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Abstract. In nature, each mineral grain (quartz or feldspar) receives a dose rate (Dr) specific to its environment. The dose-rate 

distribution, therefore, reflects the micro-dosimetric context of grains of similar size. If all the grains were well bleached at 

deposition, this distribution is assumed to correspond, within uncertainties, to the distribution of equivalent doses (De). The 15 

combination of the De and Dr distributions in the De_Dr model proposed here would then allow calculation of the true 

depositional age. If grains whose De values are not representative of this age (hereafter called “outliers”) are present in the De 

distribution, this model allows them to be identified before the age is calculated, enabling their exclusion. As the De_Dr 

approach relies only on the Dr distribution to describe the De distribution, the model avoids any assumption about the shape of 

the De distribution, which can be difficult to justify. Herein, we outline the mathematical concepts of the De_Dr approach (more 20 

details are given in Galharret et al., 2021) and the exploitation of this Bayesian modelling based on an R code available in the 

R package ‘Luminescence’. We also present a series of tests using simulated Dr and De distributions with and without outliers 

and show that the De_Dr approach can be an alternative to available models for interpreting De distributions. 
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1 Introduction 25 

For luminescence dating of sediments, the development of equipment to perform optically stimulated luminescence 

(OSL) analyses at the single-grain (SG) level (Duller et al., 1999a, 1999b) has been a significant technological breakthrough, 

offering the possibility to produce a distribution of individual equivalent doses (De) for a given sample. This advance has also 

fostered the development of statistical approaches to analyse these De distributions (e.g., Galbraith et al., 1999; Roberts et al., 

2000; Fuchs and Lang, 2001; Lepper and McKeever, 2002; Thomsen et al., 2007; Woda and Fuchs, 2008; Cunningham and 30 

Wallinga, 2012; Cunningham et al., 2015; Guibert et al., 2017; Guérin et al., 2017). Most of these statistical models target the 

component comprising the grains whose deposition is relevant for the event to be dated (i.e., the target population) and calculate 

a (believed) representative De value from this identified sub-population. The latest proposed model (Li et al., 2021) follows 

the same strategy but allows identifying outliers not representative of the depositional event for several different reasons. 

Therefore, all these approaches focus only on the De distribution and require assumptions on how the individual De values are 35 

distributed. It is also worth recalling here that the mean environmental dose rate (Dr) representative for the grains constituting 

the selected sub-population has to be determined with confidence.  

In parallel to these developments, a series of investigations approached the dose rate as a cause of dispersion of the 

individual De values. These investigations were either experimental (Kalchgruber et al., 2003; Cunningham et al., 2012) and/or 

numerical (Nathan et al., 2003; Mayya et al., 2006; Guérin et al., 2015). They all demonstrated that the spatial distribution of 40 

radionuclide bearing minerals such as K-feldspars, but also micas or zircons, might become driving agents dominating the De 

distribution. In the literature, these micro-dosimetric effects are usually grouped and considered a significant source of 

unexplained variance (overdispersion, ext_OD). Another important source of external overdispersion is the presence of outlier 

grains (due for instance, to sediment mixing or incomplete bleaching); this second source is in addition to the overdispersion 

caused by the Dr distribution inherent to the sample. To a lesser extent, the measurement process of the De values causes an 45 

additional dispersion. This component includes a purely experimental and a more theoretical part: the first refers mainly to the 

reproducibility of the measurement equipment, whereas the second relates to the fact that the protocol applied to determine 

individual De values is not best tailored to individual grains but represents a compromise of settings deemed optimal. The 

dispersion induced by these phenomena constitutes the internal overdispersion (int_OD) which combines quadratically with 

the ext_OD. 50 

 Different experimental approaches (Rufer and Preusser, 2010; Romanyukha et al., 2017) have been proposed for 

quantifying the micro-dosimetric effects, whereas Martin et al. (2015a, 2015b, 2018) and Fang et al. (2018) developed 

numerical sediment models to calculate the Dr distribution for a given granulometric fraction. Even though such experiments 

and applications remain rare to date, in this contribution, we want to put forward two questions: Does the information 

characterizing the Dr distribution provide valuable data to calculate a luminescence age? Furthermore, if so, What would be 55 

the way to do it? Moreover, assuming that our contribution convincingly outlines an approach: How does such an approach 

help identify intrusive or poorly bleached grains potentially present in a De distribution?  
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2. Convolution of De and Dr distributions 

2.1 Basics 60 

Let us start with a thought experiment assuming the following setting: (1) one considers a series of grains of 

similar shape and size behaving similarly in terms of luminescence/dose-response, (2) these grains are perfectly bleached 

and have no residual dose, (3) they are then mixed in a matrix rich in diverse radionuclide bearing mineral phases 

generating a heterogeneous flux of alpha and beta particles. One also assumes (4) that the equipment used for their future 

analysis is perfectly reproducible. With these conditions, we expose each grain to a specific dose rate, Dr, which is the 65 

sum of a common gamma- and cosmic-dose contribution and heterogeneous alpha and beta-dose rate components. If we 

wait for 50 ka and measure a massive number of De values from these grains, we would expect to obtain a De distribution 

with the same shape as the Dr distribution but offset by a factor of 50,000. 

If the depositional setting was further complicated by supplementing the matrix of well-bleached grains of 

interest with a series of grains having non-zero residual doses, then superimposition of the De and Dr distributions could 70 

potentially identify these outliers. Consequently, our thought experiments show that thanks to the combination of the De 

and Dr distributions and without any assumption about the shape of these distributions, the depositional age can be 

determined even if outliers are present. The mathematical details are somewhat more cumbersome than thought 

experiments, and hence we will outline them in the following section.  

2.2 Mathematical model 75 

The main idea behind the De_Dr model is to combine the information from the De and Dr distributions in a 

Bayesian framework to detect outliers (i.e. grains not representative of the target population) automatically (if there are 

present) before discarding them and computing the depositional age.       

 

2.2.1 General considerations 80 

In real life, the number of De values measured for a sample is not extremely large. Even in cases where thousands 

of grains are analysed, the low percentage of grains emitting light combined with applying a series of rejection criteria 

may lead to a final De distribution comprising at best a few hundred values. In contrast, when the Dr values are obtained 

by a numerical simulation of the sediment sample, for instance, their number is only limited by the lab resources in terms 

of computation power.  85 
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Another key difference between the De  and Dr  distributions concerns individual uncertainties: current numerical 

models do not report uncertainties for individual beta-dose rate values. This contrasts with the De values since each one 

has an error term related to the uncertainties associated with the luminescence signal and the process of its determination 

(fitting and interpolation). Nevertheless, the Dr distribution is not free of uncertainties: at least three terms (gamma-, 

cosmic- and beta dose-rates) must be considered, and at least two of them (gamma and cosmic dose rates) are 90 

characterized by a mean value and an associated error. 

As the De_Dr model relies on the shape of the Dr distribution to describe the expected shape of the 

De distribution and identify outliers, the int_OD of the De distribution (such as measured with a DRT) needs to be 

incorporated into the Dr distribution. To do this, individual Dr values (written �̃�𝑟 in Eq. 1 below) are transformed into 

internally overdispersed Dr values (Dr) using the following equation: 95 

 

𝐷𝑟  =  �̃�𝑟 (1 + 𝑖𝑛𝑡_𝑂𝐷 𝜖)   (1) 

 

where Dr is a value comparable to any De value, int_OD the standard deviation characterizing the DRT distribution, and 

 a Gaussian variable with uninformative mean and standard deviation (also denoted 𝒩(0,1)). 100 

2.2.2 Mathematics underpinning the model 

In this section, we reiterate the method used for detecting outliers in the frame of the hierarchical model 

introduced by Galharret et al. (2021). This Bayesian method can estimate an OSL age for a sample with both single-

grain equivalent dose values and simulated (or measured) dose rate distributions. 

We assume that the classical relation between the equivalent dose De, the corrected dose rate Dr (according to 105 

Eq. 1) and the OSL age A:  

𝐷𝑒 =  𝐴 ×  𝐷𝑟   (2) 

is satisfied but applies to the probability distributions. More precisely, we assume that the probability distribution of De 

is equal to the probability distribution of 𝐴 × 𝐷𝑟.  

To determine A, the first step of the process is to estimate the sample’s Dr distribution when the internal 110 

overdispersion of the De distribution is incorporated, as described in Eq. 1. Because of the wide variety of possible 

distributions, we chose a Gaussian finite mixture with an unknown number of components. This is a very flexible class 

of distributions, allowing to catch symmetric, asymmetric, and multimodal distributions. Note that a Gaussian finite 

mixture model is a weighted sum of K Gaussian distributions ∑ 𝑝�̇�
𝐾
𝑘=1 𝒩(�̇�𝑘 , 𝜎2̇

𝑘) . All the model parameters 

(𝐾, �̇�1, . . . , �̇�𝐾 , �̇�1, . . . , �̇�𝐾 , �̇�1, . . . , �̇�𝐾)  can be easily estimated using an expectation-maximization (EM) algorithm 115 

(Dempster et al., 1977) and the optimal value of the number of components K selected according to the Bayesian 
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Information Criterion (BIC). This method is implemented in the R package ‘mclust’ (see Scrucca et al. 2016 for details 

on statistical and numerical aspects). After fitting the mixture parameters on the Dr distribution, we fix their values for 

the rest of the modelling. According to (Eq. 2), the distribution of the De values is also approximated by a Gaussian finite 

mixture model with the following parameters  120 

∑ �̇�𝑘𝒩(𝐴�̇�𝑘 , 𝐴2𝜎2̇
𝑘

𝐾

𝑘=1

) 

The second step is to estimate A considering any outliers present and the measurement errors on the De values, 

which are assumed to be Gaussian with zero mean and known variance. Here, the main idea of the modelling is to 

associate each measured De with an individual age. We denote a1,…,an these individual ages which are related to age A 

as follows:  125 

𝑎𝑖 =  𝐴 +  𝜖𝑖   (3) 

where 𝜀𝑖 , . . . , 𝜀𝑛 are independent Gaussian distributions with a zero mean.  In the absence of outliers, we can assume that 

these errors have a common variance. The density of the prior variance is then    

𝑝(𝑥)  =  
𝑠0

2

(𝑠0
2 + 𝑥)2    (4) 

(cf. Galharret et al., 2021). This probability distribution is named a Shrinkage distribution with parameter 𝑠0
2 . This is a 130 

usual choice of prior on variance parameter for meta-analysis models (see Spiegelhalter et al. 2004). The parameter 𝑠0
2 

allows controlling the dispersion of the individual ages a1,…,an around A. Note that a preliminary estimate of individual 

ages is necessary to get an order of magnitude of the age errors. To do that, we consider the shrinkage parameter as the 

harmonic mean of the variance of the individual ages. This choice ensures that errors on individual ages are not favoured 

over the dispersion of the individual ages a1,…,an , and vice versa. In other words, neither is assumed to be negligible 135 

relative to the other, both having the same weight under the prior information.  

  At this step, we may refer to this model as a Bayesian Central Age Model (BCAM) because it can be viewed as 

a Bayesian version of the seminal Central Age Model (Galbraith et al., 1999) even though differences exist, the most 

important being the absence of any pre-defined function representing the De distribution. However, this model is not 

robust to the presence of outliers. Hence, before estimating A, we add an additional step to detect and remove the outliers 140 

if they are present in the De distribution.  

In this additional step, we adapt the BCAM in including individual random effects. This is the same principle 

as applied in the event model introduced by Lanos and Philippe (2017, 2018). It amounts to the assumption that the 

errors 𝜀𝑖 , . . . , 𝜀𝑛 have individual variances 𝜎1
2 , . . . , 𝜎𝑛

2 independently and identically distributed from the same shrinkage 

distribution as previously chosen for the BCAM. While the event model can be used to estimate A, it suffers from a lack 145 

of precision due to the summation of individual variances. Thus, in our approach, we use the posterior distribution of 
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individual variances 𝜎1
2, . . . , 𝜎𝑛

2 for constructing a decision rule to detect outliers. Indeed, these parameters measure the 

dispersion of individual ages around the central age. Therefore, if an equivalent dose is detected as an outlier, its 

corresponding individual age will take large values with respect to the prior information on 𝜎1
2, . . . , 𝜎𝑛

2.  Thus,  a De value 

is identified as an outlier if the posterior distribution of its individual variance is stochastically greater than its prior 150 

distribution. To do that, we use quantiles and compare the prior and posterior distributions. More precisely, we fix a 

probability 1- close to 1 (for instance 1-=0.95): if the posterior (1-)-quantile is greater than the prior (1-)-quantile, 

the associated De is tagged as an outlier and removed from the De distribution (Fig. 1). 

 

Figure 1: Comparison of prior and posterior cumulative distribution functions of individual variance and their 95% credible interval 155 
(bottom horizontal lines): the corresponding equivalent dose is detected as an outlier [left] or not [right]. 

When this selection is completed, the age A is estimated with BCAM from the De distribution with the outliers 

removed, while the posterior distributions are approximated from Markov Chain-Monte-Carlo (MCMC) samples. In 

practice, we use the Gibbs sampler JAGS (Plummer 2003) through the associated R (R Core Team, 2021) package ‘rjags’ 

(Plummer 2019).  160 

2.2.3 Original data and structure of the model 

Input data for the model are values from the �̃�𝑟 and De distributions. The De distribution is a series of central 

values with associated errors, whereas the �̃�𝑟  distribution represents the probability of each dose-rate value. 

Additionally, the internal over-dispersion (int_OD) obtained from the DRT experiment is required. This parameter is 

used to modify the Dr distribution to be the same shape as the expected De distribution. 165 
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In summary (Fig. 2), the mathematical model to combine the De  and Dr distributions consists of four steps: 

1. Each �̃�𝑟 value is transformed according to Eq. (1), considering the int_OD value, 

2. the Dr distribution is fitted with a weighted sum of normal (Gaussian) densities. The number of functions and 

their height and width are automatically adjusted to maximize the likelihood function (Fig. 3).  170 

3. after a rough estimation of the individual ages (corresponding to the De values divided by the mean dose-rate), 

the “distance” of each De value and its uncertainty with the model is computed using an MCMC process and 

compared to a fixed threshold set to 5%. De values scoring lower than 95% are considered outliers (Fig. 4),  

4. finally, De values corresponding to the identified outliers are removed from the De distribution, and the age is 

computed by the Bayesian Central Age Model from this new De distribution. The cumulative probability 175 

distribution of the resulting model is then compared with this new De distribution and the original data (Fig.5). 
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Figure 2: Diagram representing the different steps of the estimation method. 
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 200 

Figure 3: Approximation of the Dr distribution with a mixture of normal (Gaussian) functions. 

 

 

Figure 4: Characterisation of the De values: the values in red are identified as outliers. 

 205 
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Figure 5: Comparison of the cumulative distribution functions: A x Dr (red line), De (dotted blue line) and reduced -after removal 

of the outliers detected values- De (dashed green line). 

 

2.3 The implementation of BCAM in R 210 

 The mathematical model was implemented in R and is available in the package ‘Luminescence’ (Kreutzer et 

al., 2012) version >= 0.9.16 (Kreutzer et al., 2021) under the function name: combine_De_Dr(). The De and Dr 

distributions can be imported directly from an ExcelTM spreadsheet or CSV file or simply passed as a data.frame (a 

data object in R, comparable to a spreadsheet) imported through other formats. The other values are directly passed to 

the function as parameters. 215 

The function combine_De_Dr() returns four plots (Supplement 1, Figs. 2–3 therein): the first two figures 

are related to detecting outliers and illustrate the variation of the individual standard deviation of the posterior age 

distributions.  The last two figures show a kernel density plot of the posterior ages and the empirical cumulative 

distribution function plot. This last figure compares the cumulative De distributions (with or without the identified 

outliers) with the modelled De distribution (A × Dr). We provide a simple example with R code as supplementary 220 

information (Supplement 1).  
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3. Model tests 

Our tests rely on simulated numerical data (Supplement 2). Complex Dr distributions were built with a series of 

values (at least 1,000 per series) randomly sampled from normal and/or log-normal distributions. From each obtained Dr 

distribution, 100 values were randomly drawn and multiplied by 50 to represent individual De values (the Dr values vary 225 

around 1 Gy ka-1, and the De values are then around 50 and expressed in Gy). Each De value was then associated with 

an uncertainty randomly sampled from a normal distribution of relative uncertainties 𝒩(0.1,0.05) 

In cases where outliers were added to the initial De distribution, their values were randomly determined from a 

normal or log-normal distribution, and uncertainties were defined as mentioned in the previous paragraph. 

3.1 Tests without outliers 230 

Table 1 lists the results of tests performed using four different Dr distributions: (1) a single normal distribution, 

(2) a sum of two normal distributions, (3) a single log-normal distribution and (4) a sum of two log-normal distributions. 

For each Dr distribution, five runs were computed, and De_Dr Ages were calculated using the combine_De_Dr() 

function. Fig. 6 shows an example Abanico plot (Dietze et al., 2016) of a De distribution for each type of simulated Dr 

distribution. 235 

For the four distribution types considered in these tests, the De_Dr Age is very close to the given age, i.e., 50 

ka, demonstrating the efficiency of the De_Dr model. It is also worth mentioning that although we did not add outliers to 

the initial De distribution, a few values have been identified by the model as outliers and were then discarded before the 

final age was calculated. However, this is not surprising and can be explained by the stochastic nature of the sampling 

process of the De values, which each had an associated random uncertainty.   240 
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a)     b) 

 

 255 

c)     d) 

 

Figure 6: Abanico plots of the De distributions (100 values) without outliers. a) single normal distribution, b) sum of two normal 

distributions, c) single log-normal distribution, and d) sum of two log-normal distributions. 

 260 
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Table 1: Results of tests without added outliers. Tests were performed with 4 different shapes of Dr distributions: Norm(N, m, sd) 

and log-Norm(n, m, sd) indicate normal and log-normal distributions, respectively, where (n) is the number of random values, (m) 

the mean of the distribution and (sd) the standard deviation. The number of Gaussian components identified by the model when 265 

fitting the Dr distribution is given, as well as the number of points identified as outliers. Numbers in bold represent average values. 

3.2 Tests with outliers 

Table 2 reports results for De distributions, including 20 outliers in addition to the original 100 values. As 

indicated in this table, if the initial De values were sampled from a normal distribution, the outlier values were also 

sampled from a normal distribution (for instance, 𝑋𝑖,𝑘  ~ 𝒩(1.3,0.05) 𝑓𝑜𝑟 𝑗 ∶=  {1, . . . ,50}, 𝑘 ∶=  {1, . . . ,20} ). 270 

Furthermore, when the 100 De values were sampled from a log-normal distribution, the 20 outlier values were also 

sampled from a log-normal distribution (for instance, 𝑋𝑖,𝑘  ~ 𝑙og𝒩(1.3, 0.05) 𝑓𝑜𝑟 𝑗 ∶=  {1, . . . ,50}, 𝑘 ∶=  {1, . . . ,20}).  

The De_Dr Age is slightly higher than 50 ka in all cases because a few outlier values overlap randomly with the 

initial De distribution and were therefore not identified as outliers by the De_Dr approach. However, this over-estimation 

remains low (<5% of the true age), whereas outliers represent almost 17 % (20/120) of the De values. Examples are 275 

illustrated in Fig. 7 as Abanico plots (Dietze et al., 2016). 

 

Dr  distribution Nb. components Identified outliers De_Dr Age (ka)  + -

Norm(1000, 1, 0.1) 1 0 48.28 1.15

1 0 49.71 1.18

1 0 48.31 1.11

1 0 50.05 1.14

1 0 49.82 1.16

49.23 1.15

Norm(1000, 1, 0.1)+Norm(200, 1.4, 0.05) 2 1 50.26 1.40

2 0 50.50 1.34

2 1 50.45 1.29

2 0 49.46 1.39

2 1 51.21 1.39

50.38 1.36

log-Norm(1000, 1, 0.1) 1 1 48.72 0.78

2 3 50.85 0.80

1 1 49.87 0.79

2 1 50.84 0.82

2 4 49.68 0.81

49.99 0.80

log-Norm(1000, 1, 0.1)+log-Norm(200, 1.4, 0.05) 2 2 49.91 1.03

2 8 49.57 1.01

2 5 50.66 1.04

2 9 50.12 1.00

2 9 49.63 1.03

49.98 1.02
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Table 2: Results of tests with 20 outliers added to the original De distribution. Their values were determined following the function 

indicated in the second column. Notice that the (m) parameter of these functions varied from 1.3 to 1.6, leading to outlier values 280 

which, on average, increased as is observable on the Abanico plots (Fig. 7). 

Dr  distribution  Outliers distribution of De Nb. components Identified outliers De_Dr Age (ka)  + -

Norm(1000, 1, 0.1) 50 x Norm(20, 1.3, 0.05) 1 0 51.37 1.04

1 1 51.35 1.13

1 0 52.01 1.09

1 1 50.93 1.08

1 0 51.04 1.11

51.34 1.09

Norm(1000, 1, 0.1) 50 x Norm(20, 1.4, 0.05) 1 0 52.44 1.12

1 1 51.77 1.07

1 2 52.71 1.07

1 1 51.63 1.09

1 4 51.38 1.14

51.99 1.10

Norm(1000, 1, 0.1) 50 x Norm(20, 1.5, 0.05) 1 3 52.87 1.12

1 3 53.70 1.15

1 2 51.37 1.13

1 3 53.64 1.18

1 3 52.37 1.12

52.79 1.14

Norm(1000, 1, 0.1) 50 x Norm(20, 1.6, 0.05) 1 2 52.53 1.11

1 6 51.73 1.14

1 7 51.69 1.14

1 7 51.95 1.11

1 10 52.80 1.15

52.14 1.13

log-Norm(1000, 1, 0.1) 50 x log-Norm(20, 1.3, 0.05) 1 8 52.33 0.77

1 10 51.73 0.78

1 1 52.31 0.77

1 6 51.25 0.77

1 6 51.98 0.77

51.92 0.77

log-Norm(1000, 1, 0.1) 50 x log-Norm(20, 1.4, 0.05) 2 10 53.26 0.78

1 11 51.46 0.76

2 14 51.01 0.78

1 11 51.66 0.77

1 13 50.86 0.73

51.65 0.76

log-Norm(1000, 1, 0.1) 50 x log-Norm(20, 1.5, 0.05) 1 15 51.56 0.77

1 18 50.55 0.79

2 17 50.60 0.80

1 16 52.09 0.79

2 18 50.87 0.78

51.13 0.79

log-Norm(1000, 1, 0.1) 50 x log-Norm(20, 1.6, 0.05) 2 23 50.21 0.81

1 20 48.93 0.78

1 19 49.98 0.79

1 20 49.74 0.78

1 21 49.48 0.79

49.67 0.79
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c)     d) 
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 290 
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Figure 7: Abanico plots of the De distributions (100 initial values sampled from the Dr distribution) to which 20 outlier values have 

been added : red dots indicate the values identified as outliers (not the values added as outliers). (a-d)  Initial De distribution = 

normal  distribution; (e-h) Initial De distribution = log-normal distribution. Outlier values (20) added as follows : a) 50 x Norm(20, 295 

1.3, 0.05) ; b) 50 x Norm(20, 1.4, 0.05) ; c) 50 x Norm(20, 1.5, 0.05) ; d) 50 x Norm(20, 1.6, 0.05) and e) 50 x log-Norm(20, 1.3, 0.05) ; 

f) 50 x log-Norm(20, 1.4, 0.05) ; g) 50 x log-Norm(20, 1.5, 0.05) ; h) 50 x log-Norm(20, 1.6, 0.05). 

 

 

 300 

 

To test the model's performance to identify outliers when their values are close to the initial De values, we 

simulated normal and log-normal distributions with outliers that followed our setting from above: 

𝑋𝑖,𝑘  ~ 𝒩(1.3,0.05) 𝑓𝑜𝑟 𝑖 ∶=  {1, . . . , 𝑛}, 𝑘 ∶=  {1, . . . ,20}  and 𝑋𝑖,𝑘  ~ 𝑙𝑜𝑔𝒩(1.3, 0.05) 𝑓𝑜𝑟 𝑖 ∶=  {1, . . . , 𝑛}, 𝑘 ∶=

 {1, . . . ,20} where this time n varied from 0 to 50 (then representing between 0 % and 33% of the initial De distribution). 305 

The results are given in Table 3 and displayed in Fig. 8. The De_Dr Ages increase with the percentage of outliers, but 

the over-estimation remains below 10% of the true age in all cases. This result is particularly interesting because these 

simulations represent cases where a series of poorly bleached grains (i.e., the outliers) whose De values are not 

significantly different from the mean De have been measured in addition to well-bleached grains (initial De values).  

 310 
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Table 3: For each type of Dr distribution (normal or log-normal), outliers values were added following either the function : 50 x 

Norm(n, 1.3, 0.05), or the function : 50 x log-Norm(n, 1.3, 0.05). The number of outliers varied from 0 to 50 (then representing 

between 0 and 33% of the initial De distribution). The age error is the 95% credible interval. 

 315 

 

Figure 8: De_Dr Age as a function of the number of outliers added to the initial De distribution (the expected age is 50 ka, indicated 

by the red line). Norm and log-Norm represent the functions from which the initial De distributions (comprising 100 values) were 

built. Error bars represent 95% credible intervals. Dotted lines are ±10 %.  

 320 

Dr  distribution  Outliers distribution of De Nb. components Identified outliers De_Dr Age (ka)  + -

Norm(1000, 1, 0.1) 50 x Norm(0, 1.3, 0.05) 1 0 49.65 1.16

50 x Norm(5, 1.3, 0.05) 1 0 50.80 1.15

50 x Norm(10, 1.3, 0.05) 1 1 49.69 1.13

50 x Norm(15, 1.3, 0.05) 1 0 52.09 1.10

50 x Norm(20, 1.3, 0.05) 1 1 50.59 1.08

50 x Norm(30, 1.3, 0.05) 1 0 53.08 1.10

50 x Norm(40, 1.3, 0.05) 1 0 53.74 1.00

50 x Norm(50, 1.3, 0.05) 1 0 54.36 1.00

log-Norm(1000, 1, 0.1) 50 x log-Norm(0, 1.3, 0.05) 2 1 49.55 0.80

50 x log-Norm(5, 1.3, 0.05) 1 2 49.56 0.76

50 x log-Norm(10, 1.3, 0.05) 1 7 50.10 0.76

50 x log-Norm(15, 1.3, 0.05) 2 8 50.15 0.78

50 x log-Norm(20, 1.3, 0.05) 1 6 51.84 0.76

50 x log-Norm(30, 1.3, 0.05) 1 8 54.13 0.74

50 x log-Norm(40, 1.3, 0.05) 1 12 52.26 0.71

50 x log-Norm(50, 1.3, 0.05) 1 8 54.53 0.69
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4. Discussion  

 Results show that the De_Dr model works well for De distributions without outliers. It also gives satisfactory 

results when the De values of the outliers are significantly different from the individual De's composing the target 

population. On the other hand, the existence of values defined as outliers but very close to the target population may be 325 

assimilated by the model to the target population and thus not be identified as outliers. This is related to the fact that the 

De_Dr model is a majority rule model.  

 This notion of majority is vital because it sets the limits of the model's applicability. If the number of outliers is 

significantly larger than the number of De values representing the target population, the De_Dr model will combine the 

De and Dr distributions as best as possible so that a maximum of De values corresponds to (𝐴 × 𝐷𝑟) values. A visual 330 

examination of the distributions calculated by the model (e.g. Fig. 5) is therefore indispensable, as is a visual examination 

of the outliers identified within the distribution of individual ages (e.g. Fig. 4). 

 On the plus side, it is also important to recall that the De_Dr model does not require a predefined function to 

represent the De distribution. For the tests carried out previously, the type of the distribution (normal, log-normal or a 

mixture of those distributions) was fixed to randomly draw the simulated values only. However, the type of the chosen 335 

distribution and the parameters characterizing it (mean and variance) were not supplied to the model. In other words, the 

De_Dr model did not know about those parameters.  

Nevertheless, the De_Dr model does require a precise determination of the Dr distribution. To date, this 

distribution can be obtained either from numerical sediment models considering bulk density, grain size composition, 

mineralogy, as well as the spatial distribution of radioelements (for possible 2D approach, cf. Dietze et al., in review) or 340 

obtained experimentally using nuclear detectors (e.g., Romanyukha et al., 2017; Fu et al., 2022). Unfortunately, at 

present, such experiments are scarce and remain relatively difficult to implement. Suppose they become more common, 

systematic comparisons between the De_Dr model, which provides the most probable age, and other models leading to 

the De value most representative of the event to be dated, will become possible in a future contribution. Moreover, 

perhaps cases will be observed where the Dr  distributions do not follow a simple distribution (typically log-normal) as 345 

already suggested by Martin et al., (2015b).  

One output of the model is the posterior distribution of the A defined through a simulated Markov chain. The 

highest posterior density interval (HPDI), a region of the density curve encompassing a particular credible interval (e.g., 

68% or 95%), can be calculated from this distribution. The HPD, the HPDI, as well as the mean, �̅�, and the standard 

deviation, 𝑠𝑑𝐴 , of the posterior distribution can be calculated with the function 350 
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Luminescence::plot_OSLAgeSummary() (see Supplement 1). If the posterior distribution of the age is a 

Gaussian distribution, the HPDI coincides with the interval [ �̅�  ±  𝑠𝑑𝐴] at 68% credible level (resp. [ �̅�  ±  2 𝑠𝑑𝐴] at 

95%). The lower and the upper end of the value of the HPDI can be supplemented to facilitate systematic errors 

associated with the average total dose rate and the source dose rate of the equipment used for the De measurements. Two 

approaches are feasible. (1) The typical approach consists of modifying the precision, the standard deviation 𝑠𝑑𝐴 being 355 

replaced by √𝑠𝑑𝐴
2 + �̅�2 𝑝2    where 𝑝 denotes the relative error (in %) associated with the systematic error. (2) To 

preserve the HPD region that considers the possible asymmetry of the posterior distribution, the systematic error can be 

modelled by  �̃� =  𝐴(1 + 𝑝 𝜖) where  𝜖 is a standard Gaussian variable independent of the age. One can then easily 

sample from the corrected age and update the HPD region. If the probability distribution of �̃� is a Gaussian distribution, 

both approaches are equivalent.   360 

 To date, the De_Dr model is thus the first model that allows considering the information from the equivalent 

doses and dose rates simultaneously, thus offering a substantial paradigm change compared to existing approaches. 

5. Conclusion  

 The De_Dr model is an alternative to statistical models to determine the target population from a De distribution. 

Combining the information associated with the equivalent doses and dose rates experienced by the grains during burial, 365 

the model offers the possibility to determine the age of the target population without any predefined function representing 

the De distribution. 

 Future work should focus on tests carried out on well-dated samples (typically cross-checked with 14C dating) 

to validate the De_Dr model experimentally. This would, however, first necessitate access to accurately and precisely 

determined Dr distributions. 370 

 

 

Code and data availability. The source code of the model is part of the R package ‘Luminescence’ (>= v0.9.16) and available 

open-access under GPL-3 licence conditions (https://CRAN.R-project.org/package=Luminescence; last accessed: 2021-09-

08). 375 
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