accuracy of OSL ages (Guérin et al., 2015; Heydari and Guérin, 2018). The R package ‘BayLum’ was 670 

developed to implement these models; Lahaye et al. (2018), Carter et al. (2019), Heydari et al. (2020) 671 

and Heydari et al. (in review) have used some of them to establish the chronologies of sedimentary 672 

sequences dated by OSL, resulting in generally more precise chronologies.  673 

In this article, we have presented a case study on how to build simple models and observe output data, 674 

in particular through bivariate plots of age probability densities. Then, we have shown how to include 675 

stratigraphic constraints in the models; we have described how to fill the covariance matrices to 676 

account for systematic errors in OSL age estimation; and we have shown the effect of including 677 

independent age information in the models, namely radiocarbon ages. Different tools to visualise and 678 

further analyse the output of ‘BayLum’ were demonstrated. 679 

As a result, it is now possible to make use of various information often available in practice when dating 680 

stratigraphic sequences. Age inferences based on OSL and independent data (e.g., radiocarbon) in 681 

stratigraphic constraints are expected to gain in accuracy, precision and robustness, through the 682 

application of such Bayesian models. 683 
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Figures 867 

 868 

Fig. 1: Age estimates for OSL samples FER 1 and FER 3. The red circles indicate the Bayes estimates of 869 

the age (i.e. the most likely values) for each sample; the cyan and blue bars represent the 68% and 870 

95% credible intervals, respectively. For the two radiocarbon ages (C14-1 and C14-2), the reader is 871 

refereed to section 6. 872 

 873 
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 875 

Fig. 2: Bivariate scatter plot as hexagon plot presentation of a sample of observations from the joint 876 

posterior distribution of the two OSL ages considered independently (no stratigraphic constraints, no 877 

off-diagonal members in the covariance matrix). In such a plot, each point corresponds to one 878 

realisation of the ages of the two samples generated by the MCMC. Note: the reason for having this 879 

figure in the cell of an array is not visible here; it becomes useful when calculating ages for more than 880 

2 samples, in which case for each pair of samples, a similar plot appears in the appropriate cell. 881 
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 883 

Fig. 3: Probability densities for the OSL ages estimated jointly with the same model as that used to 884 

generate Fig. 2, based on Kernel Density Estimates (KDE), and marginal probability densities. The bell-885 

shape and symmetry of the scatter plot indicate the absence of correlation between the two ages. 886 
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888 
Fig. 4: Bivariate scatter plot from the joint posterior distribution of the ages of samples FER 1 and FER 889 

3 when a stratigraphic constraint is applied (sample FER 1 is younger than sample FER 3) but with no 890 

off-diagonal members in the covariance matrix. The truncation in the upper-left hand corner scatter 891 

plot indicates the effect of the stratigraphic constraint.  892 
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894 
Fig. 5: Probability densities for the OSL ages estimated jointly, using the same model as that 895 

implemented to generate Fig. 4 (stratigraphic constraint, no covariance matrix).  896 
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898 
Fig. 6: Bivariate scatter plot from the joint posterior distribution of the ages of samples FER 1 and FER 899 

3 when a stratigraphic constraint is applied (sample FER 1 is younger than sample FER 3) and off-900 

diagonal members of covariance matrix are used to model systematic errors (note: in this case, for 901 

illustrative purposes we used a simplistic covariance matrix – see section 5.3.1. for details). The 902 

truncation in the upper-left hand corner scatter plot indicates the effect of the stratigraphic constraint.  903 
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905 
Fig. 7: Probability densities for the OSL ages estimated jointly, using the same model as that 906 

implemented to generate Fig. 6 (stratigraphic constraint and off-diagonal members in the covariance 907 

matrix). The positive correlation in the joint posterior density reflects the effect of modelling the 908 

systematic errors with a covariance matrix (and, to some degree, of the stratigraphic constraint).  909 
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Table 1. Summary of Credible Intervals for the ages (in ka) of samples FER 1 and FER 3 estimated in 911 

the different modelled scenarios. 912 

Sample 68% Confidence Interval 95% Confidence Interval 

 lower upper lower upper 

Independent 

FER 1 36.0 40.5 34.1 43.3 

FER 3 38.9 44.6 36.6 47.8 

In stratigraphy 

FER 1 36.2 40.4 34.3 42.9 

FER 3 40.0 45.0 38.1 48.5 

No stratigraphic constraint, with ‘simplistic’ covariance (section 5.3.1) 

FER 1 36.0 40.8 33.9 43.8 

FER 3 39.2 45.4 36.7 48.1 

In stratigraphy, with realistic covariance (section 5.3.2) 

FER 1 36.1 40.5 34.2 42.6 

FER 3 39.8 45.3 37.8 48.6 

In stratigraphy, with covariance and a ‘young’ radiocarbon age 

FER 1 35.2 39.4 33.3 41.2 

FER 3 39.2 42.2 36.9 42.3 

In stratigraphy, with covariance and an ‘old’ radiocarbon age 

FER 1 38.7 43.5 36.2 46.2 

FER 3 46.1 48.7 46.1 51.5 

 913 
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Table 2. List of physical units and associated uncertainties used in this work. The letter i in subscript 915 

indicates a sample specific value, its absence a common value shared between samples. The letter s 916 

indicates absolute uncertainties, while σ is used for relative uncertainties. 917 

Physical unit  Notation Systematic uncertainty Random uncertainty 

Laboratory source dose rate �̇�𝑙𝑎𝑏 𝜎𝑙𝑎𝑏  

Cosmic dose rate �̇�𝑐𝑜𝑠𝑚𝑖𝑐,𝑖  𝑠𝑐𝑜𝑠𝑚𝑖𝑐,𝑖 

K concentration [K]i 𝜎𝐾 𝜎𝐾,𝑖  

U concentration [U]i 𝜎𝑈 𝜎𝑈,𝑖 

Th concentration [Th]i 𝜎𝑇ℎ 𝜎𝑇ℎ,𝑖 

Internal dose rate �̇�𝑖𝑛𝑡 𝑠𝑖𝑛𝑡  

Gamma dose rate �̇�𝛾,𝑖  𝜎𝛾 𝜎𝛾,𝑖 

Water content WFi  𝑠𝑊𝐹,𝑖  

 918 
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