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I enjoyed reading this paper, which formalises a method to calibrate ICP-MS data using primary standards
that contain a variable mixture of known radiogenic and inherited endmember compositions. The manuscript
is well written and the logic is easy to follow. Nevertheless, I believe that the paper could be further improved
by using a different statistical approach.

The method is most easily understood in conventional isochron space, which sets out two ratios P/d and
D/d, where P and D are the parent and daughter nuclides, and d is a non-radiogenic isotope of the daughter
element. Elemental fractionation only affects P/d and not D/d. The correction algorithm assumes that the
elemental fractionation can be captured by a single parameter, k which, when multiplied with the measured
P/d-ratios, brings them into alignment with an isochron of known intercept (D/d)0 and slope (eλt − 1).

In its present form, the algorithm estimates k for each aliquot separately, and then averages these esti-
mates into a single consensus value. Error propagation is done by conventional first order Taylor approxima-
tion. On lines 109–111 of the manuscript, the author gets stuck when trying to keep track of the systematic
uncertainties (“I could not find an exact equation to calculate a”, “a could probably be estimated as a simple
average”).

I think that these issues can be solved with a different approach, using the method of Maximum Likeli-
hood. The same method has been successfully applied in Ludwig (1998)’s seminal paper on U–Pb concor-
dance, and I frequently use it in my own work (e.g. Vermeesch, 2020, for a recent example). In the next
paragraphs, I will follow Ludwig (1998) and use uppercase symbols for measured quantities and lower case
symbols for true (but unknown) values. Note that this is the opposite convention of Dr. Popov’s manuscript.
Let xi and yi be the true P/d- and D/d-ratios of the ith aliquot. Then xi and yi form an isochron:

yi = y0 +
(
eλt − 1

)
xi (1)

where y0 is the non-radiogenic endmember composition of the primary standard, t is its age and λ is the
decay constant. xi and yi are unknown, whereas y0, λ and t are known within some uncertainty. xi and yi
are related to the measurements Xi and Yi as follows:{

Xi = kxi + ε(Xi)

Yi = yi + ε(Yi)
(2)

where k is the elemental fractionation factor and ε(Xi) and ε(Yi) are bivariate normal residuals. We will
assume that these are adequately captured by the measurement uncertainties propagated from the mass
spectrometer data. I will now outline two algorithms to estimate k, first without and then with the systematic
uncertainties of y0, λ and t.
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1. Without systematic uncertainties:

Define the log-likelihood LL of the data given k and x = {x1, . . . , xi, . . . , xn}:

LL =

n∑
i=1

∆T
i Ωi∆i (3)

where n is the number of aliquots for the primary standard,

∆i =

[
kxi −Xi

y0 + (eλt − 1)xi − Yi

]
, (4)

Ωi =

[
σ[Xi]

2 σ[Xi, Yi]
σ[Xi, Yi] σ[Yi]

2

]−1
(5)

and ∆T is the transpose of ∆i.

Then k can be estimated by maximising LL with respect to k and x1 . . . xn. I lack the time to work
out the details, but it should be possible to do this by taking the first derivative w.r.t. the xis and
setting it to zero, followed by numerical optimisation for k. See Ludwig (1998) for an example.

2. With systematic uncertainties:

Instead of the sum of n terms shown in Equation 3, the maximum likelihood estimation can also be
captured in a single matrix expression. This has the benefit that it allows the uncertainties of y0, λ
and t to be captured in the estimation of k:

LL′ = ∆′T
(
JΣiJ

T
)−1

∆′ (6)

where

∆′ =



kx1 −X1

...
kxn −Xn

y0 +
(
eλt − 1

)
x1 − Y1

...
y0 +

(
eλt − 1

)
xn − Yn


, (7)

Σ =



σ[X1]2 . . . 0 σ[X1, Y1] . . . 0 0 0 0
...

. . .
...

...
. . .

...
...

...
...

0 . . . σ[Xn]2 0 . . . σ[Xn, Yn] 0 0 0
σ[X1, Y1] . . . 0 σ[Y1]2 . . . 0 0 0 0

...
. . .

...
...

. . .
...

...
...

...
0 . . . σ[Xn, Yn] 0 . . . σ[Yn]2 0 0 0
0 0 0 0 0 0 σ[y0]2 σ[y0, t] σ[y0, λ]
0 0 0 0 0 0 σ[y0, t] σ[t]2 σ[t, λ]
0 0 0 0 0 0 σ[y0, λ] σ[t, λ] σ[λ]2


(8)

and

J =

[
−In,n 0n,n 0n,1 0n,1 0n,1
0n,n −In,n 1n,1 λeλtx teλtx

]
(9)
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where Ia,b is the a× b identity matrix, 0a,b is an a× b matrix of zeros, and x is the n-element column
vector of xi-values. As before, the k and xi-values are estimated by maximising LL′, which can be
done using numerical methods.

According to maximum likelihood theory, the covariance matrix of the estimated parameters can be
obtained by inverting the matrix of second derivatives of the log-likelihood in the vicinity of the maximum.
This is the approach used by Ludwig (1998) and it can also be applied to the present problem. If the
author is not familiar with this method, then a simple proof is provided in Section 8.4 of these lecture notes:
https://github.com/pvermees/geostats/blob/main/latex/geostats.pdf

I am happy to answer any questions arising from my review via the email address provided above.
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