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Abstract. Mineral grains within sediment or rock absorb a radiation dose from the decay of radionuclides in the host matrix. 

For the beta dose component, the estimated dose rate must be adjusted for the attenuation of beta particles within the mineral 

grains. Standard calculations, originally designed for thermoluminescence dating of pottery, assume that the grain is embedded 10 

in a homogenous medium. However, most current applications of trapped-charge dating concern sand- or silt-sized dosimeters 

embedded in granular sediment. In such cases, the radionuclide sources are not homogeneous, but are localized in discrete 

grains or held on grain surfaces. We show here that the mean dose rate to dosimeter grains in a granular matrix is dependent 

on the grain-size distributions of the source grains, and of the bulk sediment, as well as on the grain size of the dosimeters. We 

further argue that U and Th sources are likely to be held primarily on grain surfaces, which causes the dose rate to dosimeter 15 

grains to be significantly higher than for sources distributed uniformly throughout grains. For a typical well-sorted medium 

sand, the beta dose rates derived from surface U and Th sources are higher by ~20 % and ~30 %, respectively, compared to a 

homogenous distribution of sources. We account for these effects using an expanded model of beta attenuation – including the 

effect of moisture – and validate the model against Monte Carlo radiation transport simulations within a geometry of packed 

spheres. 20 

1. Introduction 

Trapped charge dating methods require an estimate of the radiation dose rate to a natural dosimeter, usually embedded in 

sediment or rock. The dose rate is provided largely through alpha, beta and gamma radiation arising from the decay of naturally 

occurring radionuclides (U- and Th-series and 40K). The decay rates of the radionuclides, and the amount of energy released, 

are relatively well known. By using nuclear data summaries, the measured activity concentrations of a sample can be converted 25 

to an infinite matrix (IM) dose rate, i.e., the average dose rate to the bulk sample assuming that the amount of energy absorbed 

per unit mass equals the amount released. The different components of the dose rate are attenuated by sediment moisture, and 

require a correction based on the presumed average moisture content during burial. The quantity of interest, however, is the 

dose rate received by the natural dosimeters in the matrix, which are usually grains of quartz or feldspar. For the beta 
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component, there is an additional grain-size dependent attenuation factor, because the range of beta particles in sediment is 30 

comparable to the size of the grains. The beta dose rate to the dosimeter grains, 𝐷̇ఉ (Gy ka-1), can then be defined by: 

 

𝐷̇ఉ =  𝐷̇ఉ,ூெ ∙  𝑐௔௧௧௘௡ ∙ 𝑐௪௔௧௘௥ + 𝐷̇ఉ,௜௡௧௘௥௡௔௟  (1) 

  

 35 

where 𝐷̇ఉ,ூெ is the dry IM beta dose rate (Gy ka-1), 𝑐௔௧௧௘௡ and 𝑐௪௔௧௘௥ are correction factors for attenuation by grain 

size and water, respectively. 𝐷̇ఉ,௜௡௧௘௥௡௔௟  (Gy ka-1) is an additional component of the beta dose derived from radionuclides within 

the dosimeter grain. This formulation implicitly assumes that the contribution to the IM dose rate from the internal activity of 

any one dosimeter grains is negligible, which is usually true. 

Calculation of 𝑐௔௧௧௘௡ derives from the self-dose values of the dosimeter grains (Bell, 1979; Mejdahl, 1979; Aitken, 40 

1985, Guérin et al., 2012). For an active grain within a homogenous inactive matrix, the self-dose fraction, 𝜑, is the proportion 

of the energy emitted by the grain that is self-absorbed; or equivalently, the beta dose rate to the grain as a proportion of the 

dose rate to an infinitely large grain. The value of 𝜑 is dependent on the grain size and elemental composition, and on the beta 

energy spectrum (i.e the radionuclide source). By symmetry, its complement gives the relative attenuation of dose for a non-

active grain in a homogenous, active matrix, hence 𝑐௔௧௧௘௡ = 1 − 𝜑 (see Aitken (1985): Appendix C). 45 

The key assumption in the use of 1 − 𝜑 is that the matrix surrounding the grain is homogenous at the range of beta 

radiation. This assumption is likely to be valid in some circumstances, such as for quartz grains imbedded in fine-grain pottery– 

and this was indeed the dominant application of trapped-charge dating in the 1960s and 70s, when the original formulation 

was developed. However, since the development of Optically Stimulated Luminescence (OSL) dating (Huntley et al., 1985) 

and especially since the development of single-aliquot OSL protocols (Duller et al., 1994; Murray & Wintle, 2000), the vast 50 

majority of dating applications concern sediment with sand-sized or silt-sized grains. In such cases, the size of the grains is 

comparable with the range of beta particles. Beta sources in such sediments are localised– either uniformly distributed 

throughout the volume of some individual mineral grains, or in secondary mineral coatings formed on grain surfaces – and so 

their distribution in the matrix is heterogeneous. In such cases, it is not clear that the assumption of a homogenous matrix is 

reasonable (Guérin et al., 2012).  55 

Our aim here is to re-assess the beta dose rate calculation for dosimeters in granular sediment, and to propose a model 

of beta attenuation that is sufficiently simple for routine application. The model (Section 2) seeks to achieve this by modifying 

the 1 − 𝜑  model that is currently in use, taking account of the variable grain-size distributions of sources, dosimeters, and 

bulk sediment, and for the possibility of sources being held on grain surfaces. As input to the model, Section 3 provides revised 

and extended values of 𝜑 for each category of source (K, U, Th), for both whole-grain and surface sources. These 𝜑 values 60 

take into account a recent revision to the 40K beta spectrum, and the effect of etching on the self-dose values of dosimeter 

grains. In Section 4, the simple model of beta attenuation is tested against detailed Monte-Carlo-based radiation transport 
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simulations with a geometry of closely packed spheres. Section 5 seeks to incorporate the effect of moisture into the revised 

attenuation model. Section 6 shows empirical evidence of surface-held radionuclides in typical samples. 

 65 

 

 

Figure 1. Schematic illustration of some idealised sediments discussed in Section 2. Red indicates a source region/grain; blue indicates 
a dosimeter grain; white indicates a grain/region of no radioactivity.  

 70 

2. Balanced Energy Model 

Consider first a single dosimeter grain in a homogenous matrix (Fig 1a). It is assumed that the grain is too small to have any 

effect on the matrix activity concentration. An infinitely small grain will receive the IM dose rate, which in this case equals 

the dose rate in the homogenous matrix. A dosimeter with real mass will receive less than the IM dose rate, due to attenuation 

(i.e., self-shielding). The attenuation is dependent on grain size, and is the inverse of the self-dose, hence: 75 

 

𝑐௔௧௧௘௡ = 1 − 𝜑ௗ௢௦௜௠௘௧௘௥ (2) 

 

 

This definition of attenuation has been in common use since Mejdahl (1979). The difficulty arises when we consider a sediment 80 

containing more than one grain. Figures 1b and 1c illustrate a matrix containing many grains, within a homogenous source 

region. The mass of the grains is 50 % of the total mass in both cases, but the size of the grains is different. Let us assume that 

these grains are inert: they have no radioactive sources. In these scenarios, the IM dose rate equals half of the dose rate in the 

active matrix, and using the standard approach, the dose rate to a dosimeter grain is the same in each case. In reality, however, 
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the presence of other grains in the sediment has an effect on the dose rate to the dosimeter grain. Because the grains are inert, 85 

the lowest dose rates in the sediment are found in the middle of those other grains, where the dose is attenuated due to shielding. 

The dosimeter grain is excluded from these low-dose regions, and so the average dose rate to the dosimeter must be higher 

than the IM dose rate. The larger the size of those other grains, the stronger the effect. 

Accounting for this effect requires the inclusion of a new parameter in the attenuation calculation. This parameter, θ, 

must describe the relative efficiency of dose absorption for each grain or object in the sediment. It must be dependent on the 90 

shape and composition of the grains, but be independent of mass; it must also have a value of 1 when averaged over all parts 

of the sediment, so that conservation of energy is maintained. In fact, we already have a parameter that nearly fits this 

description: 1 − 𝜑. Although 1 − 𝜑 has been defined above as the complement of the self-dose, it can also be thought of as 

the efficiency of dose absorption in an object, relative to a perfect absorber. For example, if a grain has a 1 − 𝜑 of 0.9, it 

receives 90 % of the dose to a hypothetical perfect absorber. Of interest here, however, is the efficiency of dose absorption 95 

relative to all objects in the matrix. To accomplish this, the 1 − 𝜑  value appropriate to the dosimeter grain should be 

normalised to the mass-weighted average 1 − 𝜑 for the matrix: 

 

𝜃 =
1 − 𝜑ௗ௢௦௜௠௘௧௘௥

1 − 𝜑௠௔௧௥௜௫

 (3) 

 100 

Note that the ‘matrix’ contains everything in the sample, including the dosimeter of interest. For the idealized scenarios of Fig. 

1b and 1c, the attenuation to a dosimeter placed within the matrix would be  𝑐௔௧௧௘௡ = 𝜃  (in calculating 1 − 𝜑௠௔௧௥௜௫ , the 

homogenous source region is a perfect absorber for which  1 − 𝜑 = 1 ). However, in a realistic granular matrix it is not just 

the dosimeters that exist as discrete grains, but also the sources (Fig 1d). Source grains have their own self-dose, which is 

dependent on their size, and is described by 𝜑௦௢௨௥௖௘ . Only the portion of energy that leaves the source grains (= 1 − 𝜑௦௢௨௥௖௘) 105 

is available to dosimeters, and all of that energy must be absorbed by the matrix. We can now describe the attenuation 

coefficient for the portion of the dose derived from whole-grain sources as: 

 

𝑐௪ = (1 − 𝜑௦௢௨௥௖௘
௪ ) 

൫ଵିఝ೏೚ೞ೔೘೐೟೐ೝ
ೢ ൯

൫ଵିఝ೘ೌ೟ೝ೔ೣ
ೢ ൯

(4) 

  110 

where the superscript w indicates that we are considering the φ of a whole-grain source (as opposed to a surface source, 

discussed below). The relevant 𝜑௪ values are the mass-weighted averages for the distribution in question (source, dosimeter, 

or (entire) matrix). For a grain-size distribution of n bins, the weighted average is 

 

𝜑௪ =  
∑ 𝜑௜

௪𝑚௜
௡
௜ୀଵ

∑ 𝑚௜
௡
௜ୀଵ

(5) 115 
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where m is the total mass of the grains in each bin. In practice, the grain size distribution of dosimeter grains is usually restricted 

to a narrow range through grain-size separation in the laboratory. In this case, a weighted average is not necessary for 

𝜑ௗ௢௦௜௠௘௧௘௥
௪ , and instead its value can be drawn directly from Table 1. If the dosimeter grains have been etched, then this should 

be reflected in 𝜑ௗ௢௦௜௠௘௧௘௥
௪  by consulting one of the ‘etched’ columns in Table 1.   120 

With θ written out in full in Eq. 4, it is apparent that if 𝜑௦௢௨௥௖௘
௪ = 𝜑௠௔௧௥௜௫

௪  then the equation reduces to 𝑐௪ = 1 −

𝜑ௗ௢௦௜௠௘௧௘௥
௪  – i.e. the standard definition for a grain in a homogenous matrix. This reduction is valid for the idealised scenario 

of Fig 1a; it might also be relevant for some natural sediments, if sources are held in whole grains (not on surfaces), and where 

the grain-size distribution of source grains is the same as the bulk sediment – e.g. quartz or feldspar grains in a well-sorted 

sand with no secondary mineralisation. (Note we only consider average dose rates here, not variations in dose rate from grain 125 

to grain; this might be considerable in this example (e.g. Mayya et al., 2006; Cunningham et al., 2012; Guérin et al., 2015)). 

 With slight modification, the φ system can be extended to account for sources that are held on grain surfaces. In this 

case the self-dose to source grains is substantially reduced (Table 2), meaning that the proportion of energy available to external 

grains is greater than for whole-grain sources. The variables accounting for attenuation in the dosimeter and the matrix remain 

unchanged, so we can define 𝑐௦ as the attenuation coefficient for the portion of the dose rate derived from surface sources: 130 

 

𝑐௦ = ൫1 − 𝜑௦௢௨௥௖௘_௘௙௙
௦ ൯ 

(1 − 𝜑ௗ௢௦௜௠௘௧௘௥
௪ )

(1 − 𝜑௠௔௧௥௜௫
௪ )

(6) 

 

In this case, however, the activity concentration is not uniform across the source grains. If we assume that activity per surface-

area is constant, it follows that smaller grains have a greater activity concentration, due to their greater surface-to-volume ratio. 135 

Effectively, the mean grain size of the sources is reduced, which can be accounted for by re-weighting 𝜑௦௢௨௥௖௘  according to 

the surface-to-volume ratio of the grains: 

 

𝜑௦௢௨௥௖௘_௘௙௙
௦ =  

∑ 𝜑௜
௦𝑚௜𝑠𝑣𝑟തതതതത௜

௡
௜ୀଵ

∑ 𝑚௜
௡
௜ୀଵ 𝑠𝑣𝑟തതതതത௜

(7) 

 140 

where 𝑠𝑣𝑟തതതതത is the surface-to-volume ratio. If we continue to assume grains are spherical, then 

 

𝑠𝑣𝑟തതതതത =
4𝜋𝑟ଶ

ቀ
4
3

ቁ 𝜋𝑟ଷ

(8) 

 

Finally, the beta attenuation coefficient for a radionuclide is the weighted average of the two components (whole-grain sources 145 

and surface sources): 
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𝑐௔௧௧௘௡ = 𝑝𝑐௪ + (1 − 𝑝)𝑐௦ (9) 

 

Where p is the proportion of activity held in whole-grain sources. 150 

The preceding discussion of surface sources has concerned those external to the dosimeter grain. If activity is held on 

all surfaces, there is an additional component of the dose rate that derives from the surface of the dosimeter grain itself. Once 

again, the activity of the dosimeter grain is influenced by the surface-to-volume ratio of the grain relative to other grains in the 

sediment:  

 155 

𝐷̇ఉ,௜௡௧௘௥௡௔௟
௦ = 𝛽ூெ(1 − 𝑝)

𝑠𝑣𝑟തതതതതௗ௢௦௜௠௘௧௘௥

𝑠𝑣𝑟തതതതത௦௘ௗ௜௠௘௡௧

𝜑ௗ௢௦௜௠௘௧௘௥
௦௨௥௙ (10) 

 

Where 𝐷̇ఉ,௜௡௧௘௥௡௔௟
௦  has units of dose rate (e.g. Gy ka-1) and  𝛽ூெ  is the infinite matrix dose rate of the radionuclide in the bulk 

sediment. In practice, only the nuclides in the U and Th chains are likely to be important as surface sources (see Sections 6 

and 7). K maybe held on surfaces, e.g. in adhering clay grains, but the self-dose from K surface sources is much smaller than 160 

for U and Th (see Table 2). 

In the case of K-feldspar dosimeters, there is a significant internal dose rate derived from the 40K source, which in 

our notation is 

 

𝐷̇ఉ,௜௡௧௘௥௡௔௟
௪ = 𝐷ఉ,ூெ

௚௥௔௜௡
𝜑ௗ௢௦௜௠௘௧௘௥

௪ (11) 165 

 

where 𝐷̇ఉ,௜௡௧௘௥௡௔௟
௪  also has units of dose rate (e.g. Gy ka-1). 𝐷ఉ,ூெ

௚௥௔௜௡ is the infinite matrix dose rate of the feldspar grain, and 

𝜑ௗ௢௦௜௠௘௧௘௥
௪  should be selected from Table 3 (feldspars) using an ‘etch’ column if appropriate.  

In section 4 this model is tested against simulations using the Monte-Carlo radiation transport code, but first we update 

and extend tabulated values of φ. 170 

3. Self-dose tables 

Revised estimates of φ for whole-grain sources (𝜑௪) are given in Table 1, calculated using Monte Carlo radiation transport 

software MCNP6.2 (Goorley et al., 2012). The model geometry is a spherical quartz grain (density 2.65 g cm-3) embedded in 

a larger, low-density quartz sphere that represents a matrix. Beta electrons are generated uniformly within the quartz grain; 

energy deposition in the grain is recorded and given here as a proportion of the total energy of the starting particles. The self-175 

dose is defined separately for sources of 40K, the 238U (+235U) series, and the 232Th series. The spectra for the U and Th series 

are taken from Guérin et al. (2012) and include internal conversion and auger emissions. These spectra were used by Guérin 
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et al. (2012) for equivalent calculations for unetched grains, and the 𝜑௪ values presented here for U and Th, unetched, are 

indistinguishable from theirs. The 40K spectrum used here is the Leutz et al. (1965) curve provided by Cresswell et al. (2018). 

The Leutz et al. (1965) experimental spectrum has a mean energy of 584 keV, roughly 4% greater than the spectrum used by 180 

Guérin et al. (2012). Cresswell et al. (2018) argue that the higher energy spectrum is a better approximation of the decay 

transition in 40K, and the result is modest reduction in self-dose fraction for a K source compared to Guérin et al. (2012) (but 

a significant increase in the IM dose rate).    

 Table 1 also shows the self-dose fractions for etched quartz, modelled using concentric spheres of radius 10 µm and 

20 µm less than the grain radius. These estimates use a slightly different definition of 𝜑: they are calculated as the dose (energy 185 

per mass) received by the ‘etched’ spheres as a proportion of the IM dose for the grain (as opposed to the usual definition of 

energy absorbed to energy emitted; the two definitions are equivalent for an unetched grain). The consequence of etching is to 

increase the self-dose to the grain, because the outer, lower-dose regions have been removed. The relationship is inverted when 

considering an external dose: for a dosimeter grain in a homogenous matrix source, the effect of etching is to reduce the dose 

to the grain. However, the effect is relatively small, amounting to a reduction in external dose rate of between ~0.6 % for K, 190 

and ~2.8% for Th, for a 200 µm grain relative to the IM dose. There is little dependence on grain size, and little difference 

between a 10 µm etch and 20 µm etch. These results are broadly consistent with the isolated estimates given by Bell (1979) 

and Brennan (2003). 

The self-dose values are also shown for the case of a surface source, 𝜑௦ (Table 2). Here, the simulations have been 

repeated but with the source particles generated within 1 µm of the grain boundary. The self-dose to the grains is much lower 195 

than for whole-grain sources. The effect of etching is to reduce the self-dose, because the etched regions are located closer to 

the source. Table (3) shows the 𝜑௪ values for K-feldspar (KAlSi3O8) with density of 2.60 g cm-3, required for calculation of 

the internal dose rate to feldspar grains. 
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 200 

Table 1: Quartz self-dose values for whole-grain sources, 𝝋𝒘.  

 

 

Table 2: Quartz self-dose values for surface sources, 𝝋𝒔. 

 205 

K-40 φ w U-series φ w Th-series φ w

Diam. ( μ m) no etch 10 μm etch 20 μm etch Diam ( μ m) no etch 10 μm etch 20 μm etch Diam ( μ m) no etch 10 μm etch 20 μm etch

10 0.003 10 0.023 10 0.029
20 0.007 20 0.038 20 0.049
40 0.013 0.017 40 0.058 0.072 40 0.077 0.098
60 0.020 0.024 0.026 60 0.072 0.086 0.090 60 0.099 0.119 0.126
80 0.027 0.032 0.035 80 0.085 0.097 0.103 80 0.118 0.137 0.146
100 0.034 0.039 0.042 100 0.096 0.108 0.114 100 0.134 0.153 0.162
120 0.041 0.046 0.049 120 0.106 0.118 0.124 120 0.150 0.168 0.178
140 0.048 0.053 0.057 140 0.116 0.128 0.134 140 0.164 0.182 0.192
160 0.055 0.060 0.064 160 0.126 0.137 0.143 160 0.177 0.194 0.205
180 0.062 0.067 0.071 180 0.136 0.147 0.153 180 0.189 0.206 0.217
200 0.069 0.074 0.078 200 0.144 0.155 0.162 200 0.200 0.217 0.227
225 0.078 0.084 0.088 225 0.156 0.167 0.174 225 0.214 0.231 0.241
250 0.086 0.092 0.097 250 0.166 0.177 0.183 250 0.226 0.242 0.252
275 0.096 0.102 0.106 275 0.177 0.187 0.194 275 0.238 0.254 0.264
300 0.104 0.110 0.115 300 0.186 0.197 0.203 300 0.248 0.263 0.273
400 0.139 0.146 0.151 400 0.224 0.234 0.241 400 0.287 0.301 0.311
600 0.209 0.215 0.221 600 0.290 0.299 0.306 600 0.351 0.363 0.371
800 0.276 0.283 0.289 800 0.347 0.356 0.363 800 0.405 0.416 0.424
1000 0.339 0.346 0.353 1000 0.397 0.406 0.413 1000 0.452 0.461 0.469
2000 0.578 0.585 0.592 2000 0.575 0.581 0.587 2000 0.620 0.627 0.633
5000 0.820 0.824 0.829 5000 0.795 0.799 0.802 5000 0.826 0.830 0.833
10000 0.910 0.913 0.915 10000 0.898 0.900 0.902 10000 0.914 0.917 0.919

K-40 φ s U-series φ s Th-series φ s

Diam ( μ m) no etch 10 μm etch 20 μm etch Diam ( μ m) no etch 10 μm etch 20 μm etch Diam ( μ m) no etch 10 μm etch 20 μm etch

10 0.002 10 0.009 10 0.011

20 0.004 20 0.017 20 0.022

40 0.008 0.006 40 0.027 0.013 40 0.037 0.020

60 0.012 0.010 0.009 60 0.035 0.018 0.015 60 0.049 0.027 0.023

80 0.017 0.013 0.012 80 0.042 0.023 0.019 80 0.060 0.035 0.029

100 0.021 0.017 0.016 100 0.048 0.028 0.024 100 0.070 0.042 0.036

120 0.026 0.021 0.020 120 0.055 0.033 0.028 120 0.078 0.049 0.042

140 0.030 0.025 0.023 140 0.061 0.038 0.033 140 0.086 0.056 0.048

160 0.035 0.030 0.027 160 0.067 0.043 0.038 160 0.093 0.061 0.053

180 0.039 0.034 0.031 180 0.072 0.048 0.042 180 0.100 0.066 0.057

200 0.044 0.038 0.035 200 0.078 0.052 0.046 200 0.106 0.072 0.061

225 0.050 0.044 0.041 225 0.085 0.059 0.053 225 0.114 0.078 0.067

250 0.055 0.049 0.046 250 0.091 0.064 0.057 250 0.120 0.083 0.071

275 0.061 0.054 0.051 275 0.097 0.070 0.063 275 0.126 0.088 0.076

300 0.067 0.060 0.056 300 0.103 0.075 0.068 300 0.132 0.093 0.080

400 0.089 0.082 0.077 400 0.125 0.096 0.088 400 0.154 0.112 0.097

600 0.133 0.124 0.118 600 0.163 0.131 0.121 600 0.189 0.144 0.127

800 0.173 0.163 0.157 800 0.195 0.161 0.150 800 0.219 0.172 0.153

1000 0.211 0.200 0.193 1000 0.223 0.188 0.175 1000 0.245 0.195 0.176

2000 0.330 0.315 0.306 2000 0.313 0.274 0.258 2000 0.332 0.278 0.255

5000 0.425 0.405 0.390 5000 0.411 0.368 0.348 5000 0.421 0.362 0.335

10000 0.460 0.437 0.420 10000 0.451 0.405 0.384 10000 0.454 0.394 0.365
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Table 3. Potassium feldspar self-dose values for whole-grain sources, 𝝋𝒘, for 40K sources only. 

 

4. Monte Carlo Simulations 

The Balanced Energy Model (BEM) described in Section 2 is validated here using Monte Carlo simulations of dose deposition 210 

in a simulated matrix consisting of closely packed spherical grains. Three packing configurations have been prepared for 

discrete grain-size distributions using the PackLSD software (Donev et al., 2005), with each using a total of 5000 spheres with 

a volumetric packing density of 60 %. The first configuration, ‘Geometry A’ (Fig. 2), uses three grain sizes: 100, 140 and 400 

µm diameter, with 50 % of the volume accounted for by the 400 µm grains. This would be an unusual grain-size distribution 

to observe in nature, and it is used here to test the application of beta attenuation models in extreme cases. Geometries B and 215 

C (Fig. 3) are more realistic distributions, corresponding broadly to a loessic silt and a well-sorted medium sand, respectively.   

 Grains are randomly assigned to be sources, dosimeters, or neither, according to a chosen probability distribution, 

and simulations were conducted using MCNP6 (Goorley et al., 2012). All grains were given a composition SiO2 and density 

2.65 g cm-3 (note there is little difference in electron stopping power between the main silicate minerals; e.g. compare Tables 

K-40 φ w

Diam. ( μ m) no etch 10 μm etch 20 μm etch

10 0.003
20 0.006
40 0.013 0.017
60 0.020 0.024 0.025
80 0.026 0.031 0.034
100 0.033 0.038 0.041
120 0.040 0.045 0.048
140 0.047 0.052 0.055
160 0.054 0.059 0.062
180 0.060 0.066 0.069
200 0.067 0.072 0.076
225 0.076 0.082 0.086
250 0.084 0.090 0.095
275 0.093 0.099 0.104
300 0.102 0.108 0.112
400 0.136 0.142 0.147
600 0.204 0.210 0.216
800 0.271 0.278 0.283
1000 0.333 0.340 0.346
2000 0.572 0.579 0.586
5000 0.817 0.821 0.826
10000 0.909 0.912 0.914
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1 and 3 for whole-grain K sources); the remaining space is defined as air with density 1.205e-3 g cm-3. Of the six outer 220 

boundaries, four are periodic and two are reflective; hence all energy is conserved within the box geometry. Simulations were 

run separately for each source (K, U, Th), using the same energy spectra described in Section 2. The beta dose (MeV g-1) was 

recorded in up to 999 dosimeter cells, and is expressed here as a proportion of the IM dose rate. A total of four tests are 

described below, using three geometries. 

Test A1 uses Geometry A, with sources restricted to 400 µm grains. The total source mass is 50 %, meaning that 225 

every 400 µm grain is a source. Simulations are shown separately for K, U, Th sources, with beta particles initiated 

homogenously throughout the source grains (‘whole grain’ sources). The performance of the beta attenuation models is shown 

in Figs 2a and 2b, which plot the estimated beta dose against that observed in the MCNP simulations. The standard model of 

beta attenuation assumes that the dosimeter grain is embedded in a homogenous matrix, and is defined here as 1 − 𝜑ௗ௢௦௜௠௘௧௘௥ . 

In this test, the standard model overestimates the dose to dosimeter grains by 6–11 %. Source grains are large, and have a large 230 

self-dose, hence there is less energy available to be deposited in dosimeter grains.  The balanced energy model takes this into 

account, and gives accurate estimates of attenuation for each source (Fig 2b). 

Test A2 uses Geometry A, with whole-grain sources restricted to 100 µm grains. The total mass of sources is 6.5 %, 

corresponding to 918 out of the 3837 100-µm grains. In this case, the self-dose to the source grains is small, yet a large 

proportion of the mass is comprised of 400 µm grains. The dosimeter grains (100 and 140 µm), which are smaller than the 235 

sediment average, receive a larger-than-average dose. Note that when the sources are 40K the attenuation is greater than 1, 

meaning that the dose received by the dosimeters is greater than the IM beta dose for the bulk sediment (this is balanced by 

the lower-than-average dose received by the 400 µm grains). The 1 − 𝜑ௗ௢௦௜௠௘௧௘௥  model underestimates the attenuation by 6–

10 %, depending on the source (Fig 2c), while the BEM is consistent with the Monte Carlo simulations (Fig 2d). 

Test B1 uses Geometry B, which has a grain size distribution broadly corresponding to a coarse silt. Source grains 240 

comprise 19 % of the total, and have the same size distribution as the matrix. Separate simulations have been run for whole-

grain and surface sources; dosimeter grains are 20 and 40 µm in diameter. In the case of whole-grain sources, the attenuation 

estimated by 1 − 𝜑ௗ௢௦௜௠௘௧௘௥  and the BEM are identical, and correspond closely to the Monte Carlo simulation (Fig. 3a and 

3b). The two models are not equivalent in the case of surface sources, for three reasons. Firstly, the self-dose of the sources is 

reduced, because the sources are not generated in the centre of the grain. Secondly, the effective mean grain size of the sources 245 

is also reduced, because of the greater surface-to-volume ratio of smaller grains. Thirdly, the dosimeter grains receive a self-

dose from sources held on their surface. For surface sources of U and Th, the 1 − 𝜑ௗ௢௦௜௠௘௧௘௥   model of attenuation 

underestimates the simulated beta dose by ~7 %. In contrast, the BEM is remains accurate.  

Test C1 uses Geometry C, corresponding to a well-sorted sand with mean grain size of 250 µm. Again, source grains 

(19 %) have the same size distribution as the matrix. The simulated attenuation is shown for 200 µm dosimeters (Fig 3c and 250 

3d), for whole-grain and surface sources. For grain sizes of 250 µm there is a significant self-dose to source grains (see Table 

1), which is much reduced if sources are located on grain surfaces (see Table 2). As such, the energy available to dosimeters 

is greater when sources are located on grain surfaces. In addition, there is a significant self-dose to dosimeter grains from 
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surface-held sources. These effects are not accounted for by the 1 − 𝜑ௗ௢௦௜௠௘௧௘௥   model of attenuation, leading to an 

underestimate of simulated beta dose by 9 %, 17 %, and 23 %, for K, U, and Th sources, respectively. The effect is accounted 255 

for in the BEM, which gives accurate estimates of attenuation.  

 

 

Figure 2: Testing beta attenuation models against Monte Carlo radiation transport simulations, using MCNP6 with PackLSD 
geometry. Geometry configuration A is the geometrical model for two tests, A1 and A2, with an atypical grain-size distribution 260 
(colours used in the packing illustration are to help visualise grain sizes). In test A1, the source grains are all 400 µm in diameter, 
with particles initiated homogenously throughout the grain (‘whole grain’), calculated separately for 40K, U-series and Th-series 
sources. The mean attenuation factor is shown for 100 µm and 140 µm dosimeters, and compared against (a) 𝟏 − 𝝋𝒅𝒐𝒔𝒊𝒎𝒆𝒕𝒆𝒓  (b) 
balanced energy model. Test A2 shows equivalent results in (c) and (d), when sources are all 100 µm grains.  

 265 
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Figure 3: Testing beta attenuation models for realistic grain-size distributions approximating loess (mean grain size = 47 μm) and 
well-sorted sand (mean grain size = 250 μm ), using Monte Carlo simulations with MCNP6 in a close-packed geometry. The grain 
size distribution of sources is the same as the matrix. Colours used in the packing illustration are to help visualise grain sizes. Plots 270 
(a) and (c) show the performance of the 𝟏 − 𝝋𝒅𝒐𝒔𝒊𝒎𝒆𝒕𝒆𝒓  model; plots (b) and (d) the performance of the Balanced Energy model. 
Results are shown for both whole-grain and surface sources, with data normalised to the IM dose rate.  

 

5. Moisture 

Moisture in sediment absorbs radiation. Energy thus absorbed is unavailable to the sediment, reducing the dose rate received 275 

by dosimeter grains. The strength of the required correction is largely defined by the average mass of the water during the 

burial period. For beta radiation, the coefficient of attenuation by water, 𝑐௪௔௧௘௥, is derived from Zimmerman (1971): 

 

𝑐௪௔௧௘௥ =
1

1 + 𝑥𝑊
 (12) 

 280 

where W is the water content fraction, expressed as [mass of water / mass of dry sediment]. The dimensionless parameter x 

describes the degree to which water is more effective at absorbing beta radiation than the bulk sediment. The value of x has 

been estimated as 1.25 (Zimmerman, 1971) or 1.19 (Aitken and Xie, 1990), using the ratios of the stopping powers of Al 

(Zimmerman) or SiO2 (Aitken and Xie) compared to water over the relevant range of beta energy. Values close to 1.20 have 

been confirmed using Monte Carlo radiation software (Nathan and Mauz, 2008; Guérin et al., 2012). However, these estimates 285 

effectively assume that the sediment is a homogenous mixture of elements. Guérin et al. (2012) have questioned the accuracy 

of x for granular sediment, noting that variations in pore size and moisture content may lead to a different value for x.  

Using the framework of the BEM, we can attempt a fuller explanation of the role of water in beta attenuation. Noting 

again that x is a ratio, we need to define the efficiency of dose absorption in pore water, and in the dry matrix. In fact, the latter 

has already been defined in Section 2 as 1 − 𝜑௠௔௧௥௜௫. This value is calculated as the weighted average of the 1 − 𝜑௪ values 290 

for all grains in the matrix. For fine-grained matrices, the self-dose of the grains is very small, so 1 − 𝜑௠௔௧௥௜௫ ~ 1. As the grain 

size increases, the value of 1 − 𝜑௠௔௧௥௜௫  becomes significantly less than 1. To calculate x, we need to include a similar 

parameter for the efficiency of dose absorption by pore water, so that: 

 

𝑥 =  
[1 − 𝜑௪௔௧௘௥]௘௙௙

1 − 𝜑௠௔௧௥௜௫

(13) 295 

 

where [1 − 𝜑௪௔௧௘௥]௘௙௙ is the effective 1 − 𝜑 of the pore water. The evaluation of [1 − 𝜑௪௔௧௘௥]௘௙௙ is more difficult, but there 

are some constraints on its value. First, we can recognise that pore water attenuates beta particles, so it is a non-perfect absorber 

of radiation definable by 1 − 𝜑௪௔௧௘௥, i.e. dependent on the shape and density of the pore water. We must also account for the 
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difference in elemental stopping power between the dry matrix and water, previously assessed as ~1.20. We might expect that 300 

[1 − 𝜑௪௔௧௘௥]௘௙௙  ~ 1.20(1 − 𝜑௪௔௧௘௥). In the limiting case of a homogenous matrix, where both 1 − 𝜑௠௔௧௥௜௫ and 1 − 𝜑௪௔௧௘௥ 

equal 1, then x = 1.20. As the grain size (and pore size) increases, then 1 − 𝜑௠௔௧௥௜௫ decreases faster than 1 − 𝜑௪௔௧௘௥ (because 

the density of water is always much less than mineral grains). In consequence, the ratio x increases with grain size. In contrast, 

when the water content increases then so does its self-dose, thus 1 − 𝜑௪௔௧௘௥  decreases, and x decreases. However, for sandy 

and silty sediments, it is likely that the self-dose of the water is very close to zero, even for saturated sediment. In practice 305 

then, a reasonable approximation for x is:  

 

𝑥 ~ 
1.20

1 − 𝜑௠௔௧௥௜௫

(14) 

 

The application of this model can be seen in Fig. 4, in which Monte Carlo simulations have been repeated using geometry C1 310 

(well-sorted sand, mean  = 250 µm), with pore space occupied by water at densities corresponding to 1–30 % W. The external 

beta dose to 200 µm grains is shown to decrease as W increases, at a faster rate than predicted using x = 1.20. When x is instead 

estimated from Eq. 14, the predicted dose is much closer to that observed from the simulation results. The use of Eq. 14 

introduces no error for K sources, and only small errors in the case of U and Th. Firstly, for U and Th sources, the pore water 

in this simulation has a non-negligible self dose, and so Eq.14 leads to a slight overestimate of x (Fig 4b-c). In contrast, Eq. 14 315 

slightly underestimates x for U and Th sources when they are held on grain surfaces (Fig 4e-f). This is is more difficult to 

explain, but might be caused by differences in the beta energy spectra between whole-grain and surface sources (significant 

proportions U- and Th- series beta energy is carried by very low-energy electrons, which would never leave a whole-grain 

source).   

 An alternative to Eq. 14 is to estimate x using a Monte Carlo simulation with a representative grain-size distribution. 320 

 Table 4 provides estimates of x for four grain geometries, each built from a 1000-grain packed cube, with 60 % volumetric 

packing density. The grain-size distributions represent well-sorted silt or sand, with mean grain size ranging from 50 µm to 

300 µm, and including the ‘silt’ and ‘sand’ distributions used in Section 2. Beta particles are simulated within the grains or on 

grain surfaces, with the grains once again specified to be SiO2 with density of 2.65 g cm-3. Pore water is homogenous, with a 

density set to reflect the chosen water content from 1–30 %. x is defined as the dose to water divided by the (average) dose of 325 

the grains. For this calculation, only the external beta dose is considered (i.e.1 − 𝜑௦௢௨௥௖௘), because the internal dose rates (in 

both sources and dosimeters) are not affected by water. The x values listed in Table 4 have several significant features. First, 

it is clear that x is always greater than 1.20 for granular matrices. For silt-sized matrices, x values are only slightly greater than 

1.20, and show little dependence on the water content or radionuclide source. For sand-size matrices, the differences in x are 

much starker, particularly for surface-held sources of U and Th. For the coarsest simulation (mean grain size of 305 µm), x 330 

ranges from 1.34 (K sources with 30 % W) to 2.37 (surface-held Th and 1 % W). However, the most extreme vales of x occur 

when the water content is very low (e.g. 1 %), in which case the attenuation calculation is not very sensitive to x. In practice, 
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selecting x from a range of simulated values (Table 4) offers little improvement when compared with the simplicity of Eq. 14, 

even when (as here) the grain-size distribution is known exactly (see Fig 4).  

 The water-content correction can be achieved using Eq. 12, after either selecting an appropriate value of x for each 335 

radionuclide from Table 4, or using the simple approximation in Eq.14. However, there is an alternative formulation to effect 

the same result, which we note here to show the integration of the water-content correction within the BEM. Via Eqs 3-5, we 

explained that beta attenuation to dosimeter grains depends on how the efficiency of dose-absorption in the dosimeters (1 −

𝜑ௗ௢௦௜௠௘௧௘௥ ) compares to the efficiency of all absorbers in the (dry) matrix (1 − 𝜑௠௔௧௥௜௫ ). In the wet matrix, pore water 

functions as an additional absorber, so could be included in the denominator of Eq. (4). For example, when considering the 340 

whole-grain sources of a radionuclide, the attenuation coefficient to dosimeters in the wet matrix, 𝑐௪,௪௘௧  would be: 

 

𝑐௪,௪௘௧ = (1 − 𝜑௦௢௨௥௖௘
௪ ) 

(1 − 𝜑ௗ௢௦௜௠௘௧௘௥
௪ )

൫1 − 𝜑௠௔௧௥௜௫,௪௘௧
௪ ൯

൬
1

1 + 𝑊
൰ (15) 

 

which is similar to Eq. 4, but with a mass correction for the water (1/1+W), and with the 1 − 𝜑 of the wet matrix in the 345 

denominator. The latter is defined by including [1 − 𝜑௪௔௧௘௥]௘௙௙ in the weighted average of 1 − 𝜑 values of all objects in the 

matrix (Eq.5). Or, written explicitly: 

 

1 − 𝜑௠௔௧௥௜௫,௪௘௧
௪ =

൫1 − 𝜑௠௔௧௥௜௫ (ௗ௥௬)
௪ ൯ + 𝑊[1 − 𝜑௪௔௧௘௥]௘௙௙

1 + 𝑊
(16) 

 350 

noting again that to a first approximation, [1 − 𝜑௪௔௧௘௥]௘௙௙  ~ 1.20 for silt-sized and sand-sized matrices. This formulation is 

exactly equivalent to Eqs 12 and 13. 
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Figure 4: Simulated beta dose to 200 μm grains in a sandy matrix (mean grain size 250 μm), plotted against the water content. Simulations 
are shown for K, U and Th sources, either whole-grain or surface-held. The external beta dose is expressed as a fraction of the IM beta dose 355 
rate. Also shown are predicted dose rates using three different derivation for x. 
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Table 4: Estimates of the water-content parameter x for four well-sorted grain-size distributions. Values depend on the radionuclide source, 
its location (whole-grain or surface), and on the W (mass of water over dry matrix). Estimated using Monte Carlo simulations a grain-packed 360 
geometry. 

 

Silt, mean 47μm K (whole) K (surface) U (whole) U (surface) Th (whole) Th (surface)
W x x x x x x

0.01 1.24 1.25 1.34 1.37 1.33 1.38
0.05 1.24 1.25 1.30 1.36 1.32 1.36
0.1 1.24 1.24 1.32 1.33 1.32 1.37
0.2 1.24 1.24 1.31 1.35 1.32 1.31
0.3 1.24 1.23 1.30 1.34 1.30 1.33

Sand, mean 125 μm K (whole) K (surface) U (whole) U (surface) Th (whole) Th (surface)
W x x x x x x
0.01 1.28 1.29 1.38 1.62 1.42 1.69
0.05 1.28 1.29 1.35 1.52 1.41 1.61
0.1 1.27 1.28 1.35 1.48 1.39 1.55
0.2 1.27 1.27 1.33 1.40 1.37 1.48
0.3 1.26 1.27 1.34 1.38 1.35 1.43

Sand, mean 250 μm K (whole) K (surface) U (whole) U (surface) Th (whole) Th (surface)
W x x x x x x
0.01 1.34 1.37 1.45 1.93 1.55 2.17
0.05 1.33 1.35 1.42 1.74 1.52 1.93
0.1 1.32 1.35 1.42 1.62 1.49 1.81
0.2 1.32 1.34 1.40 1.54 1.45 1.69
0.3 1.31 1.33 1.39 1.50 1.44 1.64

Sand, mean 305 μm K (whole) K (surface) U (whole) U (surface) Th (whole) Th (surface)
W x x x x x x
0.01 1.37 1.41 1.49 2.03 1.56 2.37
0.05 1.36 1.39 1.48 1.88 1.51 2.20
0.1 1.36 1.38 1.45 1.67 1.50 1.88
0.2 1.34 1.37 1.43 1.58 1.47 1.76
0.3 1.34 1.36 1.41 1.53 1.44 1.68
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6 Radioactivity vs grain size 

The Balanced Energy Model seeks to account for the size distribution of sources, dosimeters, and the matrix, and for the 

location of radionuclides in the source grain. It was observed, however, that the model simplifies to 1 − 𝜑ௗ௢௦௜௠௘௧௘௥   when two 365 

conditions are met: (1) the source grain-size distribution is the same as the matrix, and (2) radionuclides are distributed 

homogenously within source grains. These conditions can be tested by measuring the radionuclide concentrations for different 

grain-size fractions of a sample. If sources are held on grain surfaces, the radionuclide concentrations would be proportional 

to surface-to-volume ratio (e.g. Olley 1994). Similarly, any difference in the grain-size distributions of source and sediment 

would show up as a grain-size dependence in radionuclide concentrations. If conditions (1) and (2) are met, therefore, the 370 

radionuclide concentrations would be independent of grain size, and the Balanced Energy Model could be simplified to 1 −

𝜑ௗ௢௦௜௠௘௧௘௥ . 

 The dependence of radionuclide concentration on grain size is tested here for selected samples from sand-sized and 

silt-sized sediments: 

- Sample 178108, a coarse sand from Pleistocene fluvial terrace of the Tejo River, Portugal. 375 

- Sample 178110, a fine sand from coastal aeolianite, Oitavos region, Portugal. The sample is rich in quartz, and 

contains some carbonate bioclasts and pedogenic nodules.  

- Sample 178113, a late-Pleistocene loess from Dunaszekcső, Hungary (Ujvari et al., 2018) 

- Sample 191597, a late-Holocene loess from Adventdalen, Svalbard (Gilbert et al., 2018) 

 380 

Samples were separated into grain-size fractions by wet sieving and Stokes settling, then ashed, ground and embedded in wax 

casts in preparation for gamma spectrometry. Measurements were performed on a number of HpGe gamma spectrometers at 

the DTU laboratory, following the procedures described in Murray et al. (1987) and Murray et al. (2018): briefly, the 40K 

gamma emission is measured directly; 226Ra is defined by the gamma emissions of its progeny 214Pb and 214Bi, and forms the 

most precise definition of U-series activity (we make no judgement here on the state of disequilibrium in nature); 232Th is 385 

defined by gamma emission of its progeny 228Ac and  212Bi, assuming secular equilibrium.  

 Activity concentrations are plotted in Fig. 5 as a function of the surface-to-volume ratio of the grains in each fraction. 

The grain-size fractions are indicated in the secondary x-axis. For sand-sized samples (Fig 5a–f) there is a clear difference 

between the trends for 40K, and for 226Ra and 232Th. For 226Ra and 232Th, the concentrations are proportional to the surface-to-

volume ratio when grain sizes are less than 250 µm. This proportionality is lost for the larger grain-size fractions. The trend is 390 

a strong indication that U and Th sources are held on surfaces of grains. The non-proportionality in larger fractions could 

reflect the carbonate component: fragments of shell or pedogenic carbonate nodules are generally larger than the silicate grains, 

and may have a U and Th sources that are independent of grain size. In the case of 40K, there is no evidence of proportionality 

with surface-to-volume ratio, and for sample 178108, little dependence on grain size. There is a peak in the 40K content at the 

most dominant grain-size fraction, which is more pronounced for sample 178110. The association of peak location with 395 
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dominant grain size suggests that the 40K source lies in the silicate fraction – presumably K-feldspar – with the concentrations 

diluted by non-silicate minerals (carbonates) at the extremes of the grain-size distribution. The trends are broadly similar for 

the loess samples (Fig 5g–l). The dominant grain size fractions of these samples is in the 20–90 µm range. In this range, the 
226Ra and 232Th activity concentrations are proportional to surface-volume ratio; the relationship is largely absent for 40K. For 

the loess sample 191597 (Fig 5j–l) there is also an increase in activity towards larger grain-size fractions; these fractions are 400 

very minor by quantity and presumably represent a locally sourced non-loessic component of the soil.  
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Figure 5. Activity concentrations for 40K (left column), 226Ra (middle) and 232Th (right) for various grain-size fractions of four 
sedimentary samples, measured using HpGe gamma spectrometry and plotted against the surface-to-volume ratio of the grains. The 405 
error bars in the y direction indicate the 1σ random uncertainty in measurement. The horizontal width in the error-bar head and 
tail indicate the range of the grain-size fraction. Grain-size fractions are given in the secondary x-axis. (a-c) Sample 178108, aeolian 
sand. (d-f) Sample 178110, aeolian sand. (g-i) Sample 178113, loess; (j-l) Sample 191597, loess. Note that the lower two samples are 
plotted on a log scale: proportionality is illustrated with curved lines. 

 410 

7. Discussion 

 

Gamma spectrometry measurements on grain size fractions (Section 6) show that for samples considered here, activity 

concentrations of 226Ra and 232Th are largely proportional to surface-to-volume ratio of the grains. These observations are in 

line with previous findings (e.g. Megumi et al., 1982; Olley, 1994), and readily explained by the patterns of mobility exhibited 415 

by the different elements. The igneous sources of U and Th lie in granites and pegmatites. U and Th can form the major or 

minor component of accessory minerals (ziron, monazite), but are also found in significant concentrations adsorbed to crystal 

or grain boundaries, and as trace elements in the main silicate minerals (Gascoyne, 1992). Under oxidizing conditions at the 

Earth’s surface the weathering of igneous rock leads to the mobilisation of U and Th. Uranium is oxidized into its stable 6+ 

state, forming the soluble uranyl ion, and also readily adheres to particulates. Thorium is relatively insoluble, but is 420 

significantly mobilized as colloids or adsorbed on grain surfaces. In soils and sediments, U, Th and Ra are likely to be bound 

to iron and manganese oxide crusts, deposited through co-precipitation, or ion exchange. Mobilisation processes are influenced 

by properties of the mineral host (e.g. surface area), and of the solution (e.g. pH, salinity), and of the chemical properties of 

the species (Chabaux et al., 2003; Carvalho et al., 2014). Note also that the chemical differences between U, Th and Ra make 

it unlikely that the surface-bound radionuclides are in secular equilibrium (for example, the excess of 226Ra observed by Olley 425 

(1994)) 

The presence of radionuclides on grain surfaces has an influence on the average beta dose rate to dosimeter grains. 

Source grains have a self-dose, which is dependent on the size of the grain, and that portion of their total emitted energy is 

therefore unavailable to dosimeter grains. When radionuclides are held on the surface of source grains, the self-dose is reduced 

compared to a whole-grain source, leading to an increase in the dose available to dosimeters. In Section 3, the calculation of 430 

beta dose rates has been revised by expanding the φ system, with whole-grain and surface sources accounted for separately. 

The model requires an estimate, for each radionuclide category, of the proportion of activity that is held in whole-grain sources 

(p in Eq. 9). In the case of 40K, this should normally equal 1 because it is likely that for most sediments the majority of the K 

is held in the primary mineral form (K-feldspar). The choice is more difficult in the case of U and Th, because both whole-

grain and surface sources are possible. We suspect that surface sources predominate for most dating applications (so p = 0), as 435 

is the case for the samples tested in Section 6. However, for some sediments the U and Th sources are located in resistant 

minerals– principally zircon and monazite. These minerals can become concentrated as placer deposits in beach sediment, 
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most often in tropical regions where rates of erosion are high (Gascoyne, 1992). In such cases, concentrations of U and Th 

would correlate with heavy minerals and associated elements (e.g. Murray and Mohanti, 2006).  

 The increase in dose rate due to surface-held sources is most significant for sand-sized sediments. In model C1, for 440 

example, the U and Th beta dose rates are increased by ~20 % and ~30 %, respectively, compared to whole-grain sources of 

the same size (see Section 4). For silt-sized sediments, the increase is roughly 7 % for U and Th, although likely to be sensitive 

to dosimeter grain size. At present, trapped-charge dating methods are most commonly applied to sandy or silty sediments, 

hence the BEM has immediate relevance to dating applications. Samples with high (U + Th):K ratios will be most affected: 

the U and Th radionuclides are most likely to be held on surfaces, and the consequences of this are also more severe than for 445 

40K. However, the estimated mean energy of 40K has recently been revised upwards (Cresswell et al., 2018). Taken together, 

the BEM and the Cresswell et al. (2018) conversion factors will tend to increase the estimated dry beta dose rates by roughly 

10–20 % for sandy sediments, and by ~6 % for silty sediments, compared to current practice. However, current practice also 

underestimates the attenuation of the beta dose rate by water, particularly if sources are held on grain surfaces. The parameter 

x (describing the degree to which water is a more effective absorber of dose than the dry matrix) is not a constant, but is 450 

dependent on the grain-size distribution, and somewhat dependent on the water content. The dependence of x on grain size, 

and the increased dose rate from surface-held sources, have a been observed in a previous simulation study (Guerin et al., 

2012). The BEM is able to go further: it provides an explanatory model for the effects by using 1 − 𝜑 as a parameter to describe 

the efficiency dose absorption; and it provides a means of accounting for the effects that is simple enough for routine analysis 

(see supplementary file). 455 

 We have focused discussion on the way surface-held sources alter the attenuation calculation, but the BEM model 

also departs from 1 − 𝜑ௗ௢௦௜௠௘௧௘௥   when the grain-size distribution of sources differs from that of the bulk matrix. This might 

occur in sediment with a complex provenance, and/or a broad grain-size distribution: for example, a sand with a loessic 

component, or a coastal sediment containing large shell fragments. The BEM provides a framework for the beta dose rate 

calculation in such cases; all that is needed is the grain-size distributions of source and sediment, and the average φ value for 460 

each distribution. The φ value for a shell, for example, can be obtained relatively simply with radiation transport codes – far 

simpler than building a full geometry for a mixed sediment (c.f. Cunningham et al., 2011; Cunningham, 2016). Finally, we 

should note that the average beta dose rate is unaffected by the number of source grains – although the dispersion certainly is. 

Conclusion 

For a single grain in a homogenous matrix, grain-size attenuation of the beta dose rate is accurately defined by 1 − 𝜑ௗ௢௦௜௠௘௧௘௥  . 465 

In a granular matrix, 1 − 𝜑ௗ௢௦௜௠௘௧௘௥   is only accurate on average if the size distribution of source grains is the same as the bulk 

matrix. This assumption fails, for example, if radionuclides are held on grain surfaces, which is likely in the case of the U and 

Th series. The Balanced Energy Model of beta attenuation, described here, modifies and extends the 𝜑 system so that it is 

applicable to granular sediment. The BEM has been successfully tested against radiation transport modelling and is able to 
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account for surface-held sources, for differences in the grain-size distributions of source and sediment, and for the grain-size 470 

dependence of the water-content correction. Its use is likely to improve the accuracy of beta dose rate estimates for dating 

applications. 
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