
Review of Wang and Oskin, ’Combined linear regression...’

Summary. As noted by some of the reviewers, to some extent this paper is a solution in search of a problem.
Cosmogenic-nuclide depth profiles are usually interpreted by inversion of a forward model that predicts
nuclide concentrations and whose parameters are the age of a surface, the erosion rate of a surface, and some
nuisance parameters typically including inherited nuclide concentrations. Generally this approach works
fine, or as well as can be expected given the inherent lack of age resolution for typical depth profiles in
which the muon-produced inventory is small in relation to the inheritance.

This paper presents a nice demonstration that you can perform a very simple inversion of depth-profile data
for age and inheritance using linear regression, if you change coordinates from depth to production rate. This
does help to simplify the problem somewhat and make it more easily accessible, although probably not as
much as suggested by the authors. Thus, from this perspective I think this is a contribution that is certainly
of interest for publication. However, there are some issues that have come up in review that I do think need
further attention, as described below.

Why needed? One of the issues that has come up in the discussion of this paper is that from the applications
perspective there is not a strong need for a simplified inversion. Depth-profile data are not collected in
great quantity and there is not a science application that is currently seriously hindered by the computational
time needed to do a full forward model inversion. For myself I am not worried about this issue and I
don’t think it’s an obstacle to publication. For one thing, it is potentially useful for making sure that a more
complex inversion scheme is working correctly. Also, I can envision a fast inversion method being useful for
database applications in which one seeks to compare a lot of depth-profile results using different production
rate scaling methods, or something of that nature. Of course it’s actually not that fast because you still need
to estimate all the production rates due to muons, which requires a site-specific muon production calculation,
which in turn requires a bunch of numerical integrations no matter what. Regardless, however, even though a
simplified inversion method isn’t of dire immediate need for any current application, it is certainly something
that is potentially useful.

The issue of negative inheritance. On the other hand, a second issue that has been the focus of much of the
review discussion seems to be a more serious problem. This has to do with error propagation and generating
an uncertainty distribution for the surface exposure age. It is not really feasible to come up with an analytical
expression for the uncertainty in Te and Cinh, or even to use something like a York regression, because
many of the input uncertainties (e.g., in Pzi, or in the mass depths because they all depend on the same
density measurements) are correlated in a complicated way. Thus, the authors use a Monte Carlo simulation
where they vary the input parameters and carry out the regression many times to generate an uncertainty
distribution. This brings up the issue, which has been discussed at length in the review comments, of
how to handle the fact that many Monte Carlo realizations generate negative values for nuclide inheritance.
The authors have proposed, and discuss in both paper drafts and the response to reviews, two methods for
dealing with this: first, accepting all Monte Carlo results even if they yield unphysical negative values of
the inheritance; second, discarding as unphysical Monte Carlo realizations that yield negative values for the
inheritance.

Here I will argue that both of these approaches are incorrect. Although this overall subject seems like a rather
arcane point, similar situations often occur in cosmogenic-nuclide applications where a forward model that
includes inheritance is being fit to data. Thus, I think airing this issue in the discussion of this paper is
valuable and helpful for the field overall.
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I think the reason that both approaches are incorrect is that a simple linear regression for Cinh and Te given
C = PTe + Cinh (here I am just abbreviating Equation 4a by replacing all the production terms with P ) is
an incomplete description of the regression problem. In other words, even if one leaves aside the question
of whether linear regression is the best way to determine the age, the authors have not defined the regression
problem itself appropriately.

Basically, linear regression is a least-squares optimization problem:

Problem 1:

given X = (Te, Cinh) (1a)

minimize f(X) =
∑
i

[(Cinh + PiTe)− Ci]
2 (1b)

over X such that: −∞ < Te <∞;−∞ < Cinh <∞ (1c)
(1d)

This is how the authors are treating it, as an unconstrained optimization problem in which you can optimize
over all X , meaning any possible values of Te and Cinh. This leads to the normal simple formulae for linear
regression.

Unfortunately this is an incomplete description of the problem. Because of the physical constraints that age
and inheritance can’t be negative, the problem is actually something different:

Problem 2:

given X = (Te, Cinh) (2a)

minimize f(X) =
∑
i

[(Cinh + PiTe)− Ci]
2 (2b)

over X such that: 0 < Te <∞; 0 < Cinh <∞ (2c)
(2d)

Problem 1 and Problem 2 are equivalent only if the constraints are inoperative, which occurs when Cinh >>
0 and Te >> 0. If that’s not the case, then the problems are not equivalent. Solving the unconstrained
problem won’t necessarily also give the answer to the constrained problem.

Unfortunately the constrained problem requires a numerical solution. Non-negative least squares problems
are common enough to have a Wikipedia entry, so there are canned algorithms in many programming en-
vironments. Regardless, this causes some trouble in the context of the paper because a key point of the
paper is that linear regression can be done with a simple formula, not a numerical optimization. That is,
you can solve Problem 1 just by writing down the linear regression formula. If you add constraints to the
optimization, this isn’t true any more – you have to use a numerical optimization scheme. So if you have to
consider the complete problem – Problem 2 – you have to use a numerical method anyway and much of the
simplicity advantage of linear regression disappears.
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Of course, the difference between Problem 1 and Problem 2 mostly doesn’t affect inverting the depth profile
once by linear regression – the initial attempt would only fail if the initial regression from the data as
measured gives Te < 0 or Cinh < 0, which isn’t going to happen in most applications. It only affects figuring
out what the uncertainty distribution is in a Monte Carlo simulation. If either the age or the uncertainty
are near zero, then solving the unconstrained problem repeatedly and discarding all iterations that yield
Cinh < 0 (or Te < 0, which is not mentioned in the paper but could happen) will NOT give the same result
as solving the constrained problem repeatedly.

Consider three possibilities:

• Option 1. Solve Problem 1 in each iteration.

• Option 2. Solve problem 1 in each iteration, but discard all iterations in which Cinh < 0.

• Option 3. Solve problem 2, the constrained optimization, using a numerical optimizer in each Monte
Carlo iteration.

Figure 1: Monte Carlo uncertainty estimates for a simplified regression problem with an age of 20 ka and inheritance
equal to 1 ka of exposure.

If the constraints are inoperative (Cinh >> 0 and Te >> 0) these all give the same result. However,
consider Figure 1, which shows Monte Carlo inversion results for a simple test problem where the age is
20,000 years and the inheritance is equal to 1000 years exposure, so the constraints are operative. Option
1 (unconstrained, no clipping) results in normal uncertainty distributions for concentration and age, but the
uncertainty distribution for inheritance incorrectly extends to negative values. Option 2 removes all iterations
that yield negative inheritance, which, obviously, yields a clipped normal distribution for inheritance, but
less obviously produces a low-skewed distribution for the age, because the steeper slopes that led to negative
intercepts on the inheritance axis are discarded. Option 3, the correct constrained optimization approach,
forces all values of the inheritance that would have been negative in the unconstrained problem to be exactly
zero, which leads to a secondary mode at the high end of the age distribution. Thus, both Option 1 and Option
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2 lead to incorrect estimates of the uncertainty distribution. In this example, Option 1 incorrectly indicates
that there is a finite likelihood that the age is greater than ∼22 ka. Option 2 incorrectly underestimates the
likelihood that the age is between ∼20 and ∼22 ka.

This is, in fact, rather weird behaviour, which maybe is a hint that linear regression is maybe not the best
way to generate uncertainty distributions when age or inheritance is close to zero. It is certainly possible that
what we should be learning here is that if we want an uncertainty distribution for the age when inheritance is
close to zero, we should use something different, possibly more like a Bayesian fitting scheme with a prior
restricted to positive age and inheritance.

So, the authors are correct in remarking in their response that only Option 1 leads to a normal uncertainty
distribution. However, their assertions that “negative results, though physically impossible, are necessary
for mathematical reasons” and “the overall distributions of the inheritance should be centered around 0,
meaning that approximately half of the estimated inheritance should be negative” are, in my opinion, not
correct. In fact, the physical requirement is that NONE of the estimated inheritance values (or the age)
should be negative, which is why the regression problem is required to be a constrained and not an uncon-
strained optimization. This is not expected to lead to a normal or symmetrical uncertainty distribution. It
implies non-normal uncertainty distributions for both the age and inheritance (which, by the way, should
not be represented by means and standard deviations, but rather statistics that aren’t specific to a particular
distribution, for example mode and confidence intervals).

This effect is more striking (although less pathological-looking) if the inheritance really is close to zero.
Figure 2 shows the same results for an age of 10 ka and zero inheritance. Here the correct uncertainty
distribution for the age (Option 3) is extremely skewed and of course representing it as a mean and standard
deviation would be very misleading.

Figure 2: Monte Carlo uncertainty estimates for a simplified regression problem with an age of 10 ka and zero inheri-
tance.

To summarize, the question here isn’t really which uncertainty distribution is correct (I would say that
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once you have chosen linear regression as the overall method, only option 3 is correct), but whether the
uncertainty distributions generated by either Option 1 or Option 2 are close enough to the correct answer
that the inaccuracy incurred by solving an oversimplified problem is outweighed by the convenience of
using the simple unconstrained regression formula. Basically, the answer to this is that if Cinh >> 0 and
Te >> 0, the uncertainty distribution derived from the unconstrained problem is totally fine. If this isn’t true,
the unconstrained problem gives the wrong uncertainty distribution, although it might not be that different,
so this might not matter in many applications.

In summary, I apologize for discussing at great length the issue of negative inheritance, which is, in fact, an
arcane side issue that only affects the uncertainty analysis and is not the main point of this paper. However,
as noted, similar issues come up in other cosmogenic-nuclide applications and I think a thorough discus-
sion of the issue is helpful. Regardless, I think the regression model discussed in this paper is interesting
and potentially useful, and I am supportive of publication. However, I think the authors do need to revise
discussion of the negative inheritance issue. Specifically,

1. As written, several parts of section 3.1.2 are not correct, for example “imposing the physically reason-
ably prerequisite...may lead to underestimation of the exposure age.” It’s not a physically reasonable
but optional prereequisite, it’s a requirement. It’s also inaccurate to say that it leads to underestima-
tion of the exposure age – what it actually does is lead to an incorrect uncertainty distribution, and the
lower value of the age appears to be the result of improperly using the mean to represent an asymmet-
rical distribution. In the constrained regression problem, the uncertainty distribution is not expected to
be symmetrical about the true value. Thus, this section needs revision so that it correctly outlines how
(i) the actual regression problem is a constrained linear regression that is expected to lead to compli-
cated uncertainty distributions when the constraints are operative, and (ii) applying an unconstrained
regression is a simplification that is only correct when Cinh >> 0 and Te >> 0.

2. It’s also probably worth a brief discussion of the case where a surface is quite young, so that the
uncertainty distribution for t runs into zero. The unconstrained regression is also inappropriate in this
case. This could possibly occur even when t is fairly large if the inheritance is also large, such that
TeP < Cinh.

3. The Beida River / Fig 8 analysis, which improperly uses an unconstrained regression when constraints
are operative, should be redone with the correct, constrained regression. Of course for the Lees Ferry
analysis, the constraints are inoperative, so the unconstrained regression is fine.

In any case, items 1-3 above are the main changes that I think are needed for publication.

Other items. In addition, there are a few lesser items that should be corrected before publication.

The most important one is that the description of the effective attenuation lengths for muon production (line
62) is oversimplified and therefore somewhat misleading. There is no single attenuation length for either fast
muon production or negative muon capture production, because the nature of the production process is such
that as depth increases, the energy of the remaining muons increases, so the instantaneous attenuation length
for the production process also increases. Thus, describing Λm1 and Λm2 as the attenuation lengths for these
processes is not correct. The values of 1500 and 4320 g cm−2 that are in Table 1 in this paper, which were
given by Heisinger as approximate values that could be used in simplified erosion rate integrations, are not
correct at any site or depth, except possibly by accident. Using these values in an application with significant
muon production would most likely yield a result that was quite wrong. However, it is true (see Balco, 2019,
section 8) that it is usually possible to represent total production by muons in a finite depth range at a specific
site as the sum of two exponential functions. Although the authors’ response to the reviews stated that “We
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updated muon production rates used in the pseudo profiles and in the Beida River case,’ this is not evident
from the text, and as far as I can tell, it appears likely that what they actually did was modify the surface
production rates and not the attenuation constants. More seriously, it is not possible to tell whether they
used site-specific values for the Beida River and Lees Ferry example, or if they used the incorrect values
in Table 1. At the very least, the authors should modify the text near line 62 to indicate that the values
of P and Λ pertaining to muon production are not, in fact, true production rates or attenuation lengths for
any particular process, but instead are site-specific constants that come from fitting to a more complicated
production model.

Two lesser issues just pertain to reducing confusion in the paper:

Starting in section 3 of the paper the authors contrast the results of their regression scheme with a full
forward-model-fitting scheme that they describe as ’Bayesian.’ This is confusing because the important
point is that this method employs a full forward model to predict the observables – the contrast between this
method and the regression method would be the same whether the approach to choosing the best values of the
model parameters approach was Bayesian, frequentist, or something else. Likewise, it would be possible to
perform a Bayesian linear regression. Thus, it would be more helpful to the reader to describe this alternative
method as ’forward model fitting’ or ’forward model optimization’ rather than ’Bayesian’ by itself.

Near line 40, the authors use the term ‘derivative’ to describe refined approaches that are derived from the
initial regression approach. The use of this word is confusing here, because in the context of a paper like
this one that is mathematical in nature, it implies to the reader that these approaches will involve derivatives
in the mathematical sense. For example, in line 44, the use of ‘second derivative approach’ indicates to the
reader that the approach will involve second derivatives of some function or field, which is not the case.
Thus, ‘derivative’ should not be used here. Possible improvements would be to use ‘specific approaches’ or
‘special cases’ to contrast with the ‘general approach’ in line 40.

Finally, a thoroughly insignificant point is that I disagree with reviewer Alan Hidy about the abbreviation
‘TCN.’ I see no reason that the method in the paper could not be applied to depth profiles in lunar or Martian
regolith! The authors should use their best judgement here.
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