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Abstract. We introduce a set of methods for analyzing cosmogenic-nuclide depth profiles that formally integrates denudation 

and muogenic production, while retaining the advantages of linear inversion. For surfaces with denudation, we present 

solutions for both denudation rate and total denudation depth, each with their own advantages. By combining linear inversion 

with Monte Carlo simulation of error propagation, our method jointly assesses uncertainty arising from measurement error and 10 

denudation constraints. Using simulated depth profiles and natural-example depth profile data sets from the Beida River, 

northwest China and Lees Ferry, Arizona, we show that our methods robustly produce accurate age and inheritance estimations 

for surfaces under varying circumstances. The denudation-depth approach can theoretically produce reasonably accurate age 

estimates even when total denudation reaches five-times the nucleon attenuation length. The denudation-rate approach, on the 

other hand, has the advantage of allowing direct exploration of trade-offs between exposure age and denudation rate. Out of 15 

all the factors, lack of precise constraints for denudation rate or depth tends to be the largest contributor of age uncertainty, 

while negligible error results from our approximation of muogenic production using the denudation-depth approach.  

1 Introduction 

In-situ terrestrial cosmogenic nuclide (TCNCN) dating, especially with 10Be, is a widely applied tool to estimate landform 

ages (e.g., Granger et al., 2013). These dates are affected by landscape processes that either remove or add TCNsCNs, lending 20 

uncertainty that may be difficult to assess without additional information. Ages of landforms constructed from sediments, such 

as a stream terrace, may be affected by TCNsCNs acquired by the sediments prior to deposition, termed inheritance, leading 

to erroneously older dates (Brocard et al., 2003; Hancock et al., 1999; Repka et al., 1997). Conversely, even a low rate of 

denudation of a landform after its formation will bias surface-exposure ages younger (Lal, 1991). Under the condition of no 

denudation, solving a depth-profile of TCNCN concentrations via linear inversion – a technique first developed by Anderson 25 

et al. (1996) – provides a robust approach for estimating surface age and inheritance from a landform comprised of sediments. 

However, this method suffers from the deficit of not incorporating denudation or muogenic production process, and has been 

succeeded by forward-modelling approaches (e.g. Hidy et al., 2010). Despite its deficits, however, linear regression retains 

advantages as a robust and straightforward approach to invert for exposure age. Herein we revisit the application of linear 
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regression for TCNCN depth profiles with an updated approach, building upon the simplicity of the original technique, but 30 

expanding its application to surfaces with independently constrained denudation histories, and increasing the accuracy of the 

age and inheritance results by taking muogenic production into account.  

As an inverse approach, our least-squares linear regression directly solves for a best-fit age and inheritance, while treating the 

denudation rate or denudation depth as a model input, rather than an output of the model. It may be used with Monte Carlo 

sampling to explore the full distribution of possible ages and inheritance from the variation of input parameters. As an inverse 35 

approach, linear regression directly returns a best estimate without requiring extensive calculations and repetitions, providing 

a clear way to explore how model inputs, such as erosion, affect the result. This is useful to derive an exposure age directly, 

or as a starting point for forward models (e.g. Hidy et al., 2010; Laloy et al., 2017; Marrero et al., 2016). In the latter case, 

linear inversion may help researchers tune the boundary values for the forward models to get better simulation results.  

In this paper, we present a general inversion which incorporates muogenic process,production as a summation of exponential 40 

terms (e.g. Helsinger 2002a, 2002b), and two derivativespecific approaches for age inversion at sites with constant denudation 

rate. The first derivative approach directlyof these approaches applies a constant denudation rate but requires simplification 

by omitting muogenic production. This approach provides a useful tool to explore the trade-offs between denudation rate and 

exposure age but introduces systematic errors as denudation rate increases due to the exclusion of muogenic production. The 

second derivative approach introduces a solution for a constant denudation depth with a Taylor-series approximation for the 45 

muogenic production terms. With this approximation, linear regression produces robust age estimates even for surfaces with 

a large amount of denudation. To show the application of these techniques, we present applications to pseudo-realistic depth 

profiles under various scenarios. We also apply our approach to two previously published example sample sites, one from the 

Beida River in western China from our own work (Wang et al., 2020), and one from the Lees Ferry site on the Colorado River 

from Hidy et al. (2010), to demonstrate model performance for realistic cases. These examples show that our revised linear-50 

regression approach is robust and can be applied to most exposure dating scenarios. 
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Figure 1 Depth-concentration profiles with different contributing components for a hypothetical surface. The profiles are calculated 

based on a sea level high latitude production rate (nucleogenic production rate of 4.11 atoms/g, Martin et al., 2017; muogenic 55 
production rate of  0.0735 atoms/g, Balco, 2017). All the concentrations are normalized to a percentage of the total surface 

concentration. a. Surface with no denudation. b. Surface with steady denudation rate; denudation depth equal to 300 cm. 

2 Methods 

2.1 General inversion 

Under conditions of constant production rate and constant denudation rate, a surface that was exposed at time t would have a 60 

concentration of a cosmogenic nuclide (Nz) as (Balco et al., 2008; Braucher et al., 2009; Lal, 1991; Lal and Arnold, 1985): 
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where 𝑃𝑛,0 , 𝑃𝑚1,0 , and 𝑃𝑚2,0  are the surface production rate induced by nucleons, negative muons, and fast muons;  

𝛬𝑛, 𝛬𝑚1, 𝑎𝑛𝑑 𝛬𝑚2 are the attenuation scale lengths (g/cm2) of the nucleons and muons (negative and fast), respectively;. Note 

that the two exponential terms for muogenic production used here are an approximation of a complex muogenic production 65 
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path, because the muon energy spectrum hardens continuously with depth (Helsinger 2002a, 2002b; Marrero et al., 2016; Balco 

2017). z is the depth beneath the target surface; 𝜆 is the decay constant, and ε is a constant denudation rate, if applicable. For 

our purposes, we model ages using 10Be, with a half-life of 1.39 Myr (Chmeleff et al., 2010; Korschinek et al., 2010), due to 

its wide applicability to quartz-bearing sediments (Cockburn and Summerfield, 2004; Granger et al., 2013; Rixhon et al., 

2017). 70 

Based on eq. 1, the production of cosmogenic nuclides may be simplified into two major components: the production rate at 

specific depth (Pz), and the effective exposure age of the site (Te), which is the time that is required to accumulate concentration 

Nz at production rate Pz without erosion and radioactive decay. Therefore eq. 1 may be rearranged into: 

𝑁𝑧(𝑡) = ∑ 𝑃𝑧𝑖𝑇𝑒𝑖𝑖   (2a) 

where  𝑃𝑧𝑖 = 𝑃𝑖,0𝑒
−

𝜌𝑧

𝛬𝑖 , 𝑇𝑒𝑖 = (
1−𝑒

−(
𝜌𝜀
𝛬𝑖

+𝜆)𝑡

𝜌𝜀

𝛬𝑖
+𝜆

) , 𝑖 = 𝑛, 𝑚1, 𝑚2  (2b) 75 

The 10Be concentration measured from a suite of samples (Fig. 1), C, has two components: the in-situ produced concentration, 

Nz , and the inherited concentration,  𝐶𝑖𝑛ℎ, 

𝐶 = ∑ 𝑃𝑧𝑖𝑇𝑒𝑖𝑖 + 𝐶𝑖𝑛ℎ. (3) 

Though 10Be concentration (C) is exponential to the burial depth, based on equation 2 and 3, when there is no denudation (𝜀 ≈

0), 𝑇𝑒𝑛 = 𝑇𝑒𝑚1 = 𝑇𝑒𝑚2, and therefore eq. 3 can be rearranged as: 80 

𝐶 = 𝑇𝑒 ∑ 𝑃𝑧𝑖𝑖 + 𝐶𝑖𝑛ℎ. (4a)  

where 𝑇𝑒 = (
1−𝑒−𝜆𝑡

𝜆
) (4b) 

This equation is an update to the linear regression approach first proposed by Anderson et al. (1996) that accounts for both 

nucleon and muon production, as well as radioactive decay. For the case of no denudation, TCNCN concentration is linear to 

the sum of production rates via all pathways (∑ 𝑃𝑧𝑖𝑖 ), and Te and Cinh are the slope and intercept of this linear relationship 85 

respectively. Therefore, similar to the approach proposed by Anderson et al. (1996), we can apply least-squares linear 

regression to find the slope (Te) and intercept (Cinh) of the best fit line to the concentration vs. production rate data of the depth 

profile. The exposure age, factoring in decay, may be calculated directly by rearranging eq. 4b: 

𝑡 = −
ln(1−𝑇𝑒𝜆)

𝜆
 (5) 

2.2 Inversion with denudation rate 90 

For sites with constant denudation rate, ε, the effective age for each pathway (nucleons or muons) would be different, due to 

their different attenuation lengths. But an approximation may be made by omitting the muogenic production, on the basis that 

muogenic production only makes up a very small fraction of the total surface production (Braucher et al., 2003, 2011, 2013; 

Heisinger et al., 2002b, 2002a; Balco 2008, 2017), and eq. 3 may be further simplified to  

𝐶 = 𝑃𝑧𝑛𝑇𝑒𝑛 + 𝐶𝑖𝑛ℎ, (6) 95 
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Using eq. 6, a linear Least-Squares regression can be applied to find the best-fit Ten and Cinh, which leads to the estimated 

exposure age 

𝑡 = −
ln(1−𝑇𝑒𝑛𝐵)

𝐵
 (7a)  where 𝐵 =

𝜌𝜀

𝛬𝑛
+ 𝜆 (7b) 

This solution illustrates the utility of separating the age model for finding Ten from the effect of denudation rate, contained 

within the parameter B. Though the error introduced to omitting muogenic production grows as the denudation rate increases, 100 

this approach (eq. 7) provides a useful tool to examine the relationship between exposure age and denudation rate.  

2.3 Inversion with denudation depth  

For many practical cases, it may be more straightforward to estimate total denudation depth (D) from field evidence such as 

through soil-profile analysis, rather than a denudation rate (e.g. Ebert et al., 2012; Hidy et al, 2010; Ruszkiczay-Rüdiger et al., 

2016). With denudation depth, the effective age of each pathway may be rewritten as 105 

𝑇𝑒𝑖 = (
1−𝑒

−(
𝜌𝐷
𝛬𝑖

+𝜆𝑡)

𝜌𝐷

𝛬𝑖𝑡
+𝜆

) , 𝑖 = 𝑛, 𝑚1, 𝑚2  (8) 

Here we explore the application of this equation with the inclusion of muogenic production. Using a series expansion, we 

rewrite the effective age related to muons (negative and fast), Tem, into a fraction, g, of the effective age related to nucleons, 

Ten. The fraction g can be approximated solely from knowledge of the denudation depth, D (see Appendix for derivation): 
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−
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24
[(

𝜌𝐷

𝛬𝑚𝑖
)

2
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𝜌𝐷

𝛬𝑛
)

2
]
, 𝑖 = 1, 2  (9) 110 

Bringing gi into eq. 3, we have 

𝐶(𝑧) = 𝑃𝑧𝑛𝑇𝑒𝑛 + 𝑃𝑧𝑚1
𝑔1𝑇𝑒𝑛 + 𝑃𝑧𝑚2

𝑔2𝑇𝑒𝑛 + 𝐶𝑖𝑛ℎ = 𝑃𝑧𝑒𝑇𝑒𝑛 + 𝐶𝑖𝑛ℎ,    

𝑃𝑧𝑒 = (𝑃𝑧𝑛 + 𝑃𝑧𝑚1
𝑔1 + 𝑃𝑧𝑚2

𝑔2)    (10) 

where Pze is the effective production rate from both nucleons and muons under the condition of a finite amount of steady 

denudation over the lifetime of the deposit.  115 

Using equation 10, Ten and Cinh can be found by applying least-squares linear regression with known production rates, 

denudation, and sample concentrations, similar to the general inversion case for no denudation described by equation 4. 

To estimate the exposure age, we need to find the solution for 

𝑓(𝑡) = (
1−𝑒

−(
𝜌𝐷
𝑡𝛬𝑛

+𝜆)𝑡

𝜌𝐷

𝑡𝛬𝑛
+𝜆

) − 𝑇𝑒𝑛  = 0 (11) 

While the complicated form of eq. 11 prohibits a direct solution, t may be found iteratively by applying the Newton’s method. 120 

Using the derivative of eq. 11, 

𝑓′(𝑡) = −𝜆𝑒
−(

𝜌𝐷

𝛬𝑛
)𝐷 − 𝜆𝑡 

−
𝜌𝐷𝑇𝑒𝑛

𝛬𝑛𝑡2 , (12) 

the exposure age can then be iterated from 
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𝑡𝑛+1 = 𝑡𝑛 −
𝑓(𝑡𝑛)

𝑓′(𝑡𝑛)
  (13) 

with initial guess, t0 = Ten.  125 

3 Applications  

We present a set of example applications of linear regression to TCNCN depth profiles using both the denudation-rate (eqs. 6, 

7) and the denudation-depth technique (eqs. 8-13). We begin with simulated TCNCN depth profiles to explore the impacts of 

scatter of sample concentration, low inheritance, denudation, and sample depth on the accuracy and precision of our approach, 

and to compare the performance of linear regression with the estimations using a Bayesian Monte-Carlo Markov Chain 130 

approach. We then demonstrate the linear regression technique with two case examples. For the Beida River T2 terrace of the 

North Qilian Shan, China (Wang et al., 2020), we demonstrate using the denudation-rate approach to explore the possible 

range of exposure age and the trade-offs between age and denudation rate; we also demonstrate how to use the denudation-

depth approach combined with Monte Carlo simulation to estimate the full distribution of exposure age and inheritance. For 

the Lees Ferry site on the Colorado River (Hidy et al., 2010), we compare results from our denudation-depth approach with 135 

the originally published data.original publication.  

To explore the full distribution of possible estimated age and inheritance, we consider the uncertainty propagated from five 

different sources: uncertainty of the 10Be concentration measurements, uncertainty of sample depths, uncertainty of sediment 

density, uncertainty of the denudation depth or rate, and the uncertainties related to TCNCN production and decay (i.e., the 

attenuation lengthlengths, production rates, etc.). These uncertainties propagate sequentially, first from 10Be concentration, 140 

sample depths, and sediment density through the least-squares linear regression process, and second from denudation rate or 

depth through converting exposure age from the effective exposure age (Te). Because of the limited sample sizes typical of 

most studies, and the variance in both concentration and depth, we apply a Monte Carlo sampling approach for the range of 

each input parameter. The code used here is archived in Github (https://github.com/YiranWangYR/10BeLeastSquares). Our 

procedure includes the following steps. Step 1: generate all the input parameters for one model, sampling distributions for 10Be 145 

concentration, sample depth, density, denudation rate/depth, production rate, attenuation length, etc. Depending on the 

parameter, we represent uncertainty as either a normal or uniform distribution. Step 2: fit these sampled input parameters with 

eq. 4 or eq. 6 or eq. 10 to derive best-fit sample Ten and inheritance values. Step 3: calculate the exposure age use Ten from step 

2 and parameters generated from step 1 using eq. 5 or eq. 7 or eqs. 11-13. Repeat step 1-3 for many times to produce a 

distribution of age and inheritance results. 150 

3.1 Simulated TCNCN depth profiles 

To demonstrate how our approach will perform under different circumstances, we generate a series of simulated depth profiles 

to test how closely the estimated age and inheritance will reflect the true values. With these profiles, four different scenarios 
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are tested: varying degrees of random deviation of sample concentrations, varying amount of denudation, low inheritance, and 

deep sample depth. For comparison, we use a Bayesianforward model which operates with a Monte-Carlo Markov Chain 155 

(Metropolis–Hastings algorithm) approach (codes:  

https://github.com/YiranWangYR/10BeLeastSquares/blob/581892b6b50a255ab30810efbe6e6e68c0b984c5/Be10_LRvsBay

esian.m) to estimate the exposure age and inheritance along with our linear regression approach. We choose to use our own 

coding following Bayesian inversion principles instead of a published codes because, first, we need to ensure the input 

variables are the same for both approaches; second, to be statistically significant, we need to apply both approaches several 160 

hundred times for each scenario, therefore manually doing so with published codes would be extremely time consuming.  

For all simulated profiles, we set the true age and inheritance to be 200 kyr and 100 × 103 atoms/g except for the low inheritance 

scenario, where we set inheritance to 0 and 5000 atoms/g. Each simulated profile contains 6 samples; to mimic realistic scatter 

of sample concentrations, all the simulated samples are deviated from the true profile based on an assigned normal distribution 

of either 1, 2, 5, or 10% standard deviation. Analytical uncertainties (2% standard deviation) are assigned to each sample of 165 

the simulated profile to mimic realistic values. For each scenario, 500 simulated profiles are generated and inverted for age 

and inheritance using both the linear regression and Bayesianforward approaches. The details of our simulation process and 

the parameters we used for each scenario are listed in Table 1. 

Table 1 Parameters used for each simulation scenario. 

Scenario 

1: Deviation of 

concentration 

2: low 

inheritance 3: denudation 4: deep profile 

Numbers of profiles 500 

True exposure age (kyr) 200 

Production rate1 

(atoms/(g × yr)) 

Nucleon 10 

Muon 

(negative) 0.0140575 

Muon (fast) 0.0510314 

AttenuationAttenuation1 

(g/cm2) 

Nucleon 160 

Muon 

(negative) 15001171 

Muon (fast) 43202597 

Decay constant(s-1) 4.997E-07 

Sediment density (g/cm3) 2.0 

Concentration uncertainty2 (1σ, %) 2 

Deviation of concentration3 (1σ, %) 2, 5, and 10 5 5 1 and 5 

Sample depths (cm) 

[25; 50; 70; 110; 

150; 200] 

[25; 50; 70; 110; 

150; 200] 

[25; 50; 70; 110; 150; 

200] 

[325; 350; 370; 410; 

450; 500] 

Sample depth uncertainty (1σ; cm) 5 

Inheritance (×103 atoms/g) 100 0 and 5 100 100 

Denudation (cm) 0 0 

1-, 2-, 3-, and 5-times 

attenuation length 

0-, 2- and 5-times 

attenuation length 
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Eq. used for linear regression eq. 4 eq. 4 eq. 10 eq. 4 and eq. 10 

 170 

1. Production rate isand attenuation length are calculated (nucleon) and approximated (muon) based on a hypothetical middle latitude, 1000 

m elevation site (Stone 2000; Braucher 2011), Balco 2017). 

2. The analytical uncertainty of sample concentration. 

3. The amount that the mean sample concentration deviates from the true concentration. 

 175 

3.1.1 Deviation of sample concentrations 

We test three sets of simulations under different degrees of imposed deviation of sample concentrations (standard deviation of 

2%, 5%, and 10%) with no denudation. The 2% deviation case matches the analytical uncertainty (2%), while the 5% and 10% 

cases introduce excess scatter, as is typically found in TCNCN depth profiles. For the case with 2% of deviation, we find both 

linear regression and Bayesianforward approaches yield results centered around the true age (200 kyr). For the linear regression 180 

approach, 95% of the mean ages fall within 4.0-4.5% error range of the true age, while for the Bayesianforward approach 95% 

of the mean age fall within 3.0-3.5% error range of the true age. The Bayesianforward approach works slightly better than 

linear regression for the more extreme (noisier) cases (Fig. 2, S1). For inheritance estimation, similar to the exposure age, both 

approaches return results centered around the true value (100,000 atoms/g), and a Bayesianforward approach again performs 

somewhat better for noisier data. When the sample deviation increases to 5%, then to 10%, the estimated age and inheritance 185 

values remain centered on the correct age and inheritance while the ranges of the mean estimations for both approaches expand 

significantly, indicating a decrease of precision as the noise level increases (Fig. 2, fig. S1-S3). With 5% of deviation, 95% of 

the estimated ages fall within 10% and 8% ranges of the true value for linear regression and Bayesianforward approach 

respectively. With 10% of deviation, 95% of the estimated age fall within 21% and 17% ranges of the true value for linear 

regression and Bayesianforward approach respectively. We also find the error range for the estimation results from the linear 190 

regression is moderately larger than a Bayesianforward approach (Fig. S1-S3). Importantly, we find that while each approach 

provides different estimation results for the same set of samples, one model does not consistently perform better than the other 

(Fig. S1-S3). About 40-45% of the time the linear regression returns results closer to the true age than the Bayesianforward 

approach. 



 

9 

 

 195 

 

Figure 2 Distribution of mean exposure age (a and c) and inheritance (b and d) estimated from linear regression (eq. 4; a and b) and 

a Bayesianforward approach (c and d) for 500 simulated profiles with 2% of imposed sample deviation. Red vertical line annotates 

the true age and true inheritance. 

3.1.2 Low inheritance or exposure age 200 

For profiles with very low or zero One important constraint for our inversion (eq. 6 and 10) is that both inheritance, we find 

that imposing  (Cinh) and the physically reasonable prerequisite that inheritance must be non-negative may lead to 

underestimation of the effective exposure age. (Ten) should not be negative. This occurs for both linear regression and Bayesian 

approaches that we tested. Forconstraint is not important when both Cinh and Ten are much greater than zero, as none of the 

inverted results will fall below zero. However, when either one of these variables is small enough, inverting without a positivity 205 
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constraint may lead to incorrect uncertainty distributions. We demonstrate this by using profiles generated with 5% imposed 

deviation of sample concentrations and zero inheritance (Table 1),). Here we compare three different ways to treat negative 

inheritance under linear regression: permit negative inheritance during inversion, scenarios: 1) do not permit negative 

inheritance during inversion through setting a zero-inheritancethe boundary condition, andCinh ≥ 0, 2) permit negative 

inheritance during inversion, and 3) excluding negative inheritance outcomes after inversion. For the Bayesian approach, we 210 

compare boundary conditions of permitting versus not permitting negative inheritance.Notice that scenario 1 is a constrained 

inversion (nonnegative least square problem; solution in Lawson and Hanson, 1987) while scenarios 2 and 3 are not 

constrained. The distributions of the mean exposure age and inheritance (Fig. 3; fig. S4) show that, for linear regression, not 

permitting negative inheritance leads to a skewed distribution, within the results centered around 197 kyr, while excluding 

negative inheritance afterwards produces a further biased result with a mean centering around 193 kyr. The Bayesian approach 215 

also performs slightly less well; not permitting negative inheritance leads to the estimated results centering around 195 kyr. 

When negative inheritance is permitted during inversion process, both approaches produce results that centered well 

aroundfirst scenario, the positivity constraint forces all the possible negative inheritance to be exactly zero, which leads to an 

age distribution skewed to the left while still centering the true age. For a more realistic case, when we set the true inheritance 

of the profile as 5000 atoms/g, (Fig. 3a, 3d). In the estimated exposure ages are also deviated to be younger (unconstrained 220 

scenarios (2), the uncertainty distribution for inheritance incorrectly extends to negative values, though the age results 

distributed normally around the true age (Fig. 3b, 3e). When negative inheritance results are excluded after applying the 

unconstrained inversion (scenario 3), the inheritance results exhibit a clipped normal distribution, while the age is not as much 

as the zero-inheritance case) unless negative inheritance is permitted during the inversion (Fig. S5). only left-skewed but also 

shows obvious underestimation (Fig. 3c, 3f), resulting from discarding the older age estimations that related to negative 225 

inheritance. Similarly, when inverting for a surface that is sufficiently young, or that the inheritance is large relative to the 

surface age, the unconstrained regression could also lead to an age distribution extending to negative values. 
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 230 

Figure 3 Distribution of mean exposure age estimated from linear regression (eq. 4; a, b, and (a-c) and a Bayesian approach 

inheritance (d and e-f) estimated from linear regression (eq. 4) for 500 simulated profiles with 0 inheritance and 5% of imposed 

sample deviation. a and d, not permitting negative inheritance during inversion. b and e, permit negative inheritance during 

inversion, c and f, excluding negative inheritance results after inversion. Red vertical line annotates the true age and true inheritance. 



 

12 

 

3.1.3 Denudation depth 235 

To test the robustness of our denudation-depth approach, we tested simulated TCNCN depth profiles with total denudation of 

1, 2, 3, and 5-times the nucleon-spallation attenuation length (
𝜌

𝛬𝑛
) and 5% of imposed sample deviation (Table 1). The resulting 

distributions of the mean age (Fig. 4) are all well centered around the true age even with the largest amount of denudation 

tested. We also observe that when total denudation reaches 3- and 5-times attenuation length, the ranges of the estimated mean 

age grow slightly wider, indicating a decrease of precision. This phenomenon can also be observed with the Bayesianforward 240 

approach (Fig. S6S4), which suggests it is not a result of the approximation introduced through eq. 9. Instead, we suggest this 

problem relates to low concentration gradient for profiles with a large amount of denudation, making the inversion more 

sensitive to measurement error. We find that the distribution of the mean inheritance remains well centered around the true 

inheritance for all simulated profiles, even for profiles with denudation equal to 5-times attenuation length.  

 245 

Figure 4 Distribution of mean exposure age (a-d) and inheritance (e-h) estimated from linear regression (eq. 10) for 500 simulated 

(5000 atoms/g) TCNCN profiles with 5% of imposed sample deviation and with total denudation equals to 1 (a and e), 2 (b and f), 3 

(c and g) and 5-times (d and h) attenuation length of spallation. Red vertical line annotates the true age and true inheritance. 

3.1.4 Deep sample profiles 

Samples at depths greater than ~2 m are especially sensitive to muogenic production (Fig. 1). Here we test our denudation-250 

depth approximation with depth profile samples distributed between 3 and 5 m depth to mimic the situation when near surface 

samples are not obtainable. Three groups of profiles, subjected to a total denudation of 0, 2, and 5-times the spallation 
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attenuation length and with 5% of imposed sample deviation, are tested with both linear regression and Bayesianforward 

approach (Table 1).  

We find that compared to the near-surface profiles, results from the deep profiles show greatly reduced precision, especially 255 

for large denudation depths (Fig. 5, S7S5). The majority (95% confidence) of the mean exposure ages estimated with linear 

regression spread between 100-300 kyr, 20-400 kyr, and 0-570 kyr, for surfaces with 0, 2, and 5-times attenuation length of 

denudation, respectively (Fig. 5). This occurs with both linear regression and Bayesianforward approaches, indicating the 

precision drop is not due to our approximation of muogenic production (eq. 9). Similar to the examples with large denudation 

(Fig. 4), we suggest the low precision is a result of the very low concentration gradient at depth. Different from near-surface 260 

profiles, a small change in the concentration gradient at depth leads to a large change of the estimated exposure age, which 

makes the inversion overly sensitive to random scatter of sample concentrations. As a comparison, by setting the imposed 

sample deviation to 1% instead of 5%, we find that precision increases greatly (Fig. 6). With linear regression, the majority 

(95% confidence) of the mean exposure ages are distributed between 180 - 220 kyr, 162 - 242 kyr, and 131-275 kyr for 0, 2, 

and 5-times attenuation length denudation, respectively (Fig. 6, S8S6). Thus, theoretically, both linear regression and 265 

Bayesianforward approach can produce accurate estimates if the scatter of sample concentrations is low. Reducing analytical 

uncertainty through use of large sample masses would be crucial for the success of a deep sample profile. 
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 270 

Figure 5 Distribution of age estimations from linear regression (a-c) and a Bayesianforward approach (d-f) for 500 simulated 

TCNCN deep (3-5 m) profiles with denudations equal to 0 (a, d), 2 (b, e), and 5-times (c, f) attenuation length, and with 5% imposed 

deviation of sample concentration. 500 groups of inversion results.  
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 275 

Figure 6 Distribution of age estimations from linear regression (a-c) and a Bayesianforward approach (d-f) for 500 simulated 

TCNCN deep (3-5 m) profiles with denudations equal to 0 (a, d), 2 (b, e), and 5-times (c, f) attenuation length, and with 1% imposed 

deviation of sample concentration. 500 groups of inversion results. 

3.2 Case Examples 

Here we present two case examples to show the application of our linear regression model to natural conditions. Wang et al. 280 

(2020) excavated a sample pit ~2 m deep beneath the tread of a terrace deposit from the Beida River, within the North Qilian 

Shan, western China. The site is covered with 125 cm loess which was deposited continuously since 8.3 kyr. Beneath the loess 

cover, erosional truncation of the A and uppermost B horizon of the soil profile indicates that there may have been 20-60 cm 

of erosion of the terrace tread prior to the onset of loess accumulation. We collected six samples of medium to coarse sand 
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from up to 2 m below the base of the loess. 10Be concentrations for these samples, corrected for loess accumulation using the 285 

approach of Hetzel et al. (2004) are listed in table S1.  

To explore the effect of denudation rate, we use the most likely concentrations for each sample and invert for a preliminary 

Ten and inheritance values of 99.3 kyr and 8.3×103 atoms/g respectively, using eq. 6. Using eq. 7, we generate a plot of exposure 

age vs. denudation rate based on the preliminary Ten value. The plot (Fig. 7) shows that if there has been no denudation, the 

sample site has a minimum exposure age of ~102 kyr prior to loess accumulation. This exposure age increases to 160 kyr and 290 

240 kyr when the denudation equals to 1 and 2-times the attenuation length, respectively. When the denudation rate reaches 

~0.7 cm/kyr, the TCNCN accumulation and denudation reach equilibrium and no age may be determined. 

 

 

Figure 7 exposure age-denudation rate relationship of the Beida River terrace 295 

To explore the full distribution of potential age and inheritance results, we apply a Monte Carlo sampling of the sample 

concentrations, depths, denudation depth, etc. (Table S2). Using a normal distribution for the denudation depth with 40 cm as 

the mean and 10 cm as the standard deviation, we apply least-squares linear inversion with eq. 10. Best-fit results for 10Be 

concentration (C1) and effective production rate (Pze) are shown on figure 8a, and the corresponding fitted depth profile curves 

are shown on figure 8b. TheWith positivity constraints enforced, the inverted Ten and inheritance values are 86.4-111.63-107.2 300 

kyr and -4.5×104 to +0-6.4×104 atoms/g, respectively (ranges correspond to the 95% confidence distributions for each value, 

figures 8c and 8d). The corresponding exposure age, calculated following eq. 11-13, is 108.9-155.46-150.6 kyr (2σ) prior to 

loess accumulation (Figure 8e). Excluding the negative inheritance results, the possible range of inheritance is 0-6.4×104 
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atoms/g. The corresponding erosion rate is 0.18-0.42 cm/kyr (Figure 8f and 8g). If we do not permit negative Without positivity 

constraints for the inheritance during the inversion, the resulting exposure age and inheritance would be 107.2-143.9108.8-305 

155.0 kyr and 0-4.7×104 to +6.4×104 atoms/g.  (2σ) instead. This ~5 kyr shift of the mean age is consistent with the expected 

effect of excluding negative inheritance during the fitting process. 
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 310 

Figure 8 Linear regression results for Beida River T2 terrace using denudation-depth approach after 100,000 iterations. a. 

Relationship of sample concentration to production rate at depth. Grey lines are the best fit lines through this data set; b. distribution 

of depth profile models with best fit curves (grey lines). c. Distribution of the effective exposure age (Te); d. Distribution of the 

inherited 10Be concentration prior to loess accumulation. e. Distribution of exposure age estimates derived from Ten values from 

linear regression (Figure 8c). f. Distribution of denudation rates predicted by the model; g. Distribution of sampled total denudation-315 
depth. Red lines indicate 95% confidence range, green line indicates the median of the distribution, blue line indicates the mean of 

the distribution. 

Hidy et al. (2010) reported a 10Be depth profile from the Lees Ferry site, excavated on top of a Colorado River fill terrace. 

Based on the soil profile, a total erosion of 0-30 cm is estimated for the sample site. For this site Hidy et al. (2010) applied 

their Monte-Carlo model and originally reported an exposure age and inheritance of 69.8-103 kyr, and 6.97-10.70 atoms/g, 320 

respectively (95% confidence). After updates of their code (v1.2, Hidy et al., 2010; Mercader et al., 2012), including the 

incorporation of a Bayesian fitting process, their model provides a new age estimation of 76.6-96.1 kyr. See Hidy et al. 2010 

for more details of the sample site, sampling and processing, age results interpretation. 
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Following the original study, we apply our modelling approaches to the sand depth-profile data (Table S1). In order to compare 

with results reported by Hidy et al. (2010), we use the same values they do for all parameters wherever possible (Table S2). 325 

Similar to the Beida River depth profile, we estimate the exposure age with the denudation-depth approach, applying Monte 

Carlo simulation of the uncertainty of input parameters. With a uniformly distributed 0-30 cm denudation length, the inverted 

best fit lines and curves are in figure 9a and 9b.  The estimated range of Te and Cinh values are 65.02-79.69 kyr and 7.6-118.8-

12.4 × 104 atoms/g, respectively (95% confidence; Figure 9c and 9d). The estimated exposure age is 70.4-96.0-95.5 kyr (95% 

confidence; Figure 9e).  330 
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Figure 9 Linear regression results for Lees Ferry data set with denudation-depth approach after 100,000 iterations. a. Relationship 

of sample concentration to production rate at depth. Grey lines are the best fit lines for the data. b. distribution of depth profile 

models with best fit curves (grey lines). c. Distribution of the effective exposure age (Te); d. Distribution of inherited 10Be 335 
concentration. e. Distribution of exposure age estimates derived from Te values from linear regression (Figure 9c). f. Distribution of 

denudation rates predicted by the model. g. Distribution preset of total denudation-depth. Red lines indicate 95% confidence error 

range, green line indicates the median of the distribution, blue line indicates the mean of the distribution. 

4. Discussion 

4.1 Case-Example Comparison 340 

For the Beida River site, comparing the age determined here (108.9-155.46-151.3 kyr) to that we reported previously (107.9-

164.5 kyr; Wang et al., 2020), the mean is 35% younger, while the 95% error range is 1824% smaller. These differences come 

from three different sources. First, there is a ~1% shift that arises from independently sampling depth for each measurement 

(the depth distributions for each sample were not sampled independently in the original paper). Second, the original paper did 

not take muogenic production into account. The contribution from muons leads to slightly younger age and lowers the 345 
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inheritance. Third, we applied the denudation-rate approach (eq. 6) in the 2020 paper, and the corresponding denudation rate 

distributions are slightly different for the two approaches. Combined, the addition of muogenic contribution and using a 

denudation-depth instead of denudation-rate approach leads to ~24% shift of the mean age and to 1824% narrowing of the 

error range.  

For the Lees Ferry site, our age estimation of 70.4-96.0-95.5 kyr using denudation depth approach generally agrees with the 350 

result reported by Hidy et al. (2010), 69.8-103 kyr (or 76.6-96.1 kyr based on recalculation with updated v1.2 code), though 

small discrepancies in mean age and 95% confidence range remain between the two approaches. We suggest this arises from 

two different sources. First, as demonstrated in section 3.1.1 and figures S1-3, most of the discrepancy may be due to 

differences between the least-squares and Bayesian model. Secondly, we use a two-term approximation for muogenic process 

in our model instead of a 5-term approximation used in the original study (Hidy et al., 2010), which may lead to a minor 355 

estimation discrepancy.   

4.2 Sources of error 

4.2.1 Denudation 

Denudation and its uncertainty constitute a major source of error in exposure age estimation. With the same surface 10Be 

concentration, higher denudation rate and/or larger denudation depth would result in an older effective surface age (e.g. Figure 360 

1). If a surface is sufficiently old, or if the denudation rate is sufficiently high, the TCNCN build up at surface will reach 

equilibrium with nuclides removed through erosion (Lal, 1991). Figure 10a shows the relationship between denudation rate 

and surface age (Eq. 7). This figure suggests that once the denudation depth exceeds the mean attenuation length of nucleon 

spallation (
𝛬𝑛

𝜌
), the slope of the age versus erosion rate relationship degrades the age determination. Once the denudation depth 

exceeds twice of the attenuation length of spallation, the age versus denudation rate curve flattens so much that it becomes 365 

effectively impossible to estimate surface age using a denudation-rate approach. On the other hand, the age-denudation depth 

curve does not flatten as much (Figure 10b), and therefore it is theoretically possible to use the denudation depth to determine 

surface age even when total denudation exceeds twice of the attenuation length. Our simulated depth-profile analysis also 

shows that the denudation-depth approach can provide accurate estimations even with denudation reaches 5 times spallation 

attenuation length. In practice, however, surfaces with such a large amount of denudation would subject to large uncertainties 370 

and the denudation history may be too complex for the constant denudation rate assumption, which underlies both approaches, 

to be valid, casting doubt on the utility of 10Be exposure dating for such cases.  

Denudation affects the uncertainty of exposure age estimation in two different ways. First, the uncertainty on the final age 

increases with denudation rate or depth because of the non-linear relationship between age and denudation (Figure 10). Second, 

the age uncertainty will increase further through propagation of the uncertainty of the denudation. This suggests that when 375 

excavating depth profile pits in surfaces subject to denudation, it is crucial to document surface texture and analyze the soil 

profiles to estimate denudation depth, for a small deviation from the true denudation rate or depth would lead to a large bias 
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in the resulting exposure age (Ebert et al., 2012; Frankel et al., 2007; Hidy et al, 2010; Mercader et al., 2012; Ruszkiczay-

Rüdiger et al., 2016).  
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Figure 10 a. The relationship between denudation rate and exposure age. Each colored line representing the age-denudation 

relationship of a specific depth profile (or surface concentration). b. The relationship between denudation depth and exposure age; 

the color coding matches scenarios shown in a.   

4.2.2 Muogenic production 385 

Muogenic production affects the accuracy of the estimated surface ages differently for the various approaches considered here. 

For surfaces with no denudation, muons may be fully incorporated into the inversion (eq. 4), therefore the uncertainty only 

comes from the uncertainties of parameters related to muogenic production (attenuation length and production rate). When 

denudation is present, both denudation-rate and denudation-depth approaches come with error related to muons. For the 

denudation-rate approach, which ignores muons and only models on the relationship between 10Be concentration and nucleon 390 

spallation production rates (eq. 6), there is a slight overestimation of exposure age and inheritance. This is because the inversion 

process attributes a small portion of the muogenic concentration to nucleon spallation, and a larger portion is attributed to 

inheritance. For the denudation-depth approach, there is a negligible error related to the approximate solution for the muogenic 

contribution (Appendix A).  
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To evaluate the error related to muogenic production, we generate profiles with various exposure ages and denudation amounts 395 

and compare the estimated results with the true values (Fig. 11). We set the contribution of muogenic production to total 

surface production as 2%, though in reality the contribution of muons in most places on earth is smaller (Braucher 2011, 2013; 

Balco 2008, 2017); therefore, the errors presented here can be treated as a maximum. We find the error introduced by ignoring 

muons with the denudation-rate approach is relatively small (less than 2% and 5% of overestimate) when the total denudation 

is under one- or two-times attenuation length for spallation (Figure 11a). Above three-times this attenuation length, the error 400 

grows drastically until no meaningful result can be found. Compared to the denudation-rate approach, the denudation-depth 

approach reduces the error by at least one order of magnitude (Figure 11b); even with very large total denudation (five times 

the attenuation length), the error is smaller than 0.3%. Like exposure age, the error in estimated inheritance is related to 

denudation and exposure age. As demonstrated in figure 11c the overestimation of inheritance from the denudation-rate 

approach increases with the surface age, but slightly decreases as the denudation increases. As a comparison, the amount of 405 

error from the denudation-depth approach (Fig. 11d) is one order of magnitude smaller than the denudation-rate approach.  
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Figure 11. Error vs. exposure age under five different denudation conditions. Each line represents a modeled surface that has 

undergone various exposure times, but with the same total denudation, expressed as a multiple of the attenuation length, 
𝝆

𝜦𝒏
 for 410 

spallation (see legend). a. percentage error in exposure age resulting from application of denudation-rate approach. Note that when 
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total erosion reaches 5 times attenuation length, no meaningful result can be found using this technique. b. percentage error in 

exposure age resulting from application of denudation-depth approach. c. error in inheritance, expressed in years based on surface 

production rate, resulting from application of denudation-rate approach. d. error in inheritance, expressed in years based on surface 

production rate, resulting from application of denudation-depth approach.  415 

4.2.3 Other sources of error 

As demonstrated with the Beida River sample site and the simulated profiles, low inheritance may lead to underestimation of 

the exposure age if negative inheritance is not permitted during inversion. Negative inheritance, though physically 

unreasonable, may be predicted because of the uncertainties within the sample measurements and other parameters related to 

the TCN concentration. When a profile exhibits very low inheritance, the estimated distribution of the exposure age should 420 

center around the true age, with approximately half of the estimated older ages correlated to lower, and possibly negative 

inheritance, and the other half younger ages correlated to higher, positive inheritance. Imposing a boundary that prevents 

negative inheritance will lead to a shift of the inheritance distribution to a positive value, which will in turn lead to a shift of 

the estimated age distribution to younger values. Therefore, when dealing with surfaces with very low inheritance, extra 

caution is needed when setting boundaries for the inheritance. We suggest permitting negative inheritance when performing a 425 

linear regression to avoid underestimation of the age and overestimation of the inheritance. A second-best choice is not to 

permit negative inheritance when perform a linear regression (i.e. setting inheritance to zero for these cases), while excluding 

the results with negative inheritance would lead to the most severe underestimation of the exposure age. 

Additional sources of error exist for TCNCN depth-profile ages that we do not consider in this study. Time-dependent 

phenomena are not considered. Constant production rate is an important assumption needed to simplify the nuclear build up 430 

process to apply a linear regression approach. In fact, the production rate is time dependent because the strength of Earth’s 

magnetic field varies with time (Balco, 2017; Desilets et al., 2006; Dunai, 2001; Lifton et al., 2005; Stone, 2000). Extending 

our model to account for temporally variable production rate is beyond the scope of present study. Constant inheritance and a 

single value for sediment density are other key assumptions for our approach. Sediments sampled from depth profiles are 

assumed to be well mixed at the time of deposition and to have been deposited rapidly, such that the inherited concentration 435 

and density should be the same at every depth. This will not be true for sites with incremental deposition, and for sites where 

the depositional process or catchment-wide denudation rates vary with time.  

5 Conclusions 

We introduce a least-squares linear inversion approach to solve cosmogenic nuclide concentration depth profiles for surface 

exposure age and inheritance, considering denudation rate, denudation depth, and muogenic production. This method allows 440 

propagation of error sources using Monte-Carlo sampling to infer full probability distributions of age and inheritance. In 

addition, our model presents a straightforward way to assess the trade-offs between exposure age and denudation rate. 
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Based on the inversion results of simulated profiles, we show that the least-squares linear regression is a robust approach 

suitable for most exposure dating scenarios. The accuracy of linear inversion is comparable to a Bayesianforward Monte-Carlo 

modeling approach for most circumstances, except for the more deviated (nosier) sample sets. Importantly, neither inversion 445 

approachesapproach consistently outperforms the other. 

For surfaces with no denudation, the inversion is using eq. 4 provides an exact solution. For surfaces with denudation, the 

approximation of mueogenic production using denudation-depth approach (eq. 10) introduces negligible error even for surfaces 

with a large amount of denudation. The denudation rate approach (eq. 7), though less accurate, provides a useful tool to explore 

exposure rate vs. denudation rate relationship. Examples of deep profiles suggest that the linear inversion approach works 450 

equally well for samples that collected deeper than 2 m from the surface, with or without denudation. However, extra caution 

is needed when collecting and analyzing deep samples to minimize measurement error, as the resulting ages are much more 

sensitive to the scatter of concentration values relative to near-surface profiles.  

Regardless of whether employing linear regression or a Bayesianforward approach, surfaces that have undergone a large 

amount of denudation will be subjected to large uncertainties related to the denudation rate or depth. It also becomes more 455 

tenuous in such cases to assume that the denudation rate was constant throughout the history of the deposit. It is entirely 

possible that a sample site may have experienced episodic erosional episodes instead of constant denudation rate, which would 

lead to errors in the age not accounted for in the methods described here.  

Appendix A 

When ε>0, the effective exposure age Te takes the following form, 460 

𝑇𝑒𝑖 = (
1−𝑒

−(
𝜌𝜀
𝛬𝑖

+𝜆)𝑡

𝜌𝜀

𝛬𝑖
+𝜆

) =
1−𝑒−𝐵𝑖𝑡

𝐵𝑖
, 𝐵𝑖 =

𝜌𝜀

𝛬𝑖
+ 𝜆, 𝑖 = 𝑛, 𝑚1, 𝑚2.  (A1) 

This suggests values for Te value are functions of both ε and t for different production pathways. Between the two variables, ε 

may be known, while t is unknown. Therefore, our aim is to rewrite A1 into an approximate form where t can be isolated. 

We first take a natural logarithm of the Tem over Ten ratio 

𝑙𝑛 (
𝑇𝑒𝑚

𝑇𝑒𝑛
)=𝑙𝑛 (

1−𝑒−𝐵𝑚𝑡

𝐵𝑚

1−𝑒−𝐵𝑛𝑡

𝐵𝑛

) = 𝑙𝑛 (

1−𝑒−𝐵𝑚𝑡

𝐵𝑚𝑡

1−𝑒−𝐵𝑛𝑡

𝐵𝑛𝑡

) = 𝑙𝑛 (
1−𝑒−𝐵𝑚𝑡

𝐵𝑚𝑡
) − 𝑙𝑛 (

1−𝑒−𝐵𝑛𝑡

𝐵𝑛𝑡
) (A2) 465 

The expansion of a function, 𝑓(𝑥) = 𝑙𝑛 (
1−𝑒−𝑥

𝑥
) , 𝑥 = 𝐵𝑖𝑡, in A2 may be achieved by writing a Maclaurin series with the 

following form 

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓"(0)

2!
𝑥2 + ⋯

𝑓(𝑘)(0)

𝑘!
𝑥𝑘 + ⋯ (A3) 

To write the expansion, we first rewrite f(x) as 
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𝑓(𝑥) = 𝑙𝑛 (
1−𝑒−𝑥

𝑥
) = 𝑙𝑛 (

1−(1−𝑥+
𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
−⋯ )

𝑥
) = 𝑙𝑛 (1 −

𝑥

2!
+

𝑥2

3!
−

𝑥3

4!
+ ⋯ ) (A4) 470 

In this form, f(x) goes to zero when x goes to zero, therefore we have 

𝑓(0) = 𝑙𝑛(1) = 0 (A5a) 

𝑓′(𝑥) =
−

1

2
+

𝑥

3
−

𝑥2

8
+⋯

1−
𝑥

2!
+

𝑥2

3!
−

𝑥3

4!
+⋯

  and 𝑓′(0) =
−

1

2

1
= −

1

2
  (A5b) 

𝑓"(𝑥) (1 −
𝑥

2!
+

𝑥2

3!
−

𝑥3

4!
+ ⋯ ) + 𝑓′(𝑥) (−

1

2
+

𝑥

3
−

𝑥2

8
+ ⋯ ) =

1

3
−

𝑥

4
+ ⋯  and 𝑓"(0) =

1

12
  (A5c) 

We omit higher order derivatives from the series expansion. 475 

⋮ 

Bring A5 into A3, we have the expansion of f(x) as 

𝑓(𝑥) = −
𝑥

2
+

𝑥2

24
+ 𝑂(𝑥3) (A6) 

Bringing A6 into A2, the natural logarithm of Tem over Ten ratio is 

𝑙𝑛 (
𝑇𝑒𝑚

𝑇𝑒𝑛
) = 𝑙𝑛 (

1−𝑒−𝐵𝑚𝑡
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1−𝑒−𝐵𝑛𝑡

𝐵𝑛

) = 𝑙𝑛 (
1−𝑒−𝐵𝑚𝑡

𝐵𝑚𝑡
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𝐵𝑛𝑡
) = −

𝐵𝑚𝑡
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(𝐵𝑚𝑡)2

24
− (−

𝐵𝑛𝑡

2
+

(𝐵𝑛𝑡)2

24
) + (𝑂((𝐵𝑚𝑡)3) − 𝑂((𝐵𝑛𝑡)3))480 

  (A7) 

The contribution of the third, t3 term, is negligible and may be neglected. Making the substitution D = εt, the first-order terms 

in A7,  

−
𝐵𝑚𝑡

2
+

𝐵𝑛𝑡

2
= −

1

2
(

𝜌𝐷

𝛬𝑚
+ 𝜆𝑡 −

𝜌𝐷

𝛬𝑛
− 𝜆𝑡) = −

1

2
(

𝜌𝐷

𝛬𝑚
−

𝜌𝐷

𝛬𝑛
). (A8) 

This result is independent of the exposure age, t. 485 

With the same substitution, the second-order terms in A7,  
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−
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]. (A9) 

In equation A9, the first term of the right-hand side is independent of age, t, while the second term is dependent of age. We 

therefore choose to omit the second term of equation A9 in order to develop an age-independent approximation. We find that 490 

this term may be omitted for two reasons. First, the absolute value of A8 is at least one order of magnitude larger than A9, 

therefore omitting one term from A9 will not lead to significant decrease of accuracy of the overall approximation. Second, 

for young surfaces, 𝜆𝑡 is sufficiently small that the second term of A9 is much smaller than the first term, which means omitting 

it will lead to even smaller decrease of accuracy.  

Therefore, an approximate form of the eq. A7 that is independent of t is 495 
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]  (A10) 
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and the ratio between muon and nucleon effective age can be approximated as 

𝑇𝑒𝑚

𝑇𝑒𝑛
≈ 𝑒

−
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2
(

𝜌𝐷

𝛬𝑚
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𝜌𝐷

𝛬𝑛
)+

1

24
[(

𝜌𝐷

𝛬𝑚
)

2
−(

𝜌𝐷

𝛬𝑛
)

2
]
 (A11) 
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