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Abstract. Many new geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-

MS) have been proposed in recent years. One of the problems associated with this rapid growth is the lack of chemically and 

isotopically homogeneous matrix-matched primary standards to control elemental fractionation during LA-ICP-MS analysis. 

In U-Pb geochronological applications of LA-ICP-MS this problem is often addressed by utilising matrix-matched primary 

standards with variable chemical and isotopic compositions. Here I derive a set of equations to adopt this approach for non-U-15 

Pb geochronological applications of LA-ICP-MS. 

1 Introduction 

The use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for in situ geochronology is growing 

rapidly, and recent years have seen this technique being applied to many new minerals and isotope systems. Examples include 

in situ U-Pb dating of apatite (Chew et al., 2014, 2011), carbonates (Roberts et al., 2017; Li et al., 2014; Guillong et al., 2020) 20 

and epidote (Peverelli et al., 2021), Rb-Sr dating of micas (Hogmalm et al., 2017; Zack and Hogmalm, 2016), alkali feldspar  

(Bevan et al., 2021) and celadonite (Laureijs et al., 2021), Lu-Hf dating of garnet, apatite and xenotime (Simpson et al., 2021), 

and a new approach to Re-Os dating of molybdenite (Hogmalm et al., 2019). One important challenge associated with this 

rapid growth is the development of matrix-matched primary standards to correct for elemental fractionation during LA-ICP-

MS analysis. Ideally, primary standards should be chemically and isotopically homogeneous and isostructural to the analysed 25 

minerals. However, finding or synthesising such materials is not trivial. Therefore, recent studies relied on some alternative 

solutions, including the use (i) matrix-matched standards with variable chemical and isotopic composition (e.g. Chew et al., 

2014) and (ii) nanoparticulate pressed powder tablets as substitutes for chemically and isotopically homogeneous matrix-

matched standards (e.g. Hogmalm et al., 2017). 
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Matrix-matched primary standards with variable contents of parent and daughter isotopes are often used in U-Pb 30 

geochronological applications of LA-ICP-MS. Chew et al. (2014) proposed several approaches for dating common Pb-bearing 

phases, in which primary standards with variable contents of common Pb are used to characterise U-Pb fractionation. In all of 

these, individual primary standard analyses are corrected for common Pb before factors to correct for U-Pb fractionation are 

calculated from them, such that the latter step only relies on comparing the observed and expected 238U/206Pbradiogenic ratios (as 

opposed to using the 238U/206Pbtotal ratios). The approaches differ in how the common Pb correction is introduced. This can be 35 

achieved by using 204Pb or, assuming that no 232Th is present, 208Pb to estimate the amounts of common 206Pb and calculate the 

238U/206Pbradiogenic ratios. Alternatively, straight tie-lines can be projected from an a priori estimate for the initial 207Pb/206Pb 

ratio through the acquired U-Pb data to the concordia in the Tera-Wasserburg space to calculate the 238U/206Pbradiogenic ratios 

(Fig. 1a). A similar approach was adopted by Li et al. (2014), Roberts et al. (2017) and Guillong et al. (2020), who first used 

chemically and isotopically homogeneous non-matrix-matched primary standards to correct for any drift in U-Pb fractionation 40 

during analytical sessions, and then used matrix-matched primary standards with variable contents of common Pb to calculate 

correction factors for matrix-dependent U-Pb fractionation. The latter was done by plotting multiple primary standard analyses 

in the Tera-Wasserburg diagram to fit a straight line through them and compare its observed and expected intercepts with the 

concordia. 

Apparently, there are only two non-U-Pb geochronological applications of LA-ICP-MS where materials with variable contents 45 

of parent and daughter isotopes were essentially used as a primary standard. The first is the pioneering work on in situ Rb-Sr 

dating by Zack and Hogmalm (2016). These authors calculated what factor is needed to correct for Rb-Sr fractionation in one 

biotite sample with known age to obtain an isochron of that age and then applied it to other samples measured on the same 

day. Another is the work of Bevan et al. (2021), who performed Rb-Sr analysis of two alkali feldspar samples alongside and 

then corrected the data for one of them using the Rb-Sr fractionation factors that were deduced by comparing the observed and 50 

expected isochron slopes for the other. Most of recent studies relied on using nanoparticulate pressed powder tablets as 

substitutes for chemically and isotopically homogeneous matrix-matched primary standards (Hogmalm et al., 2017, 2019; 

Olierook et al., 2020; Li et al., 2020; Tillberg et al., 2021). However, the ablation properties of nanoparticulate pressed powder 

tablets are different from those of single crystals, and while they perform better as primary standards compared to glasses, Rb-

Sr dates obtained by using them can be offset from the expected values by several % (mostly up to 4 %, occasionally up to 7 55 

% in tests of Redaa et al., 2021). Therefore, the quest for matrix-matched standards remains open. With this communication I 

aim to highlight that the idea of using materials with heterogeneously distributed parent and daughter isotopes as primary 

standards may have been abandoned prematurely and provide a set of equations for doing so. 

2 Proposed Solution 

Presumably, one of the reasons why the idea of using primary standards with variable contents of parent and daughter isotopes 60 

was abandoned in non-U-Pb geochronological applications of LA-ICP-MS is the absence of a clear approach to calculate 
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factors for elemental fractionation correction and their uncertainties.  Clearly, these factors can be estimated by adopting one 

of the approaches used for U-Pb dating. For example, they can be estimated from individual primary standard analyses by 

using parent to daughter isotope ratios that are corrected for the presence of the non-radiogenic component of the daughter 

isotope using a common isotope, which is analogous to the aforementioned use of the 204Pb- and 208Pb-based correction 65 

methods. Alternatively, they can be estimated by plotting two-point normal or inverse isochrons based on individual primary 

standard analyses and finding by what coefficients the measured elemental ratios need to be multiplied to bring the slopes of 

the apparent normal or inverse isochrons to the true values (Fig. 1b, c). Finally, these factors can be estimated by calculating 

and comparing the observed and expected intercepts with the horizontal axis in the inverse isochron diagram, which is 

analogous to the aforementioned use of the Tera-Wasserburg diagram (Fig. 1c). But how to calculate elemental fractionation 70 

correction factors in an efficient way? And how to estimate their uncertainties and propagate these to the date uncertainties? 

Below I derive equations that can be used to do so. I rely on the uncertainty propagation law (JCGM, 2008). However, as 

Pieter Vermeesch’s review outlines, other approaches exist, such as the method of maximum likelihood. 

2.1 Normal Isochron Space 

In the normal isochron space, the true composition of a primary standard with heterogeneously distributed parent and daughter 75 

isotopes is given by Eq. (1): 

𝑌 = 𝑌0 + 𝑋(𝑒𝜆𝑡 − 1) ,           (1) 

where 𝑌 is the daughter to common isotope ratio (e.g., 87Sr/86Sr), 𝑌0 is the initial daughter to common isotope ratio (e.g., 

87Sr/86Sr0), 𝑋 is the parent to common isotope ratio (e.g., 87Rb/86Sr), 𝜆 is the decay constant and 𝑡 is the age of the primary 

standard. The analysis of this primary standard by LA-ICP-MS yields some proxies for the true 𝑌 and 𝑋 values, which are the 80 

measured 𝑦  and 𝑥  values, respectively. It is generally presumed that any difference between 𝑌  and 𝑦  is a result of mass 

dependent fraction that can be corrected for independently of analysing the primary standard in question (e.g. Chew et al., 

2011; Li et al., 2014; Hogmalm et al., 2017; Redaa et al., 2021) or by acquiring data for pairs of non-radiogenic isotopes while 

analysing this primary standard (Bevan et al., 2021). Thus, 𝑌 can be assumed to be equal to the product of 𝑦 and the obtained 

mass fractionation correction factor 𝑙. Any difference in 𝑋 and 𝑥 can be described in terms of elemental fractionation, which 85 

is heavily dependent on the matrix properties and ablation conditions, and which is being characterised by analysing the 

primary standard in question (e.g. Chew et al., 2011; Li et al., 2014; Hogmalm et al., 2017; Redaa et al., 2021). Thus, it can be 

assumed that 𝑋 is equal to the product of 𝑥 and the yet unknown factor 𝑘 needed to correct for elemental fractionation. With 

these assumptions Eq. (1) can be modified to make Eq. (2): 

𝑙𝑦 = 𝑌0 + 𝑘𝑥(𝑒𝜆𝑡 − 1) ,           (2) 90 

from which it is possible to obtain an expression for 𝑘 given by Eq. (3): 
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𝑘 =
𝑙𝑦−𝑌0

𝑥(𝑒𝜆𝑡−1)
 .            (3) 

The uncertainty of thereby calculated 𝑘 can be estimated using Eq. (4): 
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where only the first three terms should be used to calculate the internal uncertainty (𝜎𝑘 𝑖𝑛𝑡), and the entire equation should be 

used to calculate the external uncertainty (𝜎𝑘 𝑒𝑥𝑡). In principle, 𝜎𝑌0,𝑡 and 𝜎𝜆,𝑡 should be different from zero if 𝑡 was determined 

using the same 𝑌0 and 𝜆 as in the equations above (i.e., the age of the primary standard is not determined using some other 

method). Provided that this is the case, 𝜎𝑌0,𝑡 and 𝜎𝜆,𝑡 can be estimated using Eq. (5-6): 

𝜎𝜆,𝑡 = −
𝑡𝜎𝜆

2

𝜆
  ,            (5) 100 

𝜎𝑌0,𝑡 = −
𝜎𝑌0

2

𝜆𝑋∗𝑒𝜆𝑡 =  
𝜎𝑌0

2 𝜂∗ 

𝜆𝑒𝜆𝑡  ,           (6) 

where 𝑋∗ is the parent to common isotope ratio used to determine 𝑡 if it was determined from a single analysis, while 𝜂∗ is the 

partial derivative of the isochron slope with respect to 𝑌0 if 𝑡 was determined by fitting an isochron. I show in the Appendix 

how to calculate 𝜂∗ if the isochron was fitted by the method of York et al. (2004). Note that for well-characterised primary 

standards 𝜎𝑌0,𝑡 will most likely be negligibly small. It is also likely that the contribution from the uncertainties in 𝑙 and 𝑌0 to 105 

the uncertainty in 𝑘 will be negligibly small. 

Repeated primary standard analyses will yield 𝑘1 to 𝑘𝑁, for which the weighted mean value 𝑘𝑤𝑚 can be obtained via Eq. (7): 

𝑘𝑤𝑚 =
∑ 𝑘𝑖𝑤𝑖
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1

 ,            (7) 

where 𝑤𝑖 = 𝜎𝑘𝑖𝑖𝑛𝑡
−2 . 

The uncertainty of 𝑘𝑤𝑚 is given by Eq. (8): 110 
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where the first term gives the internal uncertainty (𝜎𝑘𝑤𝑚𝑖𝑛𝑡), while the entire equation gives the external uncertainty (𝜎𝑘𝑤𝑚𝑒𝑥𝑡). 
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Following the same assumptions and notation as above, an analysis of an unknown yields 𝑦𝑢 that should be corrected for mass 

dependent fractionation to estimate the true value 𝑌𝑢 and 𝑥𝑢 that should be corrected for elemental fractionation to estimate 115 

the true value 𝑋𝑢. The estimated true values and their uncertainties can be calculated using Eq. (9-12): 

𝑋𝑢 = 𝑘𝑤𝑚𝑥𝑢 ,            (9) 

𝑌𝑢 = 𝑙𝑦𝑢 ,            (10) 

𝜎𝑋𝑢
2 = 𝜎𝑥𝑢

2 𝑘𝑤𝑚
2 + 𝜎𝑘𝑤𝑚

2 𝑥𝑢
2 ,          (11) 

𝜎𝑌𝑢
2 = 𝜎𝑦𝑢

2 𝑙2 + 𝜎𝑙
2𝑦𝑢

2 .           (12) 120 

The first terms in the latter two equations provide the internal uncertainties (𝜎𝑋𝑢𝑖𝑛𝑡 and 𝜎𝑌𝑢𝑖𝑛𝑡), while the entire equations 

provide the external uncertainties (𝜎𝑋𝑢𝑒𝑥𝑡  and 𝜎𝑌𝑢𝑒𝑥𝑡). 

The covariance between 𝑌𝑢 and 𝑋𝑢 is given by Eq. (13): 

𝜎𝑋𝑢,𝑌𝑢
= 𝜎𝑥𝑢,𝑦𝑢
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+
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𝑁
1

∑
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𝑥𝑖

𝑁
1 ) ,        (13) 

where only the first term should be used to calculate the covariance related to the internal uncertainties (𝜎𝑋𝑢,𝑌𝑢𝑖𝑛𝑡, such that 125 

𝜌𝑋𝑢,𝑌𝑢𝑖𝑛𝑡 = 𝜎𝑋𝑢,𝑌𝑢𝑖𝑛𝑡𝜎𝑋𝑢𝑖𝑛𝑡
−1 𝜎𝑌𝑢𝑖𝑛𝑡

−1 = 𝜌𝑥𝑢,𝑦𝑢
), while the entire equation should be used to calculate the covariance related to the 

external uncertainties (𝜎𝑋𝑢,𝑌𝑢𝑒𝑥𝑡 , such that 𝜌𝑋𝑢,𝑌𝑢𝑒𝑥𝑡 = 𝜎𝑋𝑢,𝑌𝑢𝑒𝑥𝑡𝜎𝑋𝑢𝑒𝑥𝑡
−1 𝜎𝑌𝑢𝑒𝑥𝑡

−1 ). Note that all of the variables in the expression in 

brackets are related to the primary standard. 

Eq. (14) can be used to calculate the date of the unknown 𝑇𝑠𝑝𝑜𝑡  from 𝑋𝑢 and 𝑌𝑢 obtained during one measurement and the 

independently estimated initial isotopic composition 𝑌0𝑢: 130 

𝑇𝑠𝑝𝑜𝑡 =
ln(
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𝜆
 .           (14) 

The uncertainty 𝑇𝑠𝑝𝑜𝑡  is given by Eq. (15): 
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2

 , (15) 

where using the first three terms with 𝜎𝑋𝑢𝑖𝑛𝑡, 𝜎𝑌𝑢𝑖𝑛𝑡  and  𝜎𝑋𝑢,𝑌𝑢𝑖𝑛𝑡 provides the internal uncertainty (σ𝑇𝑠𝑝𝑜𝑡𝑖𝑛𝑡), while using the 135 

entire equation with 𝜎𝑋𝑢𝑒𝑥𝑡 , 𝜎𝑌𝑢𝑒𝑥𝑡 and  𝜎𝑋𝑢,𝑌𝑢𝑒𝑥𝑡  provides the external uncertainty (σ𝑇𝑠𝑝𝑜𝑡𝑒𝑥𝑡). Note that 𝜎𝑋𝑢,𝜆 is zero, and thus 

the associated covariance term is absent in this and following equations. 
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Multiple measurements of the same unknown within the same batch of analyses will give sets of 𝑋𝑢, 𝑌𝑢, 𝜎𝑋𝑢𝑖𝑛𝑡, 𝜎𝑌𝑢𝑖𝑛𝑡  and  

𝜌𝑋𝑢,𝑌𝑢𝑖𝑛𝑡, which can be used to fit a single isochron by the method of York et al. (2004), whether pinned or unpinned to 𝑌0𝑢. 

This procedure will yield the slope of the isochron 𝑏 and its internal uncertainty σ𝑏 𝑖𝑛𝑡. The external uncertainty of 𝑏 (σ𝑏 𝑒𝑥𝑡) 140 

is given by Eq. (16), where 𝜎𝑙,𝑘𝑤𝑚
 is already taken into account, and all of the variables in the rightmost pair of brackets are 

related to the primary standard: 

𝜎𝑏 𝑒𝑥𝑡
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Measurements of the same unknown that were obtained in 2 different batches of analyses should not be pooled together to fit 

a single isochron, since they were corrected using different 𝑘𝑤𝑚 and 𝑙. Instead, a weighted mean of the slopes obtained for 145 

each batch analyses can be calculated using Eq. (17): 

𝑏𝑤𝑚 =
𝑏1𝜔1+𝑏2𝜔2

𝜔1+𝜔2
 ,            (17) 

where 𝜔𝑖 = 𝜎𝑏𝑖𝑖𝑛𝑡
−2  . 

Its internal uncertainty is given by Eq. (18): 
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1
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  .            (18) 150 

Its external uncertainty is given by Eq. (19): 
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 is given by Eq. (20): 
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(𝑒𝜆𝑡−1) ∑ 𝑤𝑖2
𝑁2
1

∑
𝑤𝑖2

𝑥𝑖2

𝑁2
1 )) + 𝜎𝑙1,𝑘𝑤𝑚2

−𝑏1𝑏2

𝑙1𝑘𝑤𝑚2
+155 

  +𝜎𝑘𝑤𝑚1,𝑙2

−𝑏1𝑏2

𝑘𝑤𝑚1𝑙2
+ 𝜎𝑙1,𝑙2

( 
𝑏1𝑏2

𝑙1𝑙2
 +

𝑏1𝑏2

𝑘𝑤𝑚1𝑘𝑤𝑚2
(

𝑘𝑤𝑚1

𝑙1
+

𝑌0

𝑙1(𝑒𝜆𝑡−1) ∑ 𝑤𝑖1
𝑁1
1

∑
𝑤𝑖1

𝑥𝑖1

𝑁1
1 ) (

𝑘𝑤𝑚2

𝑙2
+

𝑌0

𝑙2(𝑒𝜆𝑡−1) ∑ 𝑤𝑖2
𝑁2
1

∑
𝑤𝑖2

𝑥𝑖2

𝑁2
1 ))  . (20) 

The multi-spot isochron date 𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛 can be calculated from any of the above estimates for 𝑏 using Eq. (23): 

𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛 =
ln(𝑏+1)

𝜆
 .           (21) 

The uncertainty of 𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛 is given by Eq. (25): 

𝜎𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛

2 = 𝜎𝑏
2 (

1

𝜆(𝑏+1)
)

2

+ 𝜎𝜆
2 (

−𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛

𝜆
)

2

 ,        (22) 160 
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where using the first term with σ𝑏 𝑖𝑛𝑡 provides the internal uncertainty (𝜎𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛 𝑖𝑛𝑡), while using the entire equation with 

σ𝑏 𝑒𝑥𝑡  provides the external uncertainty (𝜎𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛 𝑒𝑥𝑡). 

2.2 Inverse Isochron Space 

Following the same logic and assumptions to derive expressions for the inverse isochron space yields Eq. (1’-22’; numeration 

is preserved to facilitate correlation with the equations above and comments to those equations): 165 

𝑌′ = 𝑌0
′ + 𝑋′𝑌0

′(1 − 𝑒𝜆𝑡) ,           (1’) 

𝑙′𝑦′ = 𝑌0
′ + 𝑘′𝑥′𝑌0

′(1 − 𝑒𝜆𝑡) ,          (2’) 

𝑘′ =
𝑦′𝑙′−𝑌0

′

𝑥′𝑌0
′(1−𝑒𝜆𝑡)

 ,            (3’) 

𝜎𝑘′
2 = 𝜎𝑥′

2 (
−𝑘′

𝑥′ )
2

+ 𝜎𝑦′
2 (

𝑙′𝑘′

𝑦′𝑙′−𝑌0
′)

2

+ 2𝜎𝑥′,𝑦′ (
−𝑙′𝑘′2

𝑥′(𝑦′𝑙′−𝑌0
′)

) + 𝜎𝜆
2 (

𝑡𝑘′

𝑒−𝜆𝑡−1 
)

2

+ 𝜎𝑡
2 (

𝜆𝑘′

𝑒−𝜆𝑡−1 
)

2

+

                                               +2𝜎𝜆,𝑡 (
𝜆𝑡𝑘′2

(𝑒−𝜆𝑡−1)
2) + 𝜎𝑙′

2 (
𝑦′𝑘′

𝑦′𝑙′−𝑌0
′)

2

+ 𝜎𝑌0
′

2 (
−𝑦′𝑙′𝑘′

𝑌0
′(𝑦′𝑙′−𝑌0

′)
)

2

+ 2𝜎𝑌0
′,𝑡 (

−𝜆𝑦′𝑙′𝑘′2

𝑌0
′(𝑦′𝑙′−𝑌0

′)(𝑒−𝜆𝑡−1)
 ) , (4’) 170 

𝜎𝜆,𝑡 = −
𝑡𝜎𝜆

2

𝜆
  ,            (5’) 

𝜎𝑌0
′,𝑡 = −

𝜎𝑌0,𝑡

𝑌𝑜
2 = 𝜎𝑌0

′
2 1+X′∗(1−𝑒𝜆𝑡)

𝜆X′∗𝑌0
′𝑒𝜆𝑡 = 𝜎𝑌0

′
2 1−𝑒𝜆𝑡−𝜂′∗

𝜆𝑌0
′𝑒𝜆𝑡   ,        (6’) 

𝑘𝑤𝑚
′ =

∑ 𝑘𝑖
′𝑤𝑖

′𝑁
1

∑ 𝑤𝑖
′𝑁

1  
 ,            (7’) 

𝑤𝑖
′ = 𝜎

𝑘𝑖
′𝑖𝑛𝑡 

−2  ,            (7’a) 

𝜎𝑘𝑤𝑚
′

2 =
1

∑ 𝑤𝑖
′𝑁

1
+ 𝜎𝜆

2 (
𝑡𝑘𝑤𝑚

′

𝑒−𝜆𝑡−1
)

2

+ 𝜎𝑡
2 (

𝜆𝑘𝑤𝑚
′

𝑒−𝜆𝑡−1
)

2

+ 2𝜎𝜆,𝑡  (
𝑡𝜆𝑘𝑤𝑚

′2

(𝑒−𝜆𝑡−1)
2) + 𝜎𝑙′

2 (
1

𝑌0
′(1−𝑒𝜆𝑡) ∑ 𝑤𝑖

′𝑁
1

∑
𝑦𝑖

′𝑤𝑖
′

𝑥𝑖
′

𝑁
1 )

2

+175 

                                                                             +𝜎𝑌0
′

2 (
−𝑙′

𝑌0
′2

(1−𝑒𝜆𝑡) ∑ 𝑤𝑖
′𝑁

1

∑
𝑦𝑖

′𝑤𝑖
′

𝑥𝑖
′

𝑁
1 )

2

+ 2𝜎𝑌0
′,𝑡 (

−𝜆𝑘𝑤𝑚
′ 𝑙′

𝑌0
′2

(𝑒𝜆𝑡+𝑒−𝜆𝑡−2) ∑ 𝑤𝑖
′𝑁

1

∑
𝑦𝑖

′𝑤𝑖
′

𝑥𝑖
′

𝑁
1 ) , (8’) 

𝑋𝑢
′ = 𝑘𝑤𝑚

′ 𝑥𝑢
′  ,            (9’) 

𝑌𝑢
′ = 𝑙′𝑦𝑢

′  ,            (10’) 

𝜎𝑋𝑢
′

2 = 𝜎𝑥𝑢
′

2 𝑘𝑤𝑚
′2 + 𝜎𝑘𝑤𝑚

′
2 𝑥𝑢

′2 ,          (11’) 

𝜎𝑌𝑢
′

2 = 𝜎𝑦𝑢
′

2 𝑙′2 + 𝜎𝑙′
2𝑦𝑢

′2 ,           (12’) 180 

𝜎𝑋𝑢
′ ,𝑌𝑢

′ = 𝜎𝑥𝑢
′ ,𝑦𝑢

′ 𝑙′𝑘𝑤𝑚
′ + 𝜎𝑙

2𝑦𝑢𝑥𝑢 (
1

𝑌0
′(1−𝑒𝜆𝑡) ∑ 𝑤𝑖

′𝑁
1

∑
𝑦𝑖

′𝑤𝑖
′

𝑥𝑖
′

𝑁
1 ) ,        (13’) 
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𝑇𝑠𝑝𝑜𝑡
′ =

ln(1−
𝑌𝑢

′ −𝑌0𝑢
′

𝑋𝑢
′ 𝑌0𝑢

′ )

𝜆
  ,           (14’) 

𝜎
𝑇𝑠𝑝𝑜𝑡

′
2 = 𝜎𝑋𝑢

′
2 (

𝑌𝑢
′−𝑌0𝑢

′

𝜆𝑋𝑢
′ (𝑋𝑢

′ 𝑌0𝑢
′ −𝑌𝑢

′+𝑌0𝑢
′ )

)
2

+ 𝜎𝑌𝑢
′

2 (
−1

𝜆(𝑋𝑢
′ 𝑌0𝑢

′ −𝑌𝑢
′+𝑌0𝑢

′ )
)

2

+ 2𝜎𝑋𝑢
′ ,𝑌𝑢

′ (
−(𝑌𝑢

′−𝑌0𝑢
′ )

𝑋𝑢
′ 𝜆2(𝑋𝑢

′ 𝑌0𝑢
′ −𝑌𝑢

′+𝑌0𝑢
′ )

2) +

                                                                                                                    +𝜎
𝑌0𝑢

′
2 (

𝑌𝑢
′

𝜆𝑌0𝑢
′ (𝑋𝑢

′ 𝑌0𝑢
′ −𝑌𝑢

′+𝑌0𝑢
′ )

)
2

 + 𝜎𝜆
2 (

−𝑇𝑠𝑝𝑜𝑡

𝜆
)

2

 , (15’) 

𝜎𝑏′ 𝑒𝑥𝑡
2 = 𝜎𝑏′ 𝑖𝑛𝑡

2 + 𝜎𝑘𝑤𝑚
′

2 (
−𝑏′

𝑘𝑤𝑚
′ )

2

+ 𝜎𝑙′
2 ((

𝑏′

𝑙′ )
2

−
2𝑏′2

𝑙′𝑘𝑤𝑚
′ 𝑌0

′(1−𝑒𝜆𝑡) ∑ 𝑤𝑖
′𝑁

1
∑

𝑦𝑖
′𝑤𝑖

′

𝑥𝑖
′

𝑁
1 ) ,     (16’) 185 

𝑏𝑤𝑚
′ =

𝑏1
′ 𝜔1

′ +𝑏2
′ 𝜔2

′

𝜔1
′ +𝜔2

′  ,            (17’) 

𝜔𝑖
′ = 𝜎

𝑏𝑖
′𝑖𝑛𝑡

−2  ,             (17’a) 

𝜎𝑏𝑤𝑚
′ 𝑖𝑛𝑡

2 =
1

𝜔1
′ +𝜔2

′   ,            (18’) 

𝜎𝑏𝑤𝑚
′ 𝑒𝑥𝑡

2 = 𝜎𝑏𝑤𝑚
′ 𝑒𝑥𝑡

2 (
𝜔1

′

𝜔1
′ +𝜔2

′ )
2

+ 𝜎𝑏𝑤𝑚
′ 𝑒𝑥𝑡

2 (
𝜔2

′

𝜔1
′ +𝜔2

′ )
2

+  2𝜎𝑏1
′ ,𝑏2

′ (
𝜔1

′ 𝜔2
′

(𝜔1
′ +𝜔2

′ )
2)  ,      (19’) 

𝜎𝑏1
′ ,𝑏2

′ = 𝜎𝜆
2 𝑏1

′ 𝑏2
′ 𝑡2

(𝑒−𝜆𝑡−1)
2 + 𝜎𝑡

2 𝑏1
′ 𝑏2

′ 𝜆2

(𝑒−𝜆𝑡−1)
2 + 2𝜎𝜆,𝑡  

𝑏1
′ 𝑏2

′ 𝑡𝜆

(𝑒−𝜆𝑡−1)
2  +190 

    +𝜎𝑌0
2 𝑏1

′ 𝑏2
′

𝑘𝑤𝑚1
′ 𝑘𝑤𝑚2

′ (
−𝑙1

′

𝑌0
′2

(1−𝑒𝜆𝑡) ∑ 𝑤𝑖1
′𝑁1

1

∑
𝑦𝑖1

′ 𝑤𝑖1
′

𝑥𝑖
′

𝑁1
1 ) (

−𝑙2
′

𝑌0
′2

(1−𝑒𝜆𝑡) ∑ 𝑤𝑖
′𝑁2

1

∑
𝑦1𝑖

′ 𝑤1𝑖
′

𝑥1𝑖
′

𝑁2
1 ) +

      +𝜎𝑌0,𝑡
𝑏1

′ 𝑏2
′

𝑘𝑤𝑚1
′ 𝑘𝑤𝑚2

′ ((
−𝑙1

′

𝑌0
′2

(1−𝑒𝜆𝑡) ∑ 𝑤𝑖1
′𝑁1

1

∑
𝑦𝑖1

′ 𝑤𝑖1
′

𝑥𝑖1
′

𝑁1
1 )

𝜆𝑘𝑤𝑚2
′

𝑒−𝜆𝑡−1
+

𝜆𝑘𝑤𝑚1
′

𝑒−𝜆𝑡−1
(

−𝑙2
′

𝑌0
′2

(1−𝑒𝜆𝑡) ∑ 𝑤𝑖2
′𝑁2

1

∑
𝑦𝑖2

′ 𝑤𝑖2
′

𝑥𝑖2
′

𝑁2
1 )) + 𝜎𝑙1

′ ,𝑘𝑤𝑚2
′

−𝑏1
′ 𝑏2

′

𝑙1
′ 𝑘𝑤𝑚2

′ +

        +𝜎𝑘𝑤𝑚1
′ ,𝑙2

′
−𝑏1

′ 𝑏2
′

𝑘𝑤𝑚1
′ 𝑙2

′ + 𝜎𝑙1
′ ,𝑙2

′ ( 
𝑏1

′ 𝑏2
′

𝑙1
′ 𝑙2

′  +
𝑏1

′ 𝑏2
′

𝑘𝑤𝑚1
′ 𝑘𝑤𝑚2

′ (
1

𝑌0
′(1−𝑒𝜆𝑡) ∑ 𝑤𝑖1

′𝑁1
1

∑
𝑦𝑖1

′ 𝑤𝑖1
′

𝑥𝑖1
′

𝑁1
1 ) (

1

𝑌0
′(1−𝑒𝜆𝑡) ∑ 𝑤𝑖2

′𝑁2
1

∑
𝑦𝑖2

′ 𝑤𝑖2
′

𝑥𝑖2
′

𝑁2
1 ))  , (20’) 

𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛
′ =

ln(1−
𝑏′

𝑌0𝑢
′ )

𝜆
 ,           (21’) 

𝜎
𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛

′
2 = 𝜎𝑏′

2 (
−1

𝜆(𝑌0𝑢
′ −𝑏′)

)
2

+ 𝜎𝑌0𝑢
′

2 (
𝑏′

𝑌0𝑢
′ 𝜆(𝑌0𝑢

′ −𝑏′)
)

2

+ 2𝜎𝑌0𝑢
′ ,𝑏′ (

−𝑏′

𝑌0𝑢
′ 𝜆2(𝑌0𝑢

′ −𝑏′)
2) + 𝜎𝜆

2 (
−𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛

′

𝜆
)

2

 ,   (22’) 195 

𝜎𝑌0𝑢
′ ,𝑏′ = 𝜎𝑌0𝑢

′
2 𝜂𝑢

′  ,            (22’a) 

where 𝑌′ and 𝑦′ (𝑌𝑢
′  and 𝑦𝑢) are the true and measured common to daughter isotope ratios (e.g., 86Sr/87Sr) in the standard 

(unknown), which are related to each other via the mass dependent fractionation correction factor 𝑙′, 𝑌0
′ (𝑌0𝑢

′ ) is the initial 

common to daughter isotope ratio (e.g., 86Sr/87Sr0) in the standard (unknown), 𝑋′ and 𝑥′ (𝑋𝑢
′  and 𝑥𝑢

′ ) are the true and measured 

parent to daughter ratios (e.g., 87Rb/87Sr) in the standard (unknown), which are related to each other via the elemental 200 
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fractionation correction factor 𝑘′, X′∗ is the parent to daughter isotope ratio used to determine 𝑡 if it was determined from a 

single analysis, and 𝜂′∗ (𝜂𝑢
′ ) is the partial derivative of the isochron slope used to determine 𝑡 (𝑇𝑖𝑠𝑜𝑐ℎ𝑟𝑜𝑛

′ ) with respect to 𝑌0
′ if 

it was determined by fitting an isochron. 

2.3 Further considerations 

I have tested that the above equations to estimate uncertainties perform as intended by comparing the estimates they yield for 205 

synthetic data with analogous estimates obtained using the Monte Carlo method. It thus should be possible to apply them in 

practice. However, it should be noted that it is not uncommon in practice to see greater dispersion in LA-ICP-MS data than 

predicted from theoretical considerations (Horstwood et al., 2016). I invite readers to consult Horstwood et al. (2016) on how 

to deal with this problem and also compare different sets of data. I would only highlight that when comparing sets of data from 

different laboratories or publications one should consider whether they were obtained using the same standards and/or decay 210 

constants. If so, some covariance between dates in these sets is expected, and they should rather be compared using ‘partial’ 

external uncertainties that only account for uncertainties in those parameters that do not match. 

3 Conclusion 

The above equations can be used to first calculate elemental fractionation correction factors and their uncertainties from 

individual analyses of primary standards with variable contents of parent and daughter isotopes, and then calculate isochron 215 

dates for individual or multiple analyses of unknowns and their uncertainties. Although it is yet to be tested how well the 

outlined approach performs in practice, it has two potential benefits over using non-matrix-matched primary standards and 

nanoparticulate pressed powder tablets as substitutes for matrix-matched primary standards. Firstly, it could be more suitable 

to characterise elemental fractionation in unknowns by providing better matrix matching. Secondly, it could reduce time 

needed to analyse one batch of unknowns due to spending less time on acquiring data form primary standards that do not 220 

provide optimal matrix matching. 

Appendix 

The following outlines how to estimate 𝜂, which is the partial derivative of the isochron slope with respect to 𝑌0, if the isochron 

was fitted by the method of York et al. (2004). I assume that numbering starts with 0, such that the 0-th term corresponds to 

the initial composition 𝑌0, 𝑋0 (normally 𝑋0 = 0), and I use the notation of York et al. (2004) with the addition of η, Ψ and Ω. 225 

To calculate 𝜂 use Eq. (A1): 

𝜂 =
Ψ(∑ 𝑊𝑖𝛽𝑖𝑈𝑖)−Ω(∑ 𝑊𝑖𝛽𝑖𝑉𝑖)

(∑ 𝑊𝑖𝛽𝑖𝑈𝑖)2   ,           (A1) 

where Ψ and Ω are calculated using Eq. (A2-A3): 
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Ψ = 𝑊0
2(𝑋0 − �̅�) (

1

𝜔(𝑌0)
−

𝑏𝑟0

𝛼0
) + 2𝑊0

2(𝑌0 − �̅�) (
𝑏

𝜔(𝑋0)
−

𝑟0

𝛼0
) −

                                                                               −
𝑊0

∑ 𝑊𝑖
∑ 𝑊𝑖

2(𝑋𝑖 − �̅�) (
1

𝜔(𝑌𝑖)
−

𝑏𝑟𝑖

𝛼𝑖
) − 2

𝑊0

∑ 𝑊𝑖
∑ 𝑊𝑖

2(𝑌𝑖 − �̅�) (
𝑏

𝜔(𝑋𝑖)
−

𝑟𝑖

𝛼𝑖
) ,  (A2) 230 

Ω = 𝑊0
2(𝑋0 − �̅�) (

𝑏

𝜔(𝑋0)
−

𝑟0

𝛼0
) +

𝑊0

∑ 𝑊𝑖
∑ 𝑊𝑖

2(𝑋𝑖 − �̅�) (
𝑏

𝜔(𝑋𝑖)
−

𝑟𝑖

𝛼𝑖
)  .       (A3) 
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Figure 1: Schematic illustrations for how individual analyses of primary standards with variable parent and daughter isotope 

concentrations can be used to obtain factors for elemental fractionation correction. Each plot shows two data points that are assumed 290 
to be corrected for mass dependent fractionation and have different elemental fractionation factors (e.g., due to instrument 

instability). (a) One of the approaches taken in U-Pb geochronological applications of LA-ICP-MS. Factors for U-Pb fractionation 

correction are calculated by rationing the true and apparent 238U/206Pbradiogenic ratios that are obtained using the Tera-Wasserburg 

diagram. (b-c) Potential approaches for non-U-Pb geochronological applications of LA-ICP-MS. Factors for elemental fractionation 

correction can be estimated by finding coefficients by which the measured elemental ratios need to be multiplied to equate the slopes 295 
of the apparent and true isochrons, whether normal or inverse. Elemental fractionation correction factors can also be estimated by 

comparing the true and apparent intercepts with the horizontal axis in the inverse isochron diagram. 


