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Simon J.E. Large, Jörn F. Wotzlaw, Marcel Guillong, Albrecht von Quadt, Christoph A. Heinrich 
 
We thank F. Corfu for his detailed comments on our submitted manuscript. We provide replies 
(blue) to the main comments of the reviewer and have addressed all of his valid points in the 
annotated manuscript.  
 
 
(1) The first concerns the definition of the ‘age of emplacement’. The nice thing with modern ID‐TIMS UPb 
data is the high time resolution it achieves, which permits to separate out and date very specific 
segments of geological processes. This advantage, however, brings new challenges requiring to be 
more specific on the definitions of the specific parts of the process that are dated. For example, on 
line 304‐305 it states: ‘… zircon dates of 3.736 ± 0.023 Ma, 3.697 ± 0.018 Ma and 3.646 ± 0.022 Ma …[are 
interpreted] as the time of respective porphyry emplacement …’ which concludes a period of >200 ka of 
zircon crystallization. This implies that the last zircon in each rock crystallized just as the magma 
reached its present position. One could wonder why the last zircon couldn’t have crystallized well 
before the magma reached this final position, or alternatively much later than the emplacement. 
Some information in merit is provided much later in the Discussion, but clearly, these interpretations 
and the arguments are quite fundamental in such a paper, and need to be presented before anything 
else. 
 

We thank the reviewer for the valid point that the reasoning for the interpretation of the 
youngest U‐Pb dates as the porphyry emplacement ages should be made earlier. As pointed 
out in the manuscript annotated by the reviewer it was previously in lines 578 – 579 in the 
methods section. We have added the reasoning with a bit more detail to section 4.3 “CA‐ID‐
TIMS geochronology”.  
Porphyry intrusions are volumetrically minor sub‐volcanic intrusions and are considered to 
cool rapidly upon emplacement. It is thus assumed that most, if not all, zircons crystallise in 
the underlying magma reservoir resulting in the extended timescales of zircon 
crystallisation. Zircon is considered a low temperature phase crystallising until reaching the 
solidus the youngest recorded zircon and thus records the full crystallisation of the 
intrusions. The individual uncertainty of a zircon date is sufficient to account for the 
timescales of porphyry cooling (<10 kyr; e.g. Cathles, 1977).  
 

(2) A somewhat related problem concerns the question of the validity of the results. I am impressed by 
the high quality of the data, the superb blanks and the high precision. Nevertheless, a central factor 
in all data sets is the reproducibility of individual analyses. You are measuring 0.5 pg of Pb, next to 
nothing, and still achieve a very good precision. But is the precision identical with, or less good than 
the reproducibility of such measurements? To substantiate the solidity of the work, the authors 
should present information that backs up the implication at the zircon age of each individual zircon 
grain is reproducible, the alternative being that the larger spread of the ages in each sample may 
represent a closer measure of the reproducibility. I have seen some very good such data sets in other 
papers that support their validity, but the question is central with every new application and needs 
to be addressed. 
 

We thank the reviewer for outlining the high quality of the presented data. Indeed, we are 
measuring very low quantities of Pb. However, we are convinced that the results are 
reproducible. The zircon standards referred to and referenced in the manuscript (Aus_Z7_5, 
von Quadt et al., 2016) contain similarly low amounts of radiogenic Pb (0.5 – 4 pg), are of 
similar age (2.41 Ma) and most importantly are reproducible on the kyr scale.. These were 
analysed over the same time interval, under the same conditions and in the same lab as the 
zircons analysed for this study. And these measurements  



A more indirect assurance that our data is reproducible is that timescales of zircon 
crystallisation appear to be remarkably similar for studies on porphyry deposits not only 
conducted in this lab, but also in other labs (Fig. 8). These studies have been conducted on 
deposits of variable age and thus on zircons with hugely variable radiogenic Pb contents. 
Finally, the sequence of youngest ages matches the geological emplacement sequence, 
despite the much larger range of older zircons in each sample; an observation that holds for 
every single case of several other deposits we studied with this approach. This systematics 
would be impossible to explain if the age variations were analytical artefacts, and it a also 
corroborates our interpretation of the youngest zircon in each sample being close to the age 
of emplacement and magma quenching and termination of zircon crystallization. 

 
(2) My third main point concerns the subsidiary part of the paper, which discussed the comparison of IDTIMS 
with ICP and SIMS data and reflects on their applications, correctness, and statistical factors. I 
find this parts absolutely atrocious, and I highly recommend to cut it out. The ICP analyses of these 
young zircons achieve intensities of maybe 100 cps for mass 206, for measurements lasting less than 
a minute, and there is no indication that it even gets to evaluate things like the need to correct for 
common Pb. So, the results are of very low precision, and it is a wonder that they are even close to 
the real values. The SIMS data are more substantial, but also they face incredible measurement 
challenges. So, really, all the arguments on statistics and processes cannot get around these basic 
limitations. And talking about them to such an extent is like watching children playing in the sand. 
Boring. Suggest cutting this parts out, keeping them for some contribution to a technical workshop, 
and not use them to spoil an otherwise interesting paper. 
 

We appreciate the reviewer outlining the low precision of the individual LA‐ICP‐MS dates 
and SHRIMP dates. We also appreciate the positivity of Reviewer #2 regarding this section. 
The main point of this section is not that the LA‐ICP‐MS dates further define the geological 
interpretation, in which case they could be considered unnecessary. However, we compare 
the three most commonly applied U‐Pb techniques on zircons from the same samples and in 
the case of TIMS and LA‐ICP‐MS on the same zircon grains. From this comparison (of a type 
that has, to our knowledge, not been published before), we can show (1) that the large 
number of young low precision LA‐ICP‐MS dates is remarkably accurate as a bulk data‐set 
but that (2) the calculation of the weighted mean and the standard error from LA‐ICP‐MS 
populations as currently practiced in the copious literature needs more careful 
consideration. Using weighted means on such young data‐sets as estimates for any 
geological event or process can result in highly precise dates without any geological 
significance. We therefore believe that this discussion is of interest to a broad readership. 
We tried to shorten the section and to focus on our main points and hope that the reviewer 
and editor can accept the revised section. 

 
With best regards, 
Simon Large et al. 
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We thank the Brenhin Keller for his constructive and positive comments on our submitted 
manuscript. We provide answers to the reviewer’s main comments below. The reviewer’s original 
comments are in black and our responses in blue. 
 
 
Brenhin Keller (Referee) 
cbkeller@dartmouth.edu 
Received and published: 10 May 2020 
 
I apologize for the lateness of this review, and hope that it will still be of use. 
The CA-ID-TIMS dataset presented by Large et al. is impressive, and contributes 
significantly to our understanding of the timescale and tempo of economically significant 
porphyry associated magmatism. The reported analytical precision is excellent 
for grains of this young age, and the analytical techniques suggest confidence that this 
precision is backed up by equivalent accuracy. Among other points, the CL imaging and in-situ geochemical 
characterization of each dated grain is to be applauded. 
 

1.  My main point of discussion involves the use of single "oldest" and "youngest" zircons to 
constrain the duration of zircon crystallization and metal precipitation. For the particular 
regime the authors are working in (N _ 15, apparent _t _ 10-20_), the competing effects 
of undersampling and analytical dispersion likely mostly cancel. On such a basis, 
the authors could perhaps argue to continue with this approach if they wish. However, 
"oldest/youngest zircon" is still not inherently statistically robust. One general solution 
(to which I am obviously biased) would be that of doi:10.7185/geochemlet.1826 (if you 
go this route, I would probably suggest a uniform ~ fxtal) – but my own work is certainly 
not the only option here. As I understand it, Pieter Vermeesch also has a perfectly 
workable analytical minimum age calculator (effectively based on an assumption of a 
truncated normal ~ fxtal) in IsoplotR. In either case, it will not materially affect the major conclusions 
of the study. 

 
We thank the reviewer for pointing us towards stochastical sampling approach to determine 
porphyry emplacement ages. We have calculated emplacement ages based on this approach 
using the interactive Jupiter notebook on https://github.com/brenhinkeller/BayeZirChron.c. 
We have addressed the results in the discussion (Section 5.5: lines 619- 622) and have added 
the emplacement ages to the appendix. Indeed, the different treatments of the CA-ID-TIMS 
result in overlapping results with little variation. More importantly the durations and 
timescales remain nearly identical. 

 
 

2. While I can see the previous reviewer’s point that the in-situ data could be cut since they 
are so imprecise, it also seems that this data is critical proof of the authors’ claim that, 
at the very least for the Batu Hijau porphyry-Cu-Au deposit, “geologically rapid events 
or processes or the tempo of magma evolution are too fast to be reliably resolved by insitu 
U-Pb geochronology and require ID-TIMS geochronology.” Consequently, I would leave it up to the 
authors which way they wish to proceed on this front. 

 

https://github.com/brenhinkeller/BayeZirChron.c


We thank the reviewer for this assessment. Indeed, highlighting the differences in apparent 
and absolute resolution between in-situ and ID-TIMS geochronology is the main point of the 
later discussion. We hope to provide a contribution to the scientific literature by providing a 
data-set where the differences can be investigated from analyses of zircons from the same 
samples. Thus, we would like to leave the shortened and focussed discussion in the 
manuscript. 

 

Minor comments were addressed accordingly 

 

Best regards 

Simon Large et al. 
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Abstract.  

Understanding the formation of economically important porphyry-Cu-Au deposits requires the knowledge of the magmatic-

to-hydrothermal processes that act within the much larger underlying magmatic system and the timescales on which they occur. 

We apply high-precision zircon geochronology (CA-ID-TIMS) and spatially resolved zircon geochemistry (LA-ICP-MS) to 

constrain the magmatic evolution of the underlying magma reservoir at the Pliocene Batu Hijau porphyry-Cu-Au deposit. We 15 

then use this extensive dataset to assess the accuracy and precision of different U-Pb dating methods of the same zircon crystals.  

Emplacement of the oldest pre- to syn-ore tonalite (3.736 ± 0.023 Ma) and the youngest tonalite porphyry cutting economic 

Cu-Au mineralisation (3.646 ± 0.022 Ma) is determined by the youngest zircon grain from each sample, which constrains the 

duration of metal precipitation to less than 90 ± 32 kyr. Overlapping spectra of single zircon crystallisation ages and their trace 

element distributions from the pre-, syn and post-ore tonalite porphyries reveal protracted zircon crystallisation together with 20 

apatite and plagioclase within the same magma reservoir over >300 kyr. The presented petrochronological data constrains a 

protracted early >200 kyr interval of melt differentiation and cooling within a large heterogeneous magma reservoir leading 

up to ore formation, followed by magma storage in a highly crystalline state and chemical and thermal stability over several 

10s of kyr during which fluid expulsion formed the ore deposit. Irregular trace element systematics suggest magma recharge 

or underplating during this final short time interval. 25 

The comparison of high precision CA-ID-TIMS results with in-situ LA-ICP-MS and SHRIMP U-Pb geochronology data from 

the same zircon grains allows a comparison of the applicability of each technique as a tool to constrain dates and rates on 

different geological timescales. All techniques provide accurate dates but with variable different precision. Highly precise 

dates derived by the calculation of the weighted mean and standard error of the mean of zircon dates obtained by in-situ 

techniques can lead to ages of unclear geological significance that are older than the maximum ages of emplacement given by 30 

the CA-ID-TIMS ages of the youngest zircons in each sample. significantly older suggested emplacement ages than those 

determined by high-precision CA-ID-TIMS geochronology. This lack in accuracy of the weighted means is due to the 

protracted nature of zircon crystallisation in upper crustal magma reservoirs, suggesting that standard errors should not be used 
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as a mean to describe the uncertainty in those circumstances. We conclude from this and similar published studies that the 

succession of magma and fluid pulses forming a single porphyry deposit and similarly rapid geological events are too fast to 35 

be reliably resolved by in-situ U-Pb geochronology, and that assessing the tempo of ore formation requires ID-TIMS 

geochronologyThus, geologically rapid events or processes or the tempo of magma evolution are too fast to be reliably resolved 

by in-situ U-Pb geochronology and require ID-TIMS geochronology. 

 

1 Introduction 40 

Zircon geochronology is widely applied to date geological events and constrain timescales of geological processes. Combined 

with zircon geochemistry it has improved our understanding of crustal magmatic systems, such as those forming economically 

important magmatic-hydrothermal porphyry Cu-Au deposits. Advances in analytical techniques resulted in a shift from 

establishing the ages of magma emplacement or crystallisation to resolving the durations of magmatic and associated 

hydrothermal processes, such as magma accumulation or recharge, fractional crystallisation or hydrothermal ore formation 45 

and it has resulted in unprecedented information about the mechanisms and scales of magma ascent and storage in the Earth’s 

crust (e.g. Vazquez and Reid, 2004;Chamberlain et al., 2014;Barboni et al., 2016;Bucholz et al., 2017).  

Porphyry copper deposits provide successively quenched samples of magma extracted from large crustal-scale 

hydrous magma systems. They are therefore a critical source of information about the processes and rates of magma ascent, 

magma storage and fluid generation, bridging those of volcanism and pluton formation. The identification of the processes 50 

that lead to porphyry deposit formation (e.g. Rohrlach et al., 2005;Audétat et al., 2008;Richards, 2013;Wilkinson, 2013) and 

the timescales on which they operate can provide us with valuable information about arc magmatic processes but could also 

potentially help in discriminating possibly fertile magmatic systems from ubiquitous infertile systems resulting in barren 

intrusions or volcanic eruptions.  

Porphyry Cu-Au deposits commonly display clear field relationships of successive generations of porphyritic stocks 55 

or dikes, which were injected into subvolcanic and other upper-crustal  rock sequences (Sillitoe, 2010). The injected porphyry 

magmas thus provide snapshots of the underlying, vertically and laterally extensive, magma reservoirs (e.g. Dilles, 

1987;Steinberger et al., 2013). Cross-cutting relationships between veins and intrusive rocks suggest temporal overlap of 

hydrothermal alteration, ore mineralisation and porphyry emplacement (Proffett, 2003;Seedorff and Einaudi, 2004;Redmond 

and Einaudi, 2010). Strong hydrothermal alteration of the intrusive rocks associated with ore formation severely disturbs the 60 

geochemical information of most minerals and whole-rock compositions. While providing important insights into the 

hydrothermal history of a deposit (e.g. Roedder, 1971;Dilles and Einaudi, 1992;Landtwing et al., 2005;Cathles and Shannon, 

2007;Seedorff et al., 2008;Large et al., 2016) it limits the investigation of the magma evolution, especially for the porphyries 

that are most intimately associated with ore formation. Zircon is a widespread mineral in intermediate to felsic rocks that is 
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unaffected by nearly allis resistant to nearly all hydrothermal alteration and can thus provide unique coherent information 65 

about the evolution of a magmatic system. 

Recent advances in high-precision zircon geochronology by chemical abrasion - isotope dilution - thermal ioniszation 

mass spectrometry (CA-ID-TIMS: e.g. Mattinson, 2005;Bowring et al., 2011;McLean et al., 2011a;Condon et al., 

2015;McLean et al., 2015) now allow dating the porphyritic intrusions associated with ore formation with unprecedented 

precision. The dramatically improved precision permits to constrain rapid events, such as individual porphyry emplacement 70 

and hydrothermal mineralization phases (<100 kyr: von Quadt et al., 2011;Buret et al., 2016;Tapster et al., 2016) that typically 

occur at the end of a longer-term period of volcanism and intrusive magma emplacement extending over several million years 

(e.g. Deino and Keith, 1997;Halter et al., 2004;Maksaev et al., 2004;Rohrlach et al., 2005;Lee et al., 2017). The integration of 

the temporal and chemical information gained from zircon is referred to as zircon petrochronology and can yield time-

calibrated information about magma chemistry, thermal evolution and crystallinity during zircon crystallisation in magmatic 75 

systems (e.g Schoene et al., 2012;Chelle-Michou et al., 2014;Samperton et al., 2015;Buret et al., 2016;Szymanowski et al., 

2017). 

Geological events and processes that require highest possible precision to be resolved, essentially rely on the accuracy 

of the chosen analytical technique. Timescales for magmatic and hydrothermal processes involved in porphyry ore formation 

have been suggested based on in-situ U-Pb data (e.g. Garwin, 2000;Banik et al., 2017;Lee et al., 2017) and increasingly precise 80 

CA-ID-TIMS geochronologgeochronology, which became increasingly precise y (e.g. von Quadt et al., 2011;Chelle-Michou 

et al., 2014;Buret et al., 2016;Tapster et al., 2016;Gilmer et al., 2017;Large et al., 2018). However, several studies applying 

multiple techniques on to the same sample sets have resulted in differing dates (von Quadt et al., 2011;Chiaradia et al., 

2013;Chelle-Michou et al., 2014;Chiaradia et al., 2014;Correa et al., 2016). The discrepancy demands for a more detailed 

understanding of the precision and accuracy of the techniques and the statistical data treatment that are applied to derive a 85 

geological age. This is not only fundamental for resolving dates and rates of geological processes in porphyry ore deposit 

research but provides more general insights into the geological meaning of equally affects magmatic dates and rates obtained 

by U-Pb geochronology.  

For the present paper, we obtained a large dataset of  zircon geochemistry and geochronology by laser ablation-

inductively coupled plasma-mass spectrometry (LA-ICP-MS) coupled tofollowed by high-precision geochronology of the 90 

same zircon fragments/segments/crystals utilising chemical abrasion-isotope dilution-thermal ionization mass spectrometry 

(CA-ID-TIMS). These coupled data from the world-class Batu Hijau porphyry Cu-Au deposit allows to resolve the chemical 

evolution and the changing physical state of the magma reservoir over time as well as the timescales of hydrothermal processes. 

In addition, previously published data on the same lithologies permit a critical comparison of two in-situ microanalytical 

methods (SHRIMP data by Garwin (2000), LA-ICPMS presented here) with high-precision U-Pb CA-ID-TIMS 95 

geochronology (this study). This allows us to critically compare the effects of variable degrees of precision and of the statistical 

treatment of data on the resulting interpreted ages and it provides a mean to test the accuracy of the different techniques. 
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2 Geological Background 100 

The Pliocene, island-arc hosted world-class porphyry deposit of Batu Hijau is located on Sumbawa island, Indonesia (Fig. 1), 

and it is one of the largest Cu and Au resources in the Southwest Pacific region (7.23 Mt Cu and 572 t Au: Cooke et al., 2005). 

It is currently the only mined porphyry deposit in the Banda-Sunda volcanic arc, where Cu-Au porphyries are restricted to a 

narrow segment of the eastern Sunda-Banda arc from 115°E and 120°E (Fig.1). where Australian plate is being subducted 

since the Eocene (Hall, 2002). 105 

The exposed islands of the Sunda-Banda arc are characterised by Late Oligocene to Early Miocene calc-alkaline 

basaltic to andesitic arc rocks that are overlain or intruded by a Late Miocene to Pleistocene calc-alkaline volcanic and plutonic 

rock suite ranging from basaltic to rhyolitic compositions (Hamilton, 1979;Hutchison, 1989). The magmatic arc hosts a variety 

of ore deposit types, including porphyry-Cu-Au deposits, high-, intermediate- and low-sulphidation epithermal deposits and a 

VMS-type deposit on Wetar (Fig. 1).  110 

 

 

Figure 1: Tectonic map of southeast Asia and the southwest Pacific. The Batu Hijau porphyry Cu-Au deposit (enlarged 

red square) is located on Sumbawa on the subduction related, magmatic Sunda-Banda arc within a small corridor 

between 110°E and 120°E that hosts several porphyry deposits. Arrows display plate motion relative to the Eurasian 115 

plate (Sundaland shield) but do not indicate velocity. Abbreviations: HS = high sulphidation, IS – intermediate 

sulphidation, LS – intermediate sulphidation, VMS – volcanic hosted massive sulphide deposit. Most deposit locations 

are from Garwin (2005). 
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The geology of Sumbawa Island, hosting the Batu Hijau deposit, is dominated by Early Miocene to Holocene volcanic 120 

arc successions deposited on oceanic crust that is 14 – 23 km thick (Hamilton, 1979;Barberi et al., 1987). Thickened continental 

crust observed in most other porphyry-mineralized magmatic arcs and commonly considered a prerequisite for porphyry-Cu 

formation (Rohrlach et al., 2005;Chiaradia et al., 2015;Lee and Tang, 2020) is lacking beneath Sumbawa (Garwin et al., 2005). 

The distribution of volcano-sedimentary units, intrusions and the current coastline of Sumbawa are controlled by a major arc-

transverse, left-lateral oblique-slip fault zone (Arif and Baker, 2004;Garwin et al., 2005). The fault zone strikes SSE-NNE 125 

about 30 km east of the Batu Hijau deposit coinciding with the north easterly projection of the Roo Rise oceanic plateau (Fig. 

1).  

 

 

 130 

Figure 2: Geological map (a) and north to south cross-sections with lithological information and grade contours (b-e) 

of the open pit at Batu Hijau. The Intermediate and Young tonalite intruded into a Volcanic lithic breccia and the 

equigranular quartz diorite (a, b). Note that the extent of the Old tonalite is not displayed but is included in the 

Intermediate tonalite. Dashed line in a) is the N-S section displayed in b)-e). Thin grey lines in a) indicate mine-benches. 

Cu- and Au-grades (c + d) are enveloped around the tonalites and a deep, central barren core. High-grade Cu- and Au-135 

mineralisation is cut by the Young tonalite. The ratios of Cu to Au (e) illustrate strong Au-enrichment proximal to the 

Intermediate tonalite and Cu-dominated distal mineralization. Map, section and grades are based on company 

information from May 2016. 
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 140 

The hypabyssal stocks in the Batu Hijau district are intruded into an Early to Middle Miocene volcano-sedimentary 

rock sequence (< 21 Ma based on biostratigraphy: Adams, 1984;Berggren et al., 1995) that reaches thicknesses of up to 1500 

m in southwestern Sumbawa. The low K2O, calc-alkaline, sub-volcanic intrusive rocks in the Batu Hijau district have andesitic 

to quartz-dioritic and tonalitic compositions (Foden and Varne, 1980;Garwin, 2000) and were emplaced in several pulses 

during the Late Miocene and Pliocene (Garwin, 2000). Over this multi-million year magmatic history, a continuous 145 

geochemical evolution towards more fractionated lithologies is indicated by whole-rock chemistry and Fe-isotopic evidence 

of the magmatic rock suite in the Batu Hijau district (Garwin, 2000;Wawryk and Foden, 2017). Within the Batu Hijau deposit, 

andesite porphyries and different quartz-diorite bodies are the earliest recognized stocks, whereas three tonalite porphyries are 

the youngest exposed intrusions (Clode, 1999). These tonalite porphyries, which are associated with economically important 

Cu-Au mineralization and pervasive hydrothermal alteration at Batu Hijau, were emplaced as narrow semi-cylindrical stocks 150 

into a broad ENE trending structural dome between ~3.9 – 3.7 Ma (Fig. 2: Garwin, 2000). Based on petrography and 

crosscutting relationships they were termed Old Tonalite, Intermediate Tonalite and Young Tonalite (Fig. 3: Meldrum et al., 

1994;Clode, 1999;Setynadhaka et al, 2008).  

All three tonalite intrusions are petrographically similar and are geochemically described as low-K calc-alkaline 

tonalites (Idrus et al., 2007). Least altered specimens contain phenocrysts of plagioclase, hornblende, quartz, biotite, magnetite 155 

± ilmenite hosted in an aplitic groundmass of plagioclase and quartz (Fig. 3: Mitchell et al., 1998;Clode, 1999;Garwin, 

2000;Idrus et al., 2007). Notably, all three porphyry intrusions lack potassium feldspar. Identified accessory minerals include 

apatite, zircon and rare titanites. Relicts of clinopyroxene can be identified within the tonalites. Vein density, ore grade and 

alteration intensity decrease from the Old to Young Tonalite. The Old Tonalite is the volumetrically smallest occurring mostly 

at the edges of the composite stock. It can clearly be identified in drill-core where its veins are truncated by later intrusions 160 

(Fig. 3) but it is currently not separated from the Intermediate Tonalite by the mine geology department at Batu Hijau, because 

their phenocryst proportion is almost indistinguishable (Fig. 2). Thus, it is not displayed as a separate unit in Figure 2 but 

mapped together with the Intermediate Tonalite. It locally contains the highest ore-grades (>1 % Cu and >1 g/t Au) and its 

matrix is characteristically coarsest of the three tonalite intrusions. The Intermediate Tonalite is the volumetrically largest of 

the three porphyry intrusions and strongly mineralized (Fig. 2). The Intermediate Tonalite is porphyritic with phenocrysts, 165 

including characteristic euhedral quartz phenocrysts, <8 mm in diameter (Fig. 3b). The Young Tonalite is the youngest 

intrusive rock in the district cutting most vein generations, ore mineralization and alteration (Fig. 3c, e). It is strongly 

porphyritic with largest observed phenocrysts, including euhedral quartz phenocrysts, and contains elevated but sub-economic 

metal grades (<0.3 % Cu and <0.5 g/t Au).  

 170 
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Figure 3: Rock specimens of the different tonalite porphyries and zircon CL images at Batu Hijau. Mineral assemblage 

in all tonalites is dominated by plagioclase, quartz and biotite. a) Phenocrysts in the slightly propylitically altered, pre- 

to syn-Cu-Au-mineralisation, equigranular Old tonalite are <3 mm. b) Phenocrysts of the syn-Cu-Au-mineralisation, 

porphyritic Intermediate tonalite are < 5 mm. c) The post-mineralisation porphyritic Young tonalite contains the 175 

largest phenocrysts <8 mm and is characterized by the a higher abundance in ‘quartz eyes’. d) Abundant veins in the 

equigranular Old tonalite are truncated by the later porphyritic Intermediate tonalite. e) Strongly veined Intermediate 

tonalite is truncated by the barren and little altered Young tonalite. Dashed-green lines indicate intrusive contacts. f) 

Representative zircons that display dominant oscillatory zoning and areas with little zoning. Circles indicate domains 

selected for LA-ICP-MS analyses (30 μm in diameter). 180 

 

Copper and gold are not distributed uniformlysystematically zoned within the deposit. High Au-zones are tightly 

enveloped around the tonalite stocks whereas high copper grades extend further out into the volcanic lithic breccia and the 

equigranular quartz diorite (Fig. 2). Lowest Cu/Au ratios occur towards and below the current pit floor and higher Cu/Au ratios 

are recorded peripheral to the central porphyry stock and towards the upper, already mined part of the ore body. A positive 185 

correlation between vein density and Cu and Au contents was described at Batu Hijau (Mitchell et al., 1998;Clode, 1999;Arif 

and Baker, 2004). A-veins were suggested to comprise ~80 % of all quartz veins and contain a similar fraction of the Cu 

(Mitchell et al., 1998). Most earlier authors suggested that the bulk of the Cu and Au were precipitated as bornite during early 

A-vein formation and converted to later chalcopyrite and gold associated with AB and B vein formation (Clode, 1999;Arif and 

Baker, 2004;Proffett, 2009). Other More recent studies on vein relationships and mineralogy using SEM-CP petrography 190 

combined with fluid inclusion analyses suggests that Cu-Au ore mineralization including bornite, chalcopyrite and gold all 

precipitated with a late quartz generation postdating high-temperature A and AB vein quartz, at lower temperature together 

with the formation of brittle fractures associated with thin chlorite – white mica halos (~C-veins and ‘paint veins’; C-veins 

(Zwyer, 2011;Schirra et al., 2019). Irrespective of the relative debated timing of stockwork quartz veins and economic ore 

mineral depositionmetal introduction in the Old and Intermediate tonalites, the Young Tonalite cuts through all high-grade Cu 195 

and Au zones demonstrating its late, largely post-mineralisation emplacement (Fig. 2, 3e). Therefore, the maximum duration 

of economic mineralisation is bracketed by the emplacement ages of the Cu-Au-rich Old Tonalite pre-dating it and the Young 

Tonalite post-dating it.  

 

 200 

 

3 Materials and Methods 

Based on detailed core logging and outcrop mapping with company geologists in May 2016, one sample each from the Old 

Tonalite, Intermediate Tonalite, the Young Tonalite and the equigranular quartz diorite were selected from locations where 

the lithologies were in unequivocal time relationship (See Supplementary Material for sample locations). Rocks were crushed 205 

and zircons separated with conventional techniques, including SelfragTM disintegration, panning and heavy liquid mineral 
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separation (methylene iodide; 3.3 g/cm3). Selected zircons were annealed for 48 hours at 900°C, mounted in epoxy resin and 

polished to reveal their crystal interior. Polished zircons were carbon coated and imaged using scanning electron microscopy 

cathodoluminescence (SEM-CL; Tescan EOscan VEGA XLSeries 4 Scanning Electron Microscope) prior to in situ LA-ICP-

MS analysis for trace elements and U-Pb isotopes employing a 193 nm ASI Resolution (S155) ArF excimer laser with a 30 210 

µm spot diameter, 5Hz repetition rate and 2 J cm-2 energy density coupled to an Element SF-ICP-MS. A detailed description 

of the method including data reduction can be found in Guillong et al. (2014) and the supplementary material, including results 

on secondary reference materials. Generally, at least one spot was chosen in the interior (core) and one in the exterior (rim) 

part of the zircon but up to four individual spots were analysed per zircon (Fig. 3f) to obtain in-situ geochemical information 

and U-Pb dates. All 206Pb/238U dates were corrected for initial 230Th-238U disequilibrium in the 238U-206Pb decay chain (e.g. 215 

Schärer, 1984). Ratios of Th/U recorded by zircons cluster around 0.3 – 0.6 and the dates were therefore corrected assuming 

a constant Th/Umelt of 2 based on partition coefficients (0.25) by Rubatto and Hermann (2007). Variation of the assumed 

Th/Umelt by ±0.5 would result in changes of individual 238U-206Pb dates of <10 kyr, far below analytical uncertainty. 

Titanium concentrations in zircon have been calibrated as a proxy for the crystallization temperature of zircons 

(Watson and Harrison, 2005;Watson et al., 2006;Ferry and Watson, 2007) and have been widely used in igneous and ore 220 

deposit petrology (e.g. Claiborne et al., 2010b;Reid et al., 2011;Chelle-Michou et al., 2014;Dilles et al., 2015;Buret et al., 

2016;Lee et al., 2017). The determination of accurate zircon crystallisation temperatures by Ti-in-zircon thermometry (Ferry 

and Watson, 2007) requires reliable estimates for the activity of SiO2 and TiO2 (aSiO2 and aTiO2) during zircon crystallization. 

Based on previous studies on porphyry deposits we utilize an aSiO2 of 1 and an aTiO2 of 0.7 (Chelle-Michou et al., 2014;Buret 

et al., 2016;Tapster et al., 2016;Lee et al., 2017;Large et al., 2018) reflecting quartz and titanite saturation (Claiborne et al., 225 

2006;Ferry and Watson, 2007). Titanite saturation during zircon crystallization is ambiguous at Batu Hijau (see discussion) 

but changes in the assumed aTiO2 result in systematic changes of all zircon crystallization temperatures and will therefore not 

affect the interpretation of relative temperature changes: a change of the aTiO2 by ±0.2 would result in a variation of about 

±30°C.  

Imaging by CL and followed by low-precision but spatially resolved LA-ICP-MS U-Pb datinges and geochemical 230 

data microanalysis by LA-ICP-MS were used to evaluate potential inherited zircon populations and to select 

inheritanceinclusion-free zircons for subsequent dissolution and analysis by high-precision U-Pb geochronology by CA-ID-

TIMS. Selected crystals were removed from the epoxy mount chemically abraded (CA) for 12-15 hours at 180°C using 

techniques modified from Mattinson (2005). Zircons were spiked with 6-8 µg of the EARTHTIME 202Pb-205Pb-233U-235U tracer 

solution (ET2535; Condon et al., 2015;McLean et al., 2015) and dissolved in high-pressure Parr bombs at 210°C for >60 hours. 235 

Dissolved samples were dried down and redissolved in 6N HCl at 180°C for 12 hours. Sample dissolution, ion exchange 

chromatography modified from Krogh (1973) and loading onto zone-refined Re filaments were conducted at ETH Zürich and 

are described in detail by Large et al. (2018). High-precision U-Pb isotopic data were obtained employing thermal ionization 

mass spectrometry at ETH Zürich (Thermo Scientific TRITON Plus). Pb was measured sequentially on a dynamic MassCom 

secondary electron multiplier and U was measured in static mode as U-oxide using Faraday cups fitted with 1013 Ω resistor 240 
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amplifiers (von Quadt et al., 2016;Wotzlaw et al., 2017).  Data reduction and age calculation were performed using the 

algorithms and software described in McLean et al. (2011) and Bowring et al. (2011). All 206Pb/238U dates were corrected for 

initial 230Th-238U disequilibrium in the 238U-206Pb decay chain (e.g. Schärer, 1984) using a constant Th/U partition coefficient 

ratio of 0.25 (Rubatto and Hermann, 2007) assuming that variations in Th/U of the zircons result from different Th/U of the 

crystallising melt and not from variations in relative zircon-melt partitioning of Th and U. High-precision U-Pb dates were 245 

obtained from 45 zircons, all of which were previously analysed by LA-ICPMS. 

 

4 Results 

4.1 Optical zircon appearance and SEM-CL petrography 

Zircons were extracted from the three tonalites (Old, Intermediate and Young Tonalite) and the equigranular quartz diorite. 250 

Zircon crystals from all three tonalite samples are colourless, euhedral to subhedral and variable in size with c-axis lengths of 

100 – 500 µm and aspect ratios between 1:2 and 1:4 (Fig. 3f). Thin section observations reveal zircons that are enclosed by 

phenocrysts and those thatalso occur within the fine-grained groundmass suggesting protracted zircon crystallisation within 

the magma until emplacement of the tonalite porphyries. Investigation of mineral separates and mounts with a binocular 

microscope reveals that many zircons contain small (<<20 µm) mineral or melt inclusions. SEM-CL imaging reveals few 255 

unzoned and sector zoned zircon domains, but most zircons exhibit oscillatory zoning (Fig. 3f).  

Only few broken zircon fragments could be identified from heavy mineral separates of the equigranular quartz diorite, 

but these indicate originally euhedral to subhedral shapes. Five of these broken grains, typically <200 µm long with aspect 

ratios of ~1:4, could be identified and were mounted. Four zircons were unzoned and one was oscillatory zoned. 

 260 

4.2 Spatially resolved zircon trace element composition 

At Batu Hijau, zircon geochemical analyses from the three tonalites display largely overlapping arrays and ranges for all 

described analysed trace element concentrations and ratios (Fig. 4). Most zircons from the tonalites display systematically 

higher HREE (e.g. Yb) over MREE (e.g. Dy) and LREE (e.g. Nd) contents in their rims relative to their cores (Fig. 4a). This 

strongly correlates with core-rim systematics of other differentiation proxies, like increasing Hf or decreasing Th/U (Fig. 4: 265 

Hoskin and Ireland, 2000;Claiborne et al., 2006;Schaltegger et al., 2009;Claiborne et al., 2010b;Samperton et al., 2015). 

However, some core-rim trends, especially, from the Young Tonalite display increasing Th/U and decreasing Yb/Dy ratios 

(Fig. 4b).  

 

 270 

 



11 

 

 

 
 

Figure 4: Covariation diagrams (a-e) and probability density plots (f-h) of in-situ geochemical data obtained by LA-275 

ICP-MS. a) - c) are plotted against Th/U as an indicator for fractionation, whereas d) + e) are plotted against Hf as the 

fractionation proxy. Arrows labelled ‘fractional crystallisation’ indicate the approximate predicted direction zircon 

geochemistry would migrate given fractional crystallization of zircon ± apatite ± titanite ± amphibole. Arrows labelled 

‘plag’ and ‘tit’ points into the predicted direction of zircon geochemistry evolution during co-crystallisation with 

plagioclase or titanite. Zircons from the three tonalite porphyries are considered to have crystallised from the same 280 

magma reservoir, whereas zircons from the equigranular quartz diorite (purple) are unrelated (see text for discussion). 

Temperature lines in d) are calculated with an assumed aSiO2 = 1 and aTiO2=0.7 based on Ferry and Watson (2007: 

see text for discussion). Cross in top right corners illustrates average analytical 2σ uncertainties. Probability density 

plots (after Vermeesch et al., 2013) illustrate differences between different samples and core and rim analyses within 

each sample. Axes of probability density plots in f) + g) are aligned with axes of d) + e). 285 

 

 

In most zircons, Ti-concentrations decrease from core to rim (Fig. 4d, f). This decrease correlates well with increasing 

Hf and decreasing Th/U. Maximum and minimum values Ti contents for all intrusions are ~10 ppm and ~2 ppm resulting in 

model crystallization temperatures of 770°C to 650°C (see methods for details). The majority of zircons from the Batu Hijau 290 
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deposit contain lower U concentrations (<75 ppm) compared to zircons from most other porphyry deposits (several 100 ppm) 

but individual zircons can contain up to 300 ppm (Fig. 4c). The zircons with high U-concentration do not correspond to the 

lower Th/U zircons but also contain high Th-concentrations and cover the whole spectra of Th/U ratios observed at Batu Hijau 

(Fig. 4c). The Eu-anomaly (Eu/Eu*, which is a mean to quantify the negative inflexure of the normalised REE diagram) 

increases (Eu/Eu* decrease) with increasing Hf concentrations (Fig. 4e). Zircon analyses from the equigranular quartz diorite 295 

plot towards the lowest Hf, Yb/Dy, Yb/Nd and, Eu/Eu* but highest Th/U and Ti end of the trends displayed by the all tonalite 

zircons (Fig. 4). 

Probability density functions (Vermeesch, 2012) are used to test for statistically significant differences between the 

overlapping zircon populations of the different tonalites and between core and rim analyses from the same tonalite porphyries 

(Fig. 4f, g, h). The Hf and Ti concentrations as well as the europium Eu-anomaly of zircons display overlapping distributions 300 

for the Intermediate and Young tonalites. The Old Tonalite zircon population peaks at higher Ti concentrations and Eu/Eu* as 

well as lower Hf concentrations than the younger tonalites. Core and rim analyses from zircons of the Old Tonalite document 

decreasing Ti and Eu/Eu* together with increasing Hf concentrations from cores to rims. Hafnium contents of the rim analyses 

peak at higher concentrations than the core analyses within the Intermediate and Young Tonalite with thewhereas Eu/Eu* 

displaysing the opposite effect. Populations illustrating titanium concentrations of the two younger tonalites however, display 305 

no systematic changes between core and rim.  

 

4.3 CA-ID-TIMS geochronology 

 

We dated 16 zircons each of the Old and Intermediate Tonalite and 13 zircons of the Young Tonalite by high-precision CA-310 

ID-TIMS geochronology. The youngest zircon eachs of the Old, Intermediate and Young Tonalite yield 230Th-238U 

disequilibrium corrected 206Pb/238U zircon dates of 3.736 ± 0.023 Ma, 3.697 ± 0.018 Ma and 3.646 ± 0.022 Ma (individual 

grain ±2 Fig. 5). We interpret these dates as the time of respective porphyry emplacement based on the assumption that 

zircons grew at depth up to the point that the magma cooled rapidly upon injection into the subvolcanic environment (cf. Oberli 

et al., 2004;Schaltegger et al., 2009;von Quadt et al., 2011;Samperton et al., 2015;Large et al., 2018) (c.f. Oberli et al., 2004;von 315 

Quadt et al., 2011;Samperton et al., 2015;Large et al., 2018)) . Reproducibility of the individual dates is corroborated by 

reproducible dates for all analysed CA-ID-TIMS standards analysed during over the time of analyses of the presented samples. 

Standards include the Aus_Z7_5 (von Quadt et al., 2016) that contains similarly low amounts of radiogenic Pb (0.5 – 4 pg) 

and is of Pliocene age  

Despite the small differences in emplacement age, the age sequence is consistent with field observations documenting the 320 

emplacement sequence (Fig. 3).  consistent with field observations (Fig. 3). The time intervals between emplacement of the 

Old and Intermediate Tonalite and between the Intermediate and Young Tonalite can therefore be constrained to 39 ± 29 ka 

and 51 ± 28 ka, respectively. The Recorded minimum duration of zircon crystallization, as defined recorded by the oldest and 
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youngest zircon of each sample, spreads over 246 ± 28 kyr, 212 ± 32 kyr and 171 ± 26 kyr for the Old, Intermediate and Young 

Tonalite (Fig. 5). The overall duration of recorded zircon crystallization is 336 ± 27 ka. Using the youngest zircon population, 325 

rather than the youngest individual zircon as the best approximation for porphyry emplacement (c.f. Samperton et al., 

2015;Buret et al., 2016;Tapster et al., 2016) would result in slightly older emplacement ages (~20 kyr) but nearly identical 

durations of zircon crystallisation and time intervals between porphyry emplacement events (see Supplementary Material). 

Our high-precision CA-ID-TIMS dates precisely constrain protracted zircon crystallization over several 100 ka and successive 

emplacement of the three porphyritic tonalite bodies at Batu Hijau within 90 ± 32 ka. 330 

Ratios of Th/U obtained by CA-ID-TIMS analyses on the same sample volume illustrate no systematic variation with 

time. Values vary inconsistently between 0.4 and 0.6 over the whole recorded time interval (Fig. 6). 

 

 
Figure 5: High-precision U-Pb CA-ID-TIMS zircon dates from the three tonalite porphyries and comparison with 335 

weighted mean averages by in-situ U-Pb geochronology. Vertical bars are individual analyses including analytical 

uncertainty (2σ). The youngest crystallization age is used as the best approximation for porphyry emplacement. The 

extended range in zircon crystallization ages in each sample indicates protracted crystallization. Yellow box indicates 

maximum duration of ore formation as constrained by the emplacement age of the Old tonalite and the Young tonalite. 

Grey box illustrates the duration of zircon crystallization recorded by CA-ID-TIMS geochronology. Vertical bars in 340 

the grey box are emplacement ages of the tonalites, demonstrating >200 ka of zircon crystallization before emplacement 

of the first porphyry intrusion and start of Cu-Au mineralisation. 

 

 

4.4 In-situ U-Pb geochronology 345 

Trace element and U-Pb isotopic data were obtained for each LA-ICP-MS spot (Fig. 7) prior to CA-IC-TIMS dating. Low 

Uranium concentrations and the young ages of the analysed zircons resulted in high individual uncertainties for individual in-
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situ U-Pb dates (Mean: 10%; Minimum: 3%; Maximum: 41%). All individual spot analyses of the three tonalites that were not 

discarded due to common Pb or strong discordance yield Pliocene dates (2.98 ± 1.06 – 4.95 ± 0.54 Ma: Fig. 7) with no 

apparently inherited zircons. All in-situ dates of individual samples illustrate continuous arrays and do not indicate more than 350 

one population of zircons per sample (Fig. 7). Weighted means of all zircon analyses from each tonalite are 3.879 ± 0.027, 

0.065, 0.32 (n = 207, MSWD = 2.1), 3.778 ± 0.023, 0.061 , 0.62 (n = 189, MSWD = 2.5) and 3.751 ± 0.023, 0.060, 0.29 Ma 

(n = 158, MSWD = 2.6) from oldest to youngest (Fig. 7), where the stated uncertainties are the standard error of the weighted 

mean, the standard error including an external uncertainty of 1.5 % as suggested by Horstwood et al. (2016) to incorporate of 

excess variance, and the standard deviation of zircons dates from each sample. These weighted averages are not overlapping 355 

within uncertainty with the emplacement ages constrained by CA-ID-TIMS but overlap with the mean of the respective 

population. The few in-situ analyses (n = 8) on zircons from the diorite result in overlapping Late Miocene dates. The weighted 

mean of all LA-ICPMS analyses of the equigranular diorite results in an apparent age of the equigranular diorite of 6.37 ± 

0.40, 0.41, 0.37 Ma (n = 8, MSWD = 0.46). 

 360 

 
Figure 6: Th/U ratios plotted against time. Both values obtained from CA-ID-TIMS analyses of the same sample 

volume. 

 

 365 
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Garwin (2000) presented the firstpreviously published SHRIMP U-Pb data on zircons from the Batu Hijau tonalites. 

Similar to the LA-ICP-MS analyses in this study, individual uncertainties of the dates were elevated (0.12 – 0.30 Ma: ~5 – 10 

% uncertainty) due to low U concentrations and the young zircon crystallisation ages. As all dates of each sample statistically 

formed a single populationsappear to represent the same populations (Supplementary Material) weighted means were 

calculated from of all zircons of a sample, these were interpreted as the intrusion ages of the tonalites by Garwin (2000). The 370 

reported zircon dates were not corrected for 230Th-238U disequilibrium. For comparability we will only consider zircon dates 

that are corrected for initial Th/U disequilibrium (Schärer, 1984: for details consult the Supplementary Material). Correction 

increases the individual zircon dates by ~60 – 100 kyr and recalculation of the weighted means averages and standard errors 

results in dates of 3.74 ± 0.14 Ma (MSWD = 1.2, n = 8), 3.843 ± 0.094 (MSWD = 1.2, n = 18) Ma and 3.81 ± 0.2 Ma (MSWD 

= 2.35, n = 7) for the Old, Intermediate and Young tonalite, respectively.  375 
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Figure 7: In-situ U-Pb geochronology by LA-ICP-MS of zircons from the equigranular quartz diorite a), the Old 

tonalite b), the Intermediate tonalite c) and the Young tonalite d). Vertical lines illustrate individual U-Pb dates 380 

including analytical uncertainty (2σ). As no zircon populations can be separated the weighted mean average of all 

analyses is calculated. Standard error (2SE, lightest grey), standard error + 1.5% (light grey) to incorporate of excess 

variance (Horstwood et al., 2016) and standard deviation of all individual dates (dark grey) are calculated and plotted. 

Duration of zircon crystallisation as obtained by CA-ID-TIMS is illustrated as a box for comparison. Lower boundary 

of the coloured box indicates youngest CA-ID-TIMS date – or the emplacement age. Note the different vertical scale in 385 

a). Zircon dates from the equigranular quartz diorite are ~2 Ma older than zircons from the tonalites. 
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5 Discussion 390 

5.1 Timing and duration of magmatic and hydrothermal processes leading to porphyry Cu formation 

The three tonalite intrusions each record protracted zircon crystallisation over ~200 kyr, as resolved by high-precision ID-

TIMS geochronology. The older zircon dates from the Young and Intermediate tonalites overlap with the younger zircons of 

the older intrusion/s (Fig. 5). This overlap together with the consistent trace element systematics of the three samples (Fig. 4) 

strongly suggests crystallisation of all zircons within the same magma reservoir. the largely overlapping trace element 395 

systematics recorded by zircons are here used to infer zircon crystallisation within the same mid- to upper crustal magma 

reservoir that sourced magmas forming the three tonalitic porphyry stocks but most likely also volatiles and metals to form the 

porphyry Cu-Au deposit. High-precision geochronology records a total duration of zircon crystallisation of 336 ± 27 kyr, 

which is also a minimum estimate for the lifetime of the deeper reservoir underlying Batu Hijau. The first exposed and highly 

mineralised tonalite intrusion (Old Tonalite) was injected into the upper crust 246 ± 28 kyr after the onset of zircon 400 

crystallization. Emplacement of the three tonalites occurred within 90 ± 32 kyr. Emplacement of the Old Tonalite was followed 

by the emplacement of the Intermediate Tonalite after 39 ± 29 kyr and the Young Tonalite was emplaced after a further 51 ± 

28 kyr.  

The maximum duration of ore formation is defined by the timespan between the emplacement of the pre- to syn-

mineralisation Old Tonalite and the post-mineralisation Young Tonalite (Fig. 3d, e) and can be therefore constrained to less 405 

than 122 kyr. This maximum duration is in good agreement with previous geochronological studies indicating timescales of 

ore formation from <100 kyr to <29 kyr (Fig.8, 9: von Quadt et al., 2011;Buret et al., 2016;Tapster et al., 2016). It is also 

coherent with results from thermal modelling studies (Cathles, 1977;Weis et al., 2012) and modelling of diffusive fluid-rock 

equilibration (Cathles and Shannon, 2007;Mercer et al., 2015;Cernuschi et al., 2018) suggesting timescales of ore formation 

between a few ka and 100 kyr. Strongly elevated Cu- and Au-grades in the Old Tonalite and somewhat lower, but still 410 

economic, grades within the Intermediate Tonalite (Clode, 1999;Garwin, 2000;Arif and Baker, 2004) together with cross-

cutting relationships (Fig. 3d, e) indicate that mineralisation occurred within at least two but possibly more pulses: (i) one 

strong mineralisation pulse associated with or slightly postdating the emplacement of the Old Tonalite but predating the 

injection of the Intermediate Tonalite (Fig. 3d); (ii) a second pulse is bracketed by the intrusion of the Intermediate and the 

Young Tonalite (Fig. 3e). More than one episode of mineralisation is also inferred based on detailed mineralogy and vein 415 

petrography (see Geology section: Arif and Baker, 2004;Zwyer, 2011). This further strengthens the hypothesis that individual 

ore-forming hydrothermal pulses are relatively short events, possibly on the millennial or sub-millennial scale (Cathles, 

1977;Weis et al., 2012;Mercer et al., 2015), but that the formation of large economic Cu-Au deposits occurs in several pulses 

occurring over a few 10s of kyr but ≤100 kyr (von Quadt et al., 2011;Weis et al., 2012;Cernuschi et al., 2018).  
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 420 

5.2 Reconstructing the chemical and physical evolution of a porphyry-forming magma reservoir 

Trace element systematics of zircons are powerful geochemical proxies, if applied correctly, as they record the magma 

evolution and characterise the magmatic system, that they crystallised from (e.g. Hoskin and Schaltegger, 2003;Reid et al., 

2011;Schoene et al., 2012;Wotzlaw et al., 2013;Chamberlain et al., 2014;Samperton et al., 2015). The largely overlapping 

trace element systematics recorded by zircons together with the protracted nature of zircon crystallisation are here used to infer 425 

zircon crystallisation within the same mid- to upper crustal magma reservoir that sourced magmas forming the three tonalitic 

porphyry stocks but most likely also volatiles and metals to form the porphyry Cu-Au deposit. At Batu Hijau we are able to 

reconstruct the magmatic evolution over 336 ± 27 kyr of recorded zircon crystallization.  

Ratios of Th/U ratios and Hf concentrations are commonly used as proxies for the degree of crystal fractionation 

within a magma reservoir (e.g. Claiborne et al., 2006;Claiborne et al., 2010b;Samperton et al., 2015). The systematically 430 

decreasing Th/U ratios and increasing Hf concentrations between samples and from cores to rims (Fig. 4) are indicative of 

progressive melt differentiation during zircon crystallisation. The good correlation of these melt evolution proxies with 

decreasing Ti-contents (Fig. 4) further suggests progressive cooling during differentiation. Ratios of HREE over MREE or 

LREE (e.g. Yb/Dy, Yb/Nd) can be utilised to make inferences about the co-crystallising mineral assemblage. Titanite for 

example preferentially depletes the melt in MREE resulting in distinct trace element patterns recorded by co-crystallizing 435 

zircon (e.g. Reid et al., 2011;Wotzlaw et al., 2013;Samperton et al., 2015;Loader et al., 2017). The systematically higher HREE 

(e.g. Yb) over MREE (e.g. Dy) and LREE (e.g. Nd) contents in the rims of most zircons relative to their cores (Fig. 4a) thus 

indicate zircon crystallisation from a fractionally crystallising magma with co-crystallisation of minerals that preferentially 

incorporate MREE and LREE (e.g. apatite, titanite, amphibole). At Batu Hijau apatites were petrographically identified, 

whereas magmatic titanite occurs very subordinately. The apparent lack of magmatic titanite is unusual as it is reported as a 440 

common accessory phase in many other porphyry-Cu deposits (e.g. Bajo de la Alumbrera, El Salvador, Ok Tedi, Oyu Tolgoi). 

The absence of euhedral titanite within the mineral separates could be the result of dissolution during intense hydrothermal 

alteration (van Dongen et al., 2010). The decrease of Eu/Eu* correlating with proxies of increased fractionation (Hf, Fig. 4e)  

and during zircon growth (Fig. 4f) suggests co-crystallisation of plagioclase and could indicate a lack of titanite crystallisation, 

or subordinate crystallisation, as already minor titanite crystallisation strongly increases the Eu/Eu* recorded by zircon (Loader 445 

et al., 2017). This apparent lack of titanite crystallisation identify apatite as the main REE fractionating mineral during zircon 

crystallization.  

Trace element compositions of zircons from the equigranular quartz diorite suggest crystallisation within a hotter and 

less evolved magma than the zircons from the tonalites (Fig. 4). In principle, this might indicate that all zircons analysed in 

this study have crystallised from the same reservoir, where the zircons from the equigranular quartz diorite reflect the earliest 450 

crystallised zircons from least evolved melt. However, the >2 Ma time gap is longer than the thermal lifetime of any recognised 

upper-crustal magmatic body (e.g. Schoene et al., 2012;Wotzlaw et al., 2013;Caricchi et al., 2014;Samperton et al., 2015;Eddy 
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et al., 2016;Karakas et al., 2017) and longer than considered possible based on thermal modelling (Jaeger, 1957;Annen, 

2009;Barboni et al., 2015). We therefore consider the zircons within the equigranular Diorite to be part of a separate crustal 

magmatic system not directly related to the ore-forming system that sourced the three tonalitic intrusions.   455 

Trace element populations of zircons from the three tonalites demonstrate that the crystallising magma at the time of 

emplacement of the Old Tonalite was hotter and less fractionated (Fig. 4) than at the time of emplacement of the younger 

Intermediate and Young Tonalite (i.e. 39 ± 29 ka and 90 ± 32 ka after emplacement of the Old Tonalite, respectively). The 

good correlation of proxies indicating progressive differentiation (Th/U and Hf) with decreasing Ti concentrations (Fig. 4d) 

indicates that the magma reservoir cooled during concurrent crystallisation and melt evolution. In-situ analyses of cores and 460 

rims are evidence for an evolving magma reservoir over the course of individual zircon crystallisation (decreasing Hf: Fig. 

4h). Core-rim systematics of zircons from the Old Tonalite further demonstrate cooling during protracted zircon growth (Fig. 

4f). Rarely recorded coherent zircon trace element systematics recording melt differentiation over time are commonly inferred 

to result from zircon crystallisation within a homogeneous magma that evolved continuouslybest resembles near-closed-system 

behaviour (e.g. Wotzlaw et al., 2013;Large et al., 2018). The lack of such systematic temporal changes in the chemistry of the 465 

zircons (Fig. 6) indicates that the magma reservoir at Batu Hijau was not evolving homogenously. This could be explained by 

incremental recharge or assembly of the magma reservoir. However, this would imply at least partial resetting of the intra-

grain systematics recorded in zircons from the Old Tonalite (Buret et al., 2016;Large et al., 2018). To explain the intra-grain 

and inter-sample systematics but absence of temporal trends (Fig. 4, 6), we favour different degrees of crystallinity in the 

magma reservoir. Overall the reservoir is generally hotter and less evolved at the time of emplacement of the Old Tonalite than 470 

thereafter (Fig. 4). We therefore suggest that the magma reservoir underlying Batu Hijau progressively but heterogeneously 

cooled and crystallised over at least 246 ± 28 ka with potential incremental recharges until emplacement of the Old Tonalite. 

A change from a differentiating, crystallising and cooling magma reservoir to a state of chemical and thermal stability 

is recorded between emplacement of the Old and Young Tonalite (separated by 90 ± 32 kyr) as demonstrated by the trace 

element systematics of the Intermediate and Young Tonalite porphyries. The indistinguishable highly fractionated and low 475 

temperature zircon characteristics (Fig. 4) indicate that the magma reservoir remained in near steady-state conditions between 

emplacement of the Old and Young Tonalite as coherent intra-grain systematics are not pronounced (Hf) or absent (Ti) in 

zircons from the younger tonalites (Fig. 4f, h).  

Irregular zircon trace element systematics in other intrusive magmatic settings have been associated with 

crystallisation in non-homogenised and small melt batches sometimes with contemporaneous incremental magma addition to 480 

the mushy magma reservoir (e.g. Schoene et al., 2012;Buret et al., 2016;Tapster et al., 2016). Geochemically similar zircon 

chemistries of the Intermediate and Young Tonalite could also result from chemical stability as the magma reservoir reached 

the ‘petrological trap’ at a crystallinity of ~55 – 65% (Caricchi and Blundy, 2015) where the crystal fraction does not change 

over a broad temperature interval. Rim analyses that plot outside the mineral co-crystallisation trends than the respective core 

analyses (Fig. 4) could suggest late-stage crystallisation within a nearly solidified magma that can be characterized by 485 

unsystematically variable trace element systematics (Buret et al., 2016;Lee et al., 2017). Alternatively, they could indicate 
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thermal and possibly chemical rejuvenation of the magma (Buret et al., 2016). The latter would help explaining the recorded 

thermal stability over several 10s of kyr. It is not possible to unambiguously identify one of the two mechanisms as dominant 

and a concurrence of both is feasible. We therefore propose that in between emplacement of the Old and Young Tonalite the 

underlying magma reservoir was in a thermally and chemically stable and crystal-rich state and was most likely affected by 490 

incremental magma recharge or underplating. 

Our data of a porphyry-Cu fertile magmatic system constrain a heterogeneous magma reservoir that was initially 

dominated by cooling and melt differentiation and evolved into a thermally and chemically stable, crystal-rich magma that 

possibly experienced incremental recharge. The likely transitional change of reservoir behaviour can be temporally constrained 

to have occurred between emplacement of the Old and Young tonalites and coincides with the formation of a world-class Cu-495 

Au reserve. This suggests that porphyry Cu-Au deposits form after a few 100 ka of cooling and crystallisation, potentially 

within an originally melt-rich magma reservoir. 

5.3 Different timescales of processes related to porphyry Cu-Au ore-formation 

To date no clear relationship between the duration of magmatic-hydrothermal activity and the size of porphyry deposits can 

be identified from studies applying high-precision CA-ID-TIMS geochronology. Comparison of published datasets (Buret et 500 

al., 2016;Tapster et al., 2016;Large et al., 2018) reveals maximum durations of metal forming events between a few 104 to 105 

yr (Fig. 9). Although these studies are so far constrained to deposits of <10 Mt contained Cu they range over at least one order 

of magnitude in size (Koloula vs. Batu Hijau). A correlation between the duration of the mineralizing/magmatic event and the 

total mass of deposited copper had been previously suggested based on compilations of different geochronological data-sets 

(Chelle-Michou et al., 2017;Chiaradia and Caricchi, 2017;Chelle-Michou and Schaltegger, 2018;Chiaradia, 2020). High 505 

durations of ore formation (>1 Ma) were suggested based on Re-Os geochronology on Molybdenite at the giant porphyry 

deposits and deposit clusters in Chile (>50 Gt Cu: El Teniente, Cannell et al. (2005) and Maksaev et al. (2004); Rio Blanco, 

Deckart et al. (2012); and Chuquicamata, Barra et al. (2013)). Copper (-gold) mineralising timescales were calculated by 

subtracting the youngest from the oldest Re-Os date. However, recent Re-Os dates from El Teniente (Spencer et al., 2015) 

indicate that the spread in dates is more consistent with several short (≤200 kyr) hydrothermal events separated by hiatuses of 510 

~500 kyr. Thus, the large tonnage of these deposits could be the result of the superimposition of several ore forming mid- to 

upper crustal magmatic systems. As the correlation of deposit size and timescales of shallow magmatic-hydrothermal systems 

is currently ambiguous we would argue that other variables could be the dominant factors controlling the deposit size, such as 

magma reservoir size, magma or fluid chemistry, fluid release and focussing mechanisms or the metal precipitation efficiency. 

Zircon crystallisation over ~200 kyr before the onset of porphyry-ore formation recorded at Batu Hijau is consistent 515 

with other high-precision geochronological studies on porphyry deposits (Fig. 8, 9: Buret et al., 2016;Tapster et al., 2016;Large 

et al., 2018). The lack of variation observed in these deposits suggests the necessity of a long-lived and continuously 

crystallising magma reservoir preceding economic ore formation. The recorded ~200 kyr of protracted zircon crystallisation 
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could indicate a period of volatile enrichment as a result of fractional crystallisation and cooling of the magma reservoir before 

porphyry emplacement.  520 

 

 
Figure 8: Compilation of high-precision data-sets on several pre-, syn- and post-ore intrusions at magmatic-

hydrothermal Cu-Au deposits. Data for Ok Tedi, Bajo de la Alumbrera and Koloula are from Large et al. (2018) Buret 

et al. (2016) and Tapster et al. (2016), respectively. Coloured vertical bars are individual analyses including analytical 525 

uncertainty (2σ). Intrusions are categorised in pre-ore, pre-/syn-ore and post-ore intrusion. Decreasing deposit size 

from left to right (tonnages from Cooke et al., 2005). 

 

 

The geochronological data from the Batu Hijau district are further evidence that rapid porphyry emplacement and ore 530 

formation (<100 ka) are the product of a longer term evolution (a few 100 ka) of a large magma reservoir underlying the 

porphyry deposit that is the main driver of ore formation (von Quadt et al., 2011;Chelle-Michou et al., 2014;Buret et al., 

2016;Tapster et al., 2016;Buret et al., 2017;Large et al., 2018). Magma reservoirs capable of forming porphyry deposits are in 

turn part of a longer-term (several Myr) evolution of lithosphere-scale magma systems (Sasso, 1998;Rohrlach et al., 

2005;Longo et al., 2010;Rezeau et al., 2016), which is consistent with the >>2 Myr record of intrusive rocks preceding 535 

porphyry emplacement and ore formation recorded in the Batu Hijau district (Garwin, 2000;Wawryk and Foden, 2017). 
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Figure 9: Overview of high-precision geochronology studies on porphyry deposits.  

Data for Ok Tedi, Bajo de la Alumbrera and Koloula are from Large et al. (2018) Buret et al. (2016) and Tapster et al. 540 

(2016), respectively. Coloured vertical bars are emplacement ages of different intrusive rocks described from these 

deposits. Intrusions are categorised in pre-ore, pre-/syn-ore and post-ore intrusion. Decreasing deposit size from left to 

right (tonnages from Cooke et al., 2005). Diagrams are aligned that the onset of zircon crystallisation overlaps in all 

deposits. Grey bars indicate recorded duration of zircon crystallisation. Yellow bars illustrate maximum durations of 

total ore formation or individual ore formation pulses. Yellow bar fading out downwards indicates the absence of a 545 

post-ore intrusion and the inability to constrain total duration of ore formation. Note that we excluded the sample X176 

from Koloula as it is not related to magmatic history leading to ore formation (Tapster et al., 2016). 

 

5.4 Resolving lower crustal magmatic processes from Zircon zircon petrochronology 

The lack of inheritance within the zircon record at Batu Hijau suggests that the crustal magmas experienced very minor crustal 550 

assimilation. Typically, magmas that are associated with porphyry ore formation contain diverse suites of inherited zircons 

(e.g. Tapster et al., 2016;Lee et al., 2017;Large et al., 2018), which have been interpreted to represent extended interaction 

with arc lithologies (Miller et al., 2007). This apparent lack of crustal contamination is consistent with the juvenile isotopic 

signatures (Pb-Pb, Sm-Nd, Rb-Sr) of intrusions in the Batu Hijau district (Garwin, 2000;Fiorentini and Garwin, 2010). The 

juvenile and “porphyry-fertile” magmas at Batu Hijau have been explained by asthenospheric mantle upwelling through a tear 555 

in the subducting slab that resulted from the collision with the Roo rise (Garwin, 2000;Fiorentini and Garwin, 2010). This 

would also explain why the only mined porphyry-deposit in the Sunda-Banda arc (Batu Hijau) and the most promising 

prospects (Elang and Tumpangpitu) are located above the inferred margin of the subducting Roo rise (Fig. 1). 

 The formation of porphyry Cu(-Au) deposits has been commonly associated with the fractionation of amphibole ± 

garnet in thickened crust (e.g.Rohrlach et al., 2005;Lee and Tang, 2020) within lower crustal magma reservoirs that are active 560 

over several Myr (Rohrlach et al., 2005). Zircons have been suggested to directly track this extended lower crustal history 
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(Rohrlach et al., 2005). At Batu Hijau no zircon was identified that crystallised resolvably before the main crystallisation 

period, which we consider to have occurred in the mid- to upper crust (Fig. 5, and discussion above). Unzoned cores surrounded 

by oscillatory zoned rims (Fig. 3f) could be interpreted to reflect a two-stage crystallisation process however, the depth of 

these two processes cannot be resolved and they would have occurred within the few 100 kyr of recorded zircon crystallisation 565 

(Fig. 5). As most crystals within a mount are not polished exactly to their centre, the unzoned cores could equally likely 

represent a polishing effect where the surface of one zone appears as an unzoned core. Therefore, it is highly speculative to 

directly relate zircon textures to a locus or style of zircon crystallisation.  

In the case of Batu Hijau, petrochronology petrochronological data was used to reconstruct the mid- to upper crustal 

magma evolution but the data can only provide indirect information about the lower crustal processes involved in the formation 570 

of the deposit. For example, the overall elevated Eu/Eu* of the investigated zircons (0.4 – 0.7; cf. Loader et al., 2017) could 

be the result of amphibole fractionation in the lower crust, which would have, relatively, enriched the residual melt Eu 

compared to the other REE. This would be analogous to elevated whole-rock Sr/Y ratios in exposed rocks being indicative of 

the lower crustal fractionating assemblage (Rohrlach et al., 2005;Chiaradia, 2015). The intra-crystal and intra-sample trends 

of decreasing Eu/Eu* discussed above describe the evolution within the mid- to upper crustal magma reservoir that was 575 

dominated by plagioclase crystallisation and do not reflect any lower crustal process. Zircon can thus directly record the mid- 

to upper crustal magma evolution but the information about lower crustal processes is limited to potentially identifying the 

chemistry of melt and magma that was injected from below into the mid- to upper crust, where zircon started crystallising. 

5.5 An assessment of the accuracy and precision of CA-ID-TIMS and in-situ U-Pb zircon geochronology 

The obtained U-Pb dataset from Batu Hijau, allows a critical comparison of the two zircon U-Pb geochronology techniques 580 

(LA-ICP-MS, CA-ID-TIMS) that have different analytical precision and can analyse samples on varying spatial scales. 

Previous investigation of the same lithologies by SHRIMP (Garwin, 2000) allows further comparison. The spatially resolved 

and fast in-situ U-Pb geochronology techniques (LA-ICP-MS or SIMS/SHRIMP) allow the investigation of different crystal 

domains, whereas the much more time-consuming CA-ID-TIMS analysis of zircons or zircon fragments provides the highest 

analytical precision. The in-situ techniques can discriminate between different zircon populations within single crystals (e.g., 585 

inheritance), whereas CA-ID-TIMS geochronology allows for an >10-fold better analytical precision for individual grains that 

is required to resolve rapid geochronological events. To increase precision of the in-situ techniques large numbers of individual 

dates that are considered to represent the same geological event are commonly used to calculate a weighted mean date and 

standard error of the mean (Wendt and Carl, 1991). On the other hand, the CA-ID-TIMS community has started to measure 

only small zircon fragments to increase spatial resolution (e.g. Samperton et al., 2015;Smith et al., 2019)). Here, the comparison 590 

of the different U-Pb zircon techniques applied to the same rock suite allows an assessment of the accuracy of the techniques 

and of the effect of statistical treatment on the accuracy and precision of the different techniques.  

 At Batu Hijau, the youngest individual CA-ID-TIMS U-Pb date of each sample is used as the our best 

estimateapproximation for the emplacement age of the respective porphyry based on the low number of analyses and high ratio 
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of crystallisation duration to individual uncertainty (Keller et al., 2018). This is based on the assumption that the magma cooled 595 

rapidly upon injection into the subvolcanic environment (cf. Schaltegger et al., 2009;von Quadt et al., 2011;Samperton et al., 

2015;Large et al., 2018).  The resulting porphyry emplacement ages are 3.736 ± 0.023 Ma, 3.697 ± 0.018 Ma, 3.646 ± 0.022 

Ma for the Old, Intermediate and Young Tonalite, respectively (Fig. 5). Other statistical means to determine the emplacement 

ages would be the calculation of a weighted mean for the youngest zircon population (e.g. Buret et al., 2016) or a stochastical 

sampling approach (Keller et al., 2018). We calculated each alternative and found that the emplacement ages overlap within 600 

uncertainty so that the timescales and conclusions derived from this study remain identical (see appendix). The extended range 

of concordant zircon dates obtained by CA-ID-TIMS does not allow to distinguish between different stages of zircon 

crystallisation within each sample (e.g., inherited vs. autocrystic) but the common geochemical trends indicate support 

crystallisation within the sameone common magma reservoir (see above). Thus, the range in zircon dates preceding this 

emplacement age is interpreted to represent zircon crystallisation within the underlying source magma reservoir over parts or, 605 

depending on the timing of onset of zircon saturation, the entirety of its lifetime. The total recorded duration of zircon 

crystallisation is 336 ± 27 kyr.  

 Similar toEven more so than the CA-ID-TIMS dates, in-situ analyses by LA-ICP-MS illustrate an extended range of 

zircon dates that cannot be separated into different stages of zircon crystallisation. However, the span in zircon dates is about 

a magnitude higher for the in-situ analyses (1.41 ± 0.5 – 2.1 ± 1.1 Myr) than obtained by CA-ID-TIMS (0.171 ± 0.026 – 0.246 610 

± 0.028 Myr). Such LA-ICP-MS data in isolation might be argued to This could indicate that the LA-ICP-MS data records an 

extended period of zircon crystallisation not covered by CA-ID-TIMS data, potentially due to sampling bias or by one sample-

set being inaccurate, that one data-set is inaccurate or but we suggest (see section 5.6 below) that the span within the in-situ 

data is the result of analytical scatter and potentially minor amounts of Pb loss or common Pb.  

Sampling bias in the selection of the zircons for CA-ID-TIMS geochronology can be excluded as the analyses were 615 

conducted on chemically abraded zircons (Mattinson, 2005) that cover the oldest and youngest dates obtained by LA-ICP-MS 

(Fig. 10). High accuracy of both, the CA-ID-TIMS and LA-ICP-MS, data-sets are suggested by routine measurements of 

secondary standards during the LA-ICP-MS analytical run (See Supplementary Material) and regular measurements of zircon 

standards by CA-ID-TIMS over the period of data acquisition including the Pleistocene Aus_Z7_5 (von Quadt et al., 

2016;Wotzlaw et al., 2017). The distributions of the zircon dates of each sample, as illustrated by probability density plots 620 

(Fig. 11), illustrate that the peak of the LA-ICP-MS and SHRIMP dates falls within the mean of zircon crystallisation as 

defined by the CA-ID-TIMS data-set. This suggests that all datasets are accurate but that the in-situ data displays more scatter 

and lower precision. LA-ICP-MS analyses record younger zircon dates for core analyses than rim analyses in 17 of 49 47 

cases, however the LA-ICP-MS dates for core and rimare always overlapping within uncertainty. Direct comparison of U-Pb 

dates from the same zircon crystals by the two techniques (Fig. 10) reveals that the less-precise LA-ICP-MS data are not 625 

correlated with the more precise TIMS ages, and the suggested dates from the two techniques do not overlap within uncertainty 

in some cases (6/49 47 for rim analyses: Fig. 10B). This could indicate that uncertainties associated calculated for with the 

LA-ICP-MS data have been underestimated in relation to the achieved precision of the technique. However, due to the high 
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number of analyses it is more likely that it is purely an effect of analytical scatter where 5% of the data do not fall within the 

95% confidence interval. This is corroborated by ~7 % (39/554) of LA-ICP-MS dates not overlapping with the minimum 630 

overall duration of zircon crystallisation identified by CA-ID-TIMS dates from all porphyries (336 ± 27 kyr). Additionally, 

minor amounts of Pb loss or common Pb not identified during data-screening could account for some older and younger outliers 

but the overlapping peaks of the in-situ populations and the mean of CA-ID-TIMS dates support no systematic bias of the 

bulk-population to younger or older dates. It is therefore concluded that all three techniques are accurate and represent the 

~300 – 350 kyr of zircon crystallisation. The high number of analyses obtained by LA-ICP-MS together with the lower 635 

precision results in extreme outliers that extend the apparent duration of zircon crystallisation but can be regarded purely as an 

statistical sampling result that does not indicate a more extended duration of zircon crystallization. Therefore, we consider 

alternative methods of estimating age uncertainties in the following section.analytical artefact. 
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 640 
Figure 10: Comparison of in-situ LA-ICP-MS dates and CA-ID-TIMS dates on the same zircons. In upper panel each 

CA-ID-TIMS date is aligned with the rim (filled) and core (empty) LA-ICP-MS date of the same zircon. Coloured bars 

indicate individual CA-ID-TIMS analysis including analytical uncertainty (2σ). Downward pointing black arrow 

indicates that core analyses are older than rim analyses of the respective zircon, wherease red upward pointing arrow 

indicates the opposite. Note that CA-ID-TIMS dates can be plotted several times, with core and rim analyses of the 645 

same zircon. Lower panel compares CA-ID-TIMS date with respective rim analysis. 
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5.6 Determining geological ages, uncertainties and rates from in-situ U-Pb data 650 

Understanding the timing of magma emplacement, crystallisation or eruption is essential for determining dates and rates of 

magmatic processes and those directly related or bracketed by them. Where high-precision CA-ID-TIMS data is not available 

porphyry emplacement ages are commonly inferred by calculating a weighted mean and standard error from the youngest 

overlapping population of in-situ U-Pb dates (e.g. Correa et al., 2016;Rezeau et al., 2016;Lee et al., 2017). In the case of Batu 

Hijau the such a calculation would include all LA-ICP-MS zircon dates for each sample as there is no apparent reason to 655 

exclude parts of the data set due to inheritance, common Pb or Pb loss within the datasets (Fig. 7). The resulting weighted 

mean dates for the Old, Intermediate and Young Tonalite are  3.879 ± 0.027/0.064 (MSWD = 2.1, n = 207), 3.783 ± 0.023/0.061 

(MSWD = 2.5, n = 189 ), 3.751 ± 0.023/0.060 (MSWD = 2.6, n = 158) where the first stated uncertainty is the standard error 

including internal uncertainties and those associated with tracer calibration (Schoene, 2014) and the second includes the added 

1.5% external uncertainty as suggested by Horstwood et al. (2016) to account for excess variance. The MSWD for each data-660 

set (2.1 – 2.6) is elevated in respect to the sample size (n=150-200) based on the formulation by (n=150-200; Wendt and Carl, 

(1991). This suggests eithering an underestimation of the individual uncertainties or that the data do not represent a normal 

distribution, e.g. by prolonged zircon crystallisation. However, there is no obvious treatment of the data to obtain more 

appropriate MSWDs. Under these conditions weighted means and standard errors should not be considered geologically 

meaningful according to calculated (Wendt and Carl, 1991) but we will nevertheless ignore this here, as is commonly done in 665 

the scientific literature, and will usecalculate these numbers to illustrate a few points below. Analogous, the weighted mean 

and standard error of all zircons analysed by SHRIMP from each sample results in weighted means of 3.74 ± 0.14 Ma (MSWD 

= 1.2, n = 8), 3.843 ± 0.094 (MSWD = 1.2, n = 18) Ma and 3.81 ± 0.2 Ma (MSWD = 2.35, n = 7) for the Old, Intermediate 

and Young tonalite, respectively (Fig. 11). The weighted means of the different tonalites obtained by LA-ICP-MS would be 

in accordance with cross-cutting relationships, whereas the SHRIMP dates overlap within uncertainty. The calculated standard 670 

errors for the LA-ICP-MS dates are significantly smaller than for the SHRIMP data. The decrease in the standard errors is 

directly correlated with the increasing sample size (Wendt and Carl, 1991;McLean et al., 2011b) implying that a comparably 

high number of SHRIMP analyses would result in similarly low standard errors. Irrespective of the different standard errors 

the calculated weighted means by SHRIMP and LA-ICP-MS are overlapping within uncertainty, thus seemingly suggesting 

that both are accurate or similarly inaccurate (see below). 675 

At Batu Hijau, emplacement ages determined by CA-ID-TIMS geochronology are systematically younger than the 

weighted mean dates calculated from in-situ data (100 – 150 kyr: except CA-ID-TIMS and SHRIMP for the Old Tonalite) and 

the emplacement ages determined by CA-ID-TIMS do not overlap with the LA-ICP-MS values mean ages within their 

attributed uncertainties (Fig. 11). Indeed, disparities between different U-Pb data-sets on the same porphyry samples have been 

noted in several studies comparing high-precision CA-ID-TIMS data with in-situ data (von Quadt et al., 2011;Chiaradia et al., 680 

2013;Chelle-Michou et al., 2014;Chiaradia et al., 2014;Correa et al., 2016). As discussed above all presented datasets are 
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considered accurate and thus the discrepancy in dates is most likely the result of differences in the statistical handling and 

geological interpretation. As there is no evidence for any systematic errors jeopardizing the accuracy of any of the three 

methods in this study, all methods are considered accurate and the reason for apparent discrepancy must lie in the geological 

interpretation of the statistical uncertainties. 685 

 

 
 

 

Figure 11: Probability density plots for the geochronology data for each analytical technique. All dates of each 690 

technique are combined in a). Plots in b), c), and d) are constructed from the data of the Old, Intermediate and Young 

tonalite. Dashed lines indicate the youngest and oldest zircon crystallization age as determined by CA-ID-TIMS for the 

respective investigated data-set. Weighted means, standard error, standard error + 1.5% (Horstwood et al., 2016) and 

standard deviation shown by bars with three colours shown to the right of each diagram,  are identical to those in Fig. 

5. 695 

 

 

The protracted zircon crystallisation identified at Batu Hijau has profound broader implications for the determination 

of magma emplacement, crystallisation or eruption ages. Extended magma reservoir lifetimes are not unique to Batu Hijau but 

a commonly described feature (e.g. Miller et al., 2007;Claiborne et al., 2010a;Reid et al., 2011;Buret et al., 2016). A weighted 700 

mean is a measure to quantify the mean of a population whereby emphasising the importance of values with low uncertainties 

over those with high uncertainties (Reiners et al., 2017) and is only allowed to be usedvalid in cases where the data is normally 

distributed around the one expected value (Wendt and Carl, 1991). This is rarely the case when investigating geological 

processes and indeed, Tthe presented in-situ data-sets record protracted zircon crystallisation (>300 kyr ) in the magma 

reservoir that results in zircon population distributions that cannot be easily defined statistically (e.g. by a normal distribution: 705 

Fig. 5, 7: cf. Keller et al., 2018), negating a normal distribution around a single geological event – the emplacement age. The 

calculated weighted mean thus does not represent the porphyry emplacement age but rather represents the mean of the duration 

of the average zircon crystallisation, This is corroborated by the weighted means of the LA-ICP-MS and SHRIMP dates 
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approximately describing the mean of the zircon populations defined by CA-ID-TIMS (Fig. 11). Therefore, the calculated 

weighted mean dates of data sets with a large number of dates but low precision do does not necessarily describe any specific 710 

geological event, especially as the uncertainties indicated by the standard error for the LA-ICP-MS data are too small to even 

cover the entire recorded duration of zircon crystallisation. It has to be noted that more complex settings where xenocrystic 

zircons overlap within uncertainty of the in-situ techniques with the auto-and antecrystic zircon population (e.g. Chelle-Michou 

et al., 2014) would result in even less reliable geological dates estimated by in-situ techniques. Therefore, using the weighted 

mean of a zircon population to determine emplacement or intrusion ages can be a broad oversimplification if dates do not 715 

represent a normal distribution around the dated event. Similar problems can occur when calculating eruption ages for non-

homogeneous zircon populations from tuffs or other volcanic rocks (Schoene, 2014).  

Traditionally, problems associated with the oversimplification associated with calculating weighted means and their 

standard errors in geochronology were hidden by the larger higher uncertainties resulting from larger higher analytical 

uncertainties and smaller sample sizes. The standard error of the mean is a measure for the reproducibility of an experiment 720 

(i.e. how likely is it to obtain the same weighted mean if the same amount of zircons from the same sample are analysed again) 

but one of the main assumptions for using the standard error as the uncertainty of a weighted mean is that the data is normally 

distributed around the expected value. Due to rapid data acquisition nowadays, by in-situ techniques, calculated standard errors 

can result in uncertainty envelopes of <0.1% for a sample. In the case of the LA-ICP-MS dates from the Pliocene Batu Hijau 

porphyry intrusions the standard error of the weighted mean (~1%: ~40 ka) is on the same order of magnitude as an individual 725 

CA-ID-TIMS date and therefore smaller than the geological spread of zircon crystallisation ages dates, which negates a normal 

distribution of the zircon data. The combination of using a weighted mean to describe a non-gaussian sample distribution with 

the very small attributed uncertainties attributed to a weighted mean results in highly precise dates that may have no relation 

to a  specific geological event. 

The MSWD (A reduced chi-square statistic) of a data-set provides a first measure to indicate whether your dates are 730 

normally distributed around an expected value and thus whether the calculated weighted mean and standard error are of 

significance (√(
2

𝑛−1
) rule by Wendt and Carl (1991)). As discussed before, the MSWDs for the LA-ICP-MS data are elevated, 

suggesting an underestimation of the individual uncertainties or, in this case, that the data do not represent a normal 

distribution, and thus implying that weighted means and standard errors should not be calculated to characterise a geological 

event. However, the MSWDs for the SHRIMP zircon analyses of the Intermediate and Old Tonalite are within the 95% 735 

confidence interval of the MSWG acceptable, mainly due to the higher larger individual uncertainties. Still, they are similarly 

affected by protracted zircon crystallisation, which biases the weighted mean to higher values (Fig. 11). Furthermore, 

overestimated individual uncertainties can result in acceptable MSWDs but similarly inaccurate dates and low standard errors. 

For example, increasing individual uncertainties for the 206Pb-238U dates obtained for the Old Tonalite by LA-ICP-MS by a 

factor of 1.5 would result in an acceptable MSWD (0.95) but the weighted mean and standard error would be nearly identically 740 

precise but inaccurate (3.880 ± 0.041, 2SE) to those calculated with the actual uncertainties. Based on the presented data it is 
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advised not to characterise a geological event by a weighted mean with an associated standard error if the MSWD is elevated 

(Wendt and Carl, 1991) and if presented it should be referred to as date and not an age. Even if the MSWD of a dataset is 

acceptable this is no absolute confirmation that the presented date is accurate within the presented uncertainty, unless there is 

evidence that the data are uniformly distributed around the dated event or uncertainties are sufficiently high.  745 

An attempt to obtain reliable porphyry emplacement ages from convoluted datasets could be to apply the weighted 

mean on the youngest or geochemically most evolved population of zircons. Differentiating zircon populations based on 

geochemical affinity could potentially work in situations where there are clear temporally resolved chemical trends (e.g. 

Wotzlaw et al., 2013;Samperton et al., 2015;Large et al., 2018). In most scenarios however, there are general geochemical 

trends but they are strongly convoluted on a temporal scale (e.g Schoene et al., 2012;Rivera et al., 2014;Buret et al., 2016). 750 

For example, at Batu Hijau early crystallised zircons can have the same chemical signature (e.g. Th/U: Fig. 6) as some of the 

youngest zircons. In summary, identifying the youngest zircon population (e.g. by its geochemical signature) and applying a 

weighted mean to it could significantly increase the accuracy of the calculated emplacement age but it requires a detailed 

understanding of the geochemical evolution of the crystallising magma reservoir. 

Based on the presented data we would recommend to use an uncertainty attributed to the weighted mean that is more 755 

representative of the uncertainty of the individual analyses, so that it will most likely cover the actually dated event. Here, we 

tested the standard deviation of zircons dates from each sample as a measure for the uncertainty of the weighted mean. This 

approach would giveprovides a more realistic estimation of the uncertainty associated with calculating a weighted mean of a 

geologically young data-set as it describes the variability in the measurements, (0.29 – 0.62 Ma// Fig. 7, 11) and, importantly, 

it would be independent of the number of analyses. The resulting values at least for the Pliocene Batu Hijau deposit results in 760 

appropriate uncertainties for the weighted mean, as it would cover an appreciable part of the range of in-situ dates and thus the 

>300 kyr of zircon crystallisation and the emplacement age. Another approach would be the calculation of the dispersion of a 

data-set (Vermeesch, 2010, 2018) where not all data is treated as part of a single population but where the possibility of data 

dispersion of the analysed sample set is considered. For the presented LA-ICP-MS data-sets this would result in apparent 

dispersions of 212 +43/-39 kyr, 229 +43/-39 kyr and 191 +41/-36 kyr for the data of the Old, Intermediate and Young Tonalite, 765 

similar to the actually recorded durations of zircon crystallisation. However, this approach requires a precise estimate of the 

associated individual uncertainties. Similar to calculating the MSWD, over- or under-estimated uncertainties would 

significantly modify the result. 

The presented data highlights the importance of CA-ID-TIMS zircon U-Pb geochronology to resolve complicated 

complex zircon crystallisation patterns., which in turn allow to adjust in-situ techniques. While the individual LA-ICP-MS 770 

data appear to be accurate (Fig. 11), weighted means and standard errors of high-n datasets (e.g. 3.879 ± 0.039 Ma for Old 

Tonalite) may provide precise mean zircon crystallisation ages but are likely to be inaccurate in determining emplacement or 

eruption ages if there is only a minor degree of protracted zircon crystallisation. Taking into account the dispersion of the 

dataset (e.g. 212 +43/-39 kyr for the Old Tonalite) or using the standard deviation (320 kyr), results in estimates of the 

emplacement age that overlap with the emplacement age suggested by ID-TIMS and appear to be a more honest way of treating 775 
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the data. The resulting emplacement ages may not be precise enough to resolve short timescales but can provide a timeline of 

broader scale magmatic events. In the case of porphyry research high-precision ID-TIMS dates are required to resolve the 

durations of porphyry emplacement and hydrothermal processes but in-situ data can reliably reconstruct a timeline of magma 

emplacement events within porphyry districts over by Myr timescales (e.g. Rezeau et al., 2016). More generally, it is 

understandable that the highest possible precision is strived for from a single dataset. However, it should be refrained from 780 

increasing the precision purely by statistical measure without valid assumptions or knowledge that the boundary conditions 

are met as this can result in hugely precise but inaccurate dates. Furthermore, combination with in-situ petrochronology 

techniques (i.e. U-Pb isotope and geochemical data from the same analyte) allows to screen zircons for inheritance and more 

importantly provides spatially resolved geochemical information that can be integrated with high-precision dates.  

6 Conclusions 785 

High-precision zircon geochronology by CA-ID-TIMS combined with in-situ zircon geochemistry provides valuable datasets 

that allow the reconstruction of geological processes with the highest temporal resolution. At Batu Hijau zircons record the 

magmatic to hydrothermal evolution of the world-class Batu Hijau porphyry Cu-Au deposit from the onset of zircon 

crystallisation to emplacement of the post-ore Young Tonalite. The magma reservoir that sourced the tonalites and the Cu-Au 

mineralising fluids records zircon crystallisation over 336 ± 27 kyr. Emplacement of the first exposed tonalite at the Batu Hijau 790 

deposit (Old Tonalite) occurred after 246 ± 28 kyr of uninterrupted zircon crystallisation in this subjacent reservoir. Zircon 

trace element signatures support a dominantly crystallising and cooling magma reservoir over 285 ± 24 kyr until emplacement 

of the Intermediate Tonalite. After emplacement of the Intermediate Tonalite the chemistry of the reservoir remained in rather 

steady conditions for 51 ± 28 kyr during which it could have been disturbed by magmatic recharge or underplating until final 

emplacement of the Young Tonalite. Ore formation is most probably associated with the last stages of the chemically and 795 

thermally evolving magma reservoir. The maximum duration of ore formation can be constrained to <122 kyr by the 

emplacement ages of pre-to syn-ore Old Tonalite and the post-ore Young Tonalite. This maximum duration of ore formation 

covers different pulses of mineralisation that could have lasted only a few kyr. We record a magmatic system that was active 

over ~250 kyr before emplacement of the first porphyry intrusion and onset of several pulses of hydrothermal activity forming 

the world-class ore reserve in less than 100 kyr. 800 

 Comparison between in-situ LA-ICP-MS and SHRIMP as well as CA-ID-TIMS U-Pb geochronology reveals that all 

techniques provide accurate individual dates (within the stated confidence interval). However, statistical treatment of in-situ 

data by calculating a weighted mean and standard error can result in highly precise but inaccurate older ages of questionable 

geological significance with apparent uncertainties that do not provide an accurate measure for the uncertainty of emplacement 

age and therefore geologically meaningless ages. The tempo of magma evolution and hydrothermal processes associated with 805 

magmatic-hydrothermal systems, such as porphyry deposits is too fast to be reliably resolved by currently available in-situ U-
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Pb geochronology and requires ID-TIMS geochronology. Combination of high-precision geochronology with in-situ or TIMS-

TEA geochemistry is currently the most powerful tool in deciphering these geologically rapid processes.  
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