Supplementary file for:

Percent-level production of ⁴⁰Ar by an overlooked mode of ⁴⁰K decay

Jack Carter¹, Ryan B. Ickert^{1,2}, Darren F. Mark^{1,3}, Marrisa M. Tremblay², Alan J. Cresswell¹, David C.W. Sanderson¹

¹SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF
²Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47901
³University of St Andrews, College Gate, St Andrews, KY16 9AJ, Fife, Scotland, UK

Correspondence to: J. Carter (j.carter.1@researach.gla.ac.uk)

X-ray counting experiment

We attempted a pilot study to test whether the characteristic ~ 3.2 keV x-ray emitted during both ground state and excited state electron capture of ⁴⁰K could be detected. In our experimental set-up, we used a 50 mm by 5 mm KCl disc as a ⁴⁰K source and a thin Be-window Ge detector (Ortec LoAx). The source and detector were housed in Pb brick containment to limit x-rays from the surrounding environment. Counts were taken over ~ 250000 s (approximately 2.9 days) to test the possibility of detection. We show example spectra of the background, KCl, and KCl with background subtracted below (Figure S1, A - C).

Figure S1. (A) Spectrum measured for the laboratory background, (B) KCl spectrum, and (C) KCl spectrum with background subtracted (C). The detector resolution in the ~3 keV region is approximately 50 eV at full-width half-maximum.

The lower limit of x-ray energy detection is approximately 3 keV, resulting in an exponential noise pile across the energy region we are attempting to observe (Figure S1 A). Unfortunately, this noise pile-up dominates the region of interest during measurement (Figure S1 B). The Ar-K x-ray is detected (Figure S1 C), but is difficult to resolve from the noise pile up. Note that the characteristic x-ray does not appear at exactly 3.209 keV due to what we believe to be a non-linearity in the relationship between energy and channel number in the detector. This demonstrates that the ⁴⁰K characteristic x-rays can be detected in our simple experimental configuration.

Conclusions and Recommendations

The pilot study here shows the potential of determining the existence of the electron capture to ground state decay through the detection of characteristic ~3 keV x-rays associated with the relaxation of the daughter ⁴⁰Ar nucleus after decay. However, the absolute verification requires the detection of excess x-rays that are not coincident with the γ -ray from the de-excitation of ⁴⁰Ar²⁺ to ⁴⁰Ar⁰⁺. In our experiment, a simple KCl source is used pressed to a thin disc to aid in the minimisation of self-absorption. However, this still results in a low count rate at the x-ray energy. Therefore, we recommend the use of a source enriched in ⁴⁰K, and a thinner sample to limit x-ray self-absorption. We also recommend the use of a NaI detector which offers both greater resolution at low energies and a much lower detection limit. Furthermore, counting over a very long period, on the order of months, is required to accumulate enough measurements to yield a precise result. The low activity of the potassium may also require long counting experiments in extremely low background environments, such as the Boulby Dark Matter Laboratory.