
This short communication is a technique-based manuscript, useful for those performing LA-ICPMS 

dating for systems other than U-Pb—that is, those with only one parent/daughter —that also have 

variable parent and daughter concentrations.  It includes a standardization technique for correcting 

raw parent/daughter ratios, subject to elemental fractionation by laser ablation, transport, ionization 

efficiency, etc.. The general idea, as follows, is no different than correction of LA-ICPMS U-Pb data, 

which has been explored by many of the authors referenced within: 1) correct for mass bias of the 

daughter ratio (can be done a number of ways, including the use of a non-matrixed matched RM 

(reference material), via solution, or internal standardization of a non-U-Pb system) and correct all 

RMs and unknowns accordingly; 2) assume concordance for the RM and correct the parent/daughter 

ratio, such that the age matches it's accepted value. This is a relatively straightforward correction that 

has been explained many times over, primarily for U-Pb. As such, this communication seems a touch 

superfluous, as a single isotopic geochronometer is simpler than the U-Pb system, but nevertheless is 

rarely mentioned and therefore warrants more discussion, especially in the light of recent 

developments in LA-ICP dating techniques (e.g., Zack and Hogmalm, 2016 and Simpson et al., 

2021).  

 

 

In my experience, the best example of standardization of elemental fractionation of common-

daughter-bearing minerals is that in Chew et al., 2014, and I shall thus refer to it often below; though 

the Chew et al. study discusses the U-Pb system, it does so on a system-by-system basis, that is, it 

corrects 206Pb/238U and 207Pb/235U  ratios using any of the other isotopes of the daughter product 

of the system (i.e., 204¬Pb, 207¬Pb, 208Pb for 206Pb/238U  and  204¬Pb, 206¬Pb, 208Pb for 

207Pb/235U). As an example, one can look at Fig. 2E, in which each parent/daughter ratio has been 

corrected using a non-radiogenic daughter (204¬Pb); the math by which to do this should be identical 

to the math by which to correct any spot analysis for any radioisotopic system - that is, it is should be 

identical to Equation 21 in this manuscript. Nevertheless, it is not spelled out in this paper at least, 

that the calculation for U-Pb applies the same way for other isotopic systems such as Rb-Sr, Sm-Nd, 

Lu-Hf etc., which is presumably why the author has endeavored to write this short communication. 

 

The approach with the 204Pb-based correction method should be equivalent to that outlined in my 

manuscript, although the math, at least in UcomPbine, is not exactly the same (if I understand 

correctly the IgorPro language in UcomPbine file that I have). This similarity escaped my attention 

before, partly because the 207Pb-based correction method is used more widely, but I can mention it in 

the revised manuscript. Another notable similarity, is that with the 40Ar/39Ar method: division by 

factor k in Eq. 21, 24, 26 and 28 is similar to multiplication by factor J in the 40Ar/39Ar method. 



 

What the Chew et al. study doesn't explain as well is how to correct the mass bias for the ratio of the 

daughter isotopes (e.g., 207Pb/206¬Pb, 207Pb/204¬Pb, 87Sr/86¬Sr, etc.). Unfortunately, that is also 

mostly missing from this manuscript, which should be revised to state how this can/should be done 

in a clear and concise manner; for non-U-Pb LA-ICPMS geochronology—Rb/Sr, Sm/Nd, Lu/Hf—

the mass fractionation (Y-axis value) can be calculated internally, unlike for U-Pb, which has no two 

non-radiogenic isotopes (however this internal standardization is rarely done - this needs discussion). 

The analytical uncertainty in this correction is likely to be in the 10's low 100's of ppm (<<1%) and 

for intents and purposes, can be considered negligible when calculating age uncertainties, however, 

the actual uncertainty of the measurement—because of interferences and matrix effects, for 

example—is likely to be much larger.  

 

One of the reasons why I selected “short communication” as the article type is that I did not want to 

go into these details. I am not the best person to advise on this subject, and I also do not have time to 

thoroughly review relevant literature in the near future. However, I can show how to propagate the 

uncertainties related to the mass fractionation correction to the date uncertainties. Unfortunately, I 

currently do not have any real-world data to assess the importance of this. According to my brief tests 

with synthetic data, % level of uncertainty for the mass fractionation correction factor are needed to 

have a significant impact on the date uncertainty, which seems to be unrealistically high. 

 

Notably, it is possible to completely ignore the mass and fractionation correction if (i) the primary 

standard is sufficiently heterogeneous in terms of the parent to daughter isotope ratio, (ii) there is no 

significant instrument drift so that multiple primary standard measurements can be used to calculate 

𝑘, (iii) only isotope ratios measured during one session of LA-ICP-MS analyses enter the equations 

to calculate the date of the unknown, (iv) the date of the unknown is calculated as a multi-spot 

isochron date. In these circumstances, the slope 𝑏𝑠 of the line fitted through the standard data can be 

used to calculate the factor 𝑘 and its uncertainty: 
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The righthand side of the first of the above equations can be substituted for 𝑘𝑎𝑣 in Eq. 24 from the 

manuscript (the one needed to calculate the date of the unknown):  
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Considering that mass fractionation has the effect of multiplying both 𝑏 and 𝑏𝑠 by the same constant, 

the above equation indicates that it can be completely ignored (this constant will be cancelled out). 

The uncertainty of thereby calculated date can be estimated using Eq. 25 from the manuscript with 

appropriate substitutions for 𝑘𝑎𝑣 and 𝜎𝑘𝑎𝑣 . Note that the only parameter that is needed to characterise 

the primary standard in the described scenario is its date, and its use would be analogous to the use 

of the neutron flux monitors in the 40Ar/39Ar method. 

 

On this note, these excess uncertainties are not included in the equations herein, as far as I can tell, 

and in many cases, these types of uncertainties are likely to be the biggest cause of the actual 

uncertainty of the measurement. One of the seminal papers in uncertainty propagation for LA-ICPMS 

dating is that of Horstwood et al., 2016, in which they explain how the reproducibility of 

measurements can easily overwhelm the instrument analytical uncertainty. In that paper, without 

equations, they give their best practices for data reduction workflow, which include propagating 

excess uncertainty (different than external uncertainty). This is a critical step in reporting ages and 

uncertainties in all LA-ICPMS derived data and cannot be ignored in the current manuscript.  

 

I can show how to propagate the uncertainties associated with the mass fractionation correction to the 

date uncertainties. Additionally, the date uncertainty can be affected by the isobaric interference 

corrections. However, these effects would be specific for each method and setup, and therefore I 

cannot derive generic formulas. In theory, the addition of these two sources of uncertainty to the 

revised equations from my reply to Pieter Vermeesch’s review should provide means to estimate the 

full external uncertainties in a way that is generally consistent with Horstwood et al. (2016). The way 

Horstwood et al. (2016) proposed to account for the excess uncertainties that become evident from 

the repeated analyses of secondary standards is, in my understanding, an ad hoc protocol for what to 

do, if the chosen approach to estimate the full external uncertainties demonstrably did not work. This 

problem goes beyond the scope of my work, and I suggest that I will simply refer readers to 

Horstwood et al. (2016) to see their recommendations. 

 

The main aspect of this paper that is relevant, and has not been discussed in great detail, is the 

correction of parent/daughter ratios and consequent age calculation using a standard isochron method, 

that is, a graph in which both axes have a non-radiogenic, non-radioactive daughter isotope as the 

denominator (or numerator on the Y-axis in an inverse diagram; this is opposed to a Tera-Wasserburg 

diagram, for example, which uses radiogenic daughters on both axes). Again, the correction of the 

ratios for each axis (ratio) of this diagram have been described in numerous publications (primarily 



for U-Pb, but see Zack and Hogmalm, 2016 and Simpson et al., 2021, and furthermore there is no 

difference in the correction method between that and non-U-Pb geochronometers), but few 1) 

demonstrate visually the uncorrected vs. corrected data, or 2) give the equations for uncertainties for 

each parameter. Point 1) is easy enough to do on one's own to get a visual representation of the 2-step 

correction for each ratio, and is analogous to the correction of U-Pb on a TW diagram as shown in 

Chew et al., 2014, Fig. A1. As noted above, this figure is missing the daughter-ratio correction, and 

would be more appropriate shown below, but this time in a single-system isochron diagram 

(analogous to Fig 1b in the submitted manuscript): 

 

Most U-Pb applications that I am aware of use the 207Pb-based correction method. I mention in the 

introduction that this method is similar. The 204Pb-based method is equivalent to that outlined in my 

manuscript, but I cannot easily recall any studies that employ it to use common-Pb bearing standards 

(except for Chew et al., 2014, where it is one of the methods), and I certainly have not seen any 

studies that explain how to propagate uncertainties when using it. I can highlight the similarity in the 

revised manuscript. Zack and Hogmalm (2016) do something similar to what I describe in the 

manuscript, which I mention in the introduction. Simpson et al. (2021) do correct sample data for 

common Hf before correcting thereby calculated 176Hfr/176Lu ratios for elemental fractionation. 

However, with some adjustments, these two corrections could be done in the reverse order. Overall, 

I am missing the point of the above paragraph.  

 

Note that the figures in the current manuscript are either misleading or wrong. Given that there is 

little discussion about the correction of the y-axis, my impression is that it is the latter; the plots do 

not accurately represent theoretical data, as data of the same age, whether real or synthetic, should be 

isochronous, whether corrected for elemental fractionation or not. Given that the math for generating 

such apparent and corrected isochrons is trivial, it is worrisome that the plots in Figure 1 are 

incorrectly represented. 

 

Each of these figures shows two data points that are assumed to be corrected for mass dependent 

fractionation and have different elemental fractionation factors (for example, due to instrument 

instability). The idea was to show that factors to correct for elemental fraction can be calculated from 

individual analyses, revealing any instrument drift over analytical sessions. I can clarify this in the 

revised manuscript. 

 

In conclusion, for this manuscript to merit publication, it must first contain a broader background of 

previous work, and a better description of the workflow to correcting measured ratios, both for 



elemental fractionation (including differences fractionation down-hole which is completely missing). 

Second, it needs a better description of all possible sources of uncertainty and how and when they 

should be properly propagated. Third, any figure must accurately represent real-world data. 

 

I think that my introduction already makes a fair overview of previous work, and the only missing 

point is that about the similarity with the 204Pb-based correction method applied to primary standards 

in U-Pb applications of LA-ICP-MS. I do not think that a short communication needs to make a 

thorough review of every aspect of LA-ICP-MS data treatment, and I was hoping to avoid this by 

choosing this article type. I also think that the intended readership will have a general knowledge of 

how to treat LA-ICP-MS data. I do not agree that a more detailed description of a workflow for data 

treatment is prerequisite. I presume that the comment requests to do something similar to Horstwood 

et al. (2016).  However, I do not fully agree with that paper to just copy the outline, and I would like 

to avoid engaging in lengthy discussions and arguments that may arise during the review (hence I 

chose “short communication” as the article type). There is no error in my figure 1. I can adjust 

equations to include the uncertainties that are associated with the mass fractionation correction (see 

below). 

 

 

 

 

How to propagate the uncertainty related to the mass fractionation correction the date 

uncertainty in the normal isochron space 

Say the true value 𝑦 is obtained by multiplying the measured value 𝑦𝑚 by the constant 𝑙: 

𝑦 = 𝑦𝑚𝑙 . 

The uncertainty of 𝑦 can be calculated as follows: 

𝜎𝑦
2 = 𝜎𝑦𝑚

2 𝑙2 + 𝜎𝑙
2𝑦𝑚

2  , 

where the first term provides the internal uncertainty, while the entire equation provides the external 

uncertainty. The entire Equation 4 from the manuscript should be used to calculate the external 

uncertainties of individual estimates for 𝑘, while their internal uncertainties should be calculated by 

using the first three terms and substituting 𝜎𝑥𝑖𝑛𝑡 and 𝜎𝑦𝑖𝑛𝑡 for 𝜎𝑥 and 𝜎𝑦. The uncertainty of the 

averaged value 𝑘𝑎𝑣 can be calculated by adding the term 𝑐 to Eq. 14 form the manuscript: 
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The uncertainty of the spot date can be calculated by adding the term 𝑑 to Eq. 22 from the manuscript 

(the full external uncertainties 𝜎𝑥𝑢 and 𝜎𝑦𝑢 should be used in that equation): 
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The uncertainty of the multi-spot isochron date can be calculated by adding the term 𝑓 to Eq. 25 from 

the manuscript (the internal uncertainties 𝜎𝑥𝑢𝑖𝑛𝑡 and 𝜎𝑦𝑢𝑖𝑛𝑡 should be used to calculate the uncertainty 

𝜎𝑏 that should be plugged into this equation): 
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