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Abstract.

The majority of palaeoenvironmental information is
:::
Past

::::::::::::
environmental

::::::::::
information

::
is
::::::::
typically

:
inferred from proxy data

contained in accretionary sediments, called geo-archives. The validity of proxy data and analysis workflows are usually as-

sumed implicitly, with systematic tests and uncertainty estimates restricted to modern analogue studies or reduced-complexity

case studies. However, a more generic and consistent approach to exploring the validity and variability of proxy functions would5

be to translate a given geo-archive
::::::::
sediment

::::::
section into a model scenario: a "virtual twin". Here, we introduce a conceptual

framework and numerical toolset
:::
tool

:::
set

:
that allows the definition and analysis of synthetic sediment sections. The R pack-

age sandbox describes arbitrary stratigraphically consistent deposits by depth-dependent rules and grain-specific parameters,

allowing full scalability and flexibility. Virtual samples can be taken, resulting in discrete grain-mixtures with well-defined

::::::
defined parameters. These samples can then be virtually prepared and analysed, for example to test hypotheses. We illustrate10

the concept of sandbox, explain how a sediment section can be mapped into the model and , by focusing on an exemplary

field of application, we explore universal
::::::
explore geochronological research questions related to the effects of sample geometry

and grain-size specific age inheritance. We summarise further application scenarios of the model framework, relevant for but

not restricted to the broader geochronological community.

1 Introduction15

Information about the evolution of earth-surface dynamics beyond the timespan
:::
time

::::
span

:
of instrumental records is predom-

inantly gathered from sedimentological
::::::::
sediment deposits, serving as hosts

:::
host

::::::::
material of proxy data. Proxies are based on

the presupposition that a specific sediment property is representative of an unknown environmental variable or can be unequiv-

ocally converted into such. For instance, the grain-size distribution of a sample is supposed to reflect the sediment transport

processes, the isotopic composition of fossils represents precipitation or temperature, charcoal occurrence indicates human20

activity within a landscape, or trapped charges in minerals denote a depositional age. The validity of proxies is usually an as-
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sumption based on conceptual relationships, modern analogue data, or physical principles. Further implicit assumptions arise

from practical and methodological constraints, such as minimal post-depositional alteration, representative sampling, appro-

priate sample preparation and measurement, and robust estimation of uncertainty ranges. All these preconditions are typically

assumed or at least considered to be of generic validity. Developing tests of this assumed validity in the concrete context of a25

sedimentary deposit would allow quantifying the level of confidence one can put into the proxy function utilised in a study
:
,
:::
but

::::
their

::::::
impact

::
on

:::
the

::::::::::::
interpretations

::
is

:::::
rarely

:::::
tested.

Numerical modelling of the earth surface processes that contribute to terrestrial sediment cascades has reached an advanced

level throughout the last few decades (Willgoose et al., 1991; Schoorl et al., 2000; Tucker et al., 2001; Lowry et al., 2013;

Hobley et al., 2017). Yet, the commonly utilised landscape evolution models almost exclusively focus on specific parts of30

that
::
the

::::::::
terrestrial

:
sediment cascade, such as weathering, erosion, and material transport processes, or at least have model-

specific strengths and weaknesses in representing elements of this process phalanx. By contrast
:::::::
However, the formation of

sediment deposits , hence the actual carriers of the proxy information generated by the succession of processes, is rarely

touched
::
as

:::::
proxy

:::::::
carriers

::
is

:::::
rarely

:::::::::
considered. Most often, sediment is simply flushed out of the terminal node or pixel of the

modelled area, or deposition is reduced to the pure formation of geometric bodies (e.g., Lowry et al., 2013). In light of the35

importanceof sedimentary deposits for palaeo-environmental research and predictive models of future dynamics that require

long and robust information on past environmental conditions, it appears that
::::::
Despite

::
its

::::::::::
importance,

:
the host material angle of

our palaeo-environmental picture
::
of

:::
our

::::::::::::
environmental

::::::::::
information is significantly understudied from a numerical perspective.

Describing the entity of a sedimentary
:
a

:::::::
sediment

:
deposit by a model would include a geometric description of the entire

body (width, length, depth) as well as a thematic description of its constituents (e.g., voids, grains and their geometrical,40

mineralogical, or chemical composition, bulk water content or organic material concentration) by using )
:::
by a vast number of

parameters. This is a challenge not easily tackled by any model. As an example, describing a ten metre tall and one by a one

metre wide
:::
deep

::::
and

:::
one

::::::
metre

::::
wide

::::
and

::::
long column of loess would require describing as many as 1014 single grains, and

each by a series of parameters. Depending on the research question, one might reduce the geometric dimension of the deposit

and thus the number of individual constituents to describe. Likewise, it is possible to limit the number of parameters used to45

define each constituent. However, the general challenge remains. An alternative to this geometric and parametric reductionist

approach is a model not at the scale of its discrete constituents but one with model-wide (general) rules that describe the

properties of potential constituents at any given location within the sedimentary deposit.

Ideally, such a model is transparent, open and flexible throughout. Transparency means that a user should have access to and

gain insight into the model’s structure and algorithm definition. Open means that the code is modifiable, and its functionality50

can be extended. Flexible means that the model can be used for many different purposes, covering a range of spatial and

temporal scales, working with fewer and/or other than the default parameters, and addressing a series of research questions.

Here, we introduce the R package sandbox, a novel framework to create virtual , rule-based sediment deposits. We explain

the concept and structure of sandbox along with a step-by-step description of how to map out a "real world" loess section in

:::
into

:
a model. We illustrate different fields of application based the created example data set

:::::::
potential

::::::::::
applications

:::::
using

::::::
simple55

::::::::
examples,

:::::::::::::
acknowledging

:::
that

:::::
more

:::::::
realistic

:::::::::::::
representations

:::
are

:::::::
possible

::::
with

:::::::::
additional

::::::::::::::
parameterisation

::::::
efforts. While we
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focus on geochronometric datafor palaeo-research, various other application scenarios are imaginable, and hence, a suitability

discussion of sandbox for other research questions beyond our modelling study will close our contribution
:::::::::
applications

::::
can

::
be

:::::::
pursued. The SI contains an extensive tutorial to the packagealong with ,

:::::::::
elaborated

::::::::
examples

:::
on

::::
how

::
to

:::::::::
implement

:::::
more

::::::
realistic

:::::::::
deposition

::::::
effects,

::::
and all code used to create the figures of this article.60

2 Philosophy and structure of sandbox

sandbox is a free and open framework to build and analyse virtual sediment sections in R (R Development Core Team, 2021).

Upon the publication of the manuscript, the package will be made
:::
The

:::::::
package

::::::::::::::::::::::::
(Dietze and Kreutzer, 2021)

:
is
:
available at the

Comprehensive R Archive Network (CRAN), ready for seamless installation across different computer platforms. Currently,

the .
::::

The
::::::
current

:
developer version is available on GitHub (https://github.com/coffeemuggler/sandbox/). The term framework65

implies that sandbox is not tailored to a specific task but instead provides methods (R functions in our case) to use the tool

in different scenarios.
::::::::::
Specifically,

:
sandbox

:::
does

:::
not

:::::::
impose

:::
any

::::::
default

::::::::
physical

::::
rules

::
to
::::::

mimic
::::::::::::
sedimentation

:::::::::
processes.

:::::::::::
Nevertheless,

::::
such

::::::::::::
process-based

::::
rules

::::
can

::
be

:::::::::::
implemented

::
if

::::::
desired

::::
(see

::
SI

:::
for

::::::::::
examples). Users can reduce or expand the

default range of parameters applied to describe the constituents of a sediment section. Due to the design of the R language, new

functions can be added with a minimum of formal constraints to easily to exploit the virtual sediment section for user-specific70

purpose.

To make no mistake, sandbox is essentially a one-dimensional model. It describes the geometry of a sedimentary de-

posit only by its depth while assuming infinite width and length. Boundary conditions are treated irrelevant apart from the

distance to surface. This reduction to one dimension restricts the applicability to problems that do not require a topological or

geometric parameterisation of the modelled constituents (i.e., grain-to-grain relationships). Although it would be possible to75

extend parameterisation in lateral directions (2D or 3D), the additional effort to define parameters in two more spatial directions

would be considerable and is beyond the scope of this distribution. Furthermore, it is generally assumed that concordant

accretionary sedimentary deposits vary predominantly with depth, the direction in which the material accretes with time, and

should have similar properties in lateral directions – an assumption that forms the foundation of the stratigraphic principle

and the correlation of sediment sections. This simplifies real-world conditions where deposits can vary in all directions due80

to the spatially and temporally non-uniform action of geomorphic processes. However, such occasions could still be handled

with sandbox if a user explicitly defines two distinct sediment sections that will be interpreted as if they would be spatially

separated from each other.

sandbox has a parametric (termed rule-based from here on) and probabilistic design. Sediment properties are defined by

depth-dependent rules, containing the definitions of grain properties as probability density function parameters.85

sandbox allows not only to build synthetic sediment sections but also to (virtually) sample them, prepare the sam-

ples, measure them and work with the synthetic results as with real-world measurement data. Hence, it allows creating a

"virtual twin" of a real geo-archive. The package contains several functions for particular tasks. For example, the
::::
The function

make_Sample() generates a finite number of sediment particles based on the rule-controlled parameters together with infor-
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"normal"

prepare_Sieving()

make_Sample()

prepare_Subsample()

Populations

"uniform"
min
max

Parameters (specific/general)

Grain

...
...

Figure 1. Concept of the model sandbox. Grains are the atomic elements of the model. They are drawn from populations and assigned

parameters, which in turn are controlled by rules. Both rules and parameters are stored in rule books that act as coherent reference objects.

Preparation functions are used to virtually process samples that are generated based on rule books.

mation on the sampling depth and sample container geometry. Thus, the make_Sample() function marks
:::
This

::::
step

::
is the90

transition from the probabilistic and rule-based realm of sandbox to the discrete data realm. Such a set of sediment particles

can then be passed to further preparation functions (e.g., prepare_Sieving()) to simulate entire analytic processing

chains.

Currently, sandbox focusses on the broader context of luminescence dating (e.g., Aitken, 1998), but it can be extended

easily to other applications such as geochemical or mineralogical fingerprinting. Hence, if there are no pre-built functions95

available, it becomes necessary to define new preparation functions, a task that is achievable with deliberately low effort and

programming experience in a language like R (R Development Core Team, 2021). Understanding sandbox (Fig. 1) requires

some key terms used in the modelling environment:

Population. A population is the most basic, coherent element of the entire model. A population is a set of sediment grains

with common characteristics. All grains from one population share the same (range of) properties of certain parameters, such100

as grain size, depositional age or mineralogic composition.

Grain. Grains are the atomic elements of the model. They are always sampled from populations and described by a set of

parameters. Each population has a defined probability of occurrence, which is defined as a parameter.

Parameter. Parameters are used to describe populations and, hence, sediment grains drawn from these populations. Parameters

::::
They

:
can be seen as the "thematic" definition of a virtual sediment deposit. There are two major groups of parameters: general105

and specific. General parameters are depth-dependent sediment descriptions regardless of the population the grains are sam-

4



pled from. Examples of general parameters are water content and external dose rate (ionising radiation per time unit). Specific

parameters describe sediment grains with respect to the population to which a grain belongs. Hence, for each population, there

is another parameter definition. Examples are grain size, element or mineral constituents and specific density.

Rule. Rules describe how parameters change with depth. Rules can be regarded as the "spatial" definition of a sediment110

deposit. Rules
::::
They

:
are defined as interpolation functions based on a discrete number of parameter-depth relationships. The

default interpolation function is a spline. This interpolator can easily describe a constant behaviour, a linear trend and further,

local trends in parameters. Splines are also meaningful smoothening interpolators between parameter-depth value pairs, a

characteristic that can be seen as a pro or a con. Currently, stratigraphic discontinuities are not explicitly accounted for.

Rule book. A rule book is the combination of parameters ("thematic" definition) and rules ("spatial" definition) to one115

coherent reference book. A rule book ultimately comprises the definition of the entire virtual sediment section and generates

individual samples. There is an empty rule book available by default. A user can modify a rule book’s content at any time.

Analysis function. Once a rule book defines a virtual sediment deposit, it can be "exploited" using the pre-selection of

available functions, for example, by generating sets of samples with make_Sample(). These samples can then be subject

to additional analysis functions of the package, such as prepare_Sieving() and prepare_Subsample(). All these120

prepare-functions use information stored in each grain.

3 Materials and methods

3.1 Available functions

After installing the package (install.packages("sandbox")) and loading it (library("sandbox")), the package

functions are available to the user. To start from scratch, it is necessary to create a new empty rule book, which can then be125

expanded by adding rules and parameters. A new rule book can be created by the function get_RuleBook(), using the

default keyword book = "empty".

book <- get_RuleBook(book = "empty")

::::::::::

This will generate a list object with all principal elements required to define a virtual sediment section: a book name130

($book), a true age definition ($age), and the definition of population likelihoods ($population), grain-sizes ($grainsize),

packing density ($packing) and specific grain density ($density).

True age means that underlying all concepts of sandbox there is the assumption of an actual
::::
there

::
is
:::

an
:
initial age for

each grain depending on its depth.
::::
With

::::::
depths

:::
and

::::
ages

:::::::
defined

::
at

:::::::
discrete

:::::::
intervals

::::
and

::::::::::
interpolated

:::
by

:
a
::::::

spline
::::::::
function,

sandbox
::::
uses

:
a
:::::

very
::::::::
simplistic

::::::::::::
representation

:::
of

:::
the

::::::::
sediment

:::::::::::
accumulation

:::::::
process

:::
by

:::::::
default.

::
It

::::
does

::::
not

:::::::
account

:::
for135

::::::
hiatuses

:::
or

::::::::::::
autocorrelated

::::::::::
incremental

:::::::::::
sedimentation

::::::
pulses

::::::::
followed

::
by

::::::
pauses

::::::::::::::::::::::::
(Blaauw and Christen, 2011).

::::::::
However,

:::::
such

::::::::
dedicated

::::::::::
relationships

::::
can

::
be

:::::::::::
implemented

::
if

:::::::
required

::::
(see

::
SI

:::
for

:::::::::
examples).
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Grain-sizes are defined on a ϕ-scale throughout (ϕ=−log2(
D
D0

), with D the diameter in µm and D0 the reference diameter1000

:::::::
diameter

:::::
1000 µm) to account for the non-normal distribution of these data (Krumbein, 1937). Packing density describes the

ratio between compound sample volume and the volume of solid particles in that sample. For regular spheres in a 3D space,140

the close-packing density cannot exceed 0.74 (Hales, 1992). For natural soil material, the packing density is usually around

0.3 to 0.6 (Blume et al., 2010). The packing density becomes relevant for sandbox when taking virtual samples by volume

or further volume-based processing steps. The specific grain density (2.65 g cm−3 for quartz) is needed to define grain masses.

The function add_Population() allows adding other grain populations to a rule book, which by default only has one.

Populations can be added at any time, and all specific rules of the rule book will be updated for the respective number of145

additional populations. The function requires specifying the rule book to be updated and providing the number of populations

to add. The code below adds one population and stores the changes as a new rule book.

book2 <- add_Population(

book = book,

populations = 1)150

Using add_Rule() allows to expand the range of application
::::::::::
applications

:
and add, for example, information about the

chemical or mineralogical composition of a sediment section. The new rule will automatically add the corresponding new

parameter. The function requires specifying the rule book to be changed (book), a name (name) for the new rule and cor-

responding parameter, whether it is a specific or general rule (group), and how the resulting parameter is allowed to vary

(type). Possible variation types are type = "exact" (no variation), type = "normal" (variability according to a155

normal distribution defined by additional rules of mean and standard deviation), type = "uniform" (variability according

to a uniform distribution defined by minimum and maximum values), and type = "gamma" (variability following a Gamma

distribution defined by its shape and scale parameters as well as an offset constant). Depending on the type of variability, the

function will add the required parameters (value, mean, sd, min, max, shape, scale, offset) to the rule book. To add, for example,

a rule that defines a uniformly varying pH value for all populations, the following code is needed:160

book3 <- add_Rule(book = book,

name = "pH",

group = "general",

type = "uniform")

::::::::::
165

The function set_Rule() allows defining the actual rules of the rule book. An empty rule book just contains the tem-

plates of required rules (five in total). These templates need to be filled with proper definitions. This is the main purpose of

set_Rule(). Depending on how a rule defines the parameter variability, one needs to provide different information along

with their respective depth intervals to establish the right interpolation function. To define the rule for grain depositional ages,

one needs to define a list that contains the depth intervals for the corresponding true age information and assign this to the rule170

book. To assign grain density rules, allowing for variability around a mean with a given standard deviation, one needs to create
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a nested list, one for each population, containing the means and standard deviations at the corresponding depth intervals. The

below example will first define the rules as a one-metre depth interval, with a linear age increase of 1 ka per metre. Then, the

density for the population (P1) is defined as 2.5 g cm−3 on average, but with a depth-dependent standard deviation. Finally,

the grain packing density is set to 0.5 without scatter throughout the sediment section.175

## describe rule definitions

depth <- list(c(0, 1, 2, 3))

age <- list(c(0, 1000, 2000, 3000))

density <- list(P1 = list(mean = c(2.5, 2.5, 2.5, 2.5),

sd = c(0.0, 0.1, 0.2, 0.0)))180

packing <- list(P1 = list(mean = rep(0.5, 4),

sd = rep(0, 4)))

## assign age rule

book <- set_Rule(book = book,185

parameter = "age",

value = age,

depth = depth)

## assign density rule190

book <- set_Rule(book = book,

parameter = "density",

value = density,

depth = depth)

195

## assign packing rule

book <- set_Rule(book = book,

parameter = "packing",

value = packing,

depth = depth)200

::::::::::

make_Sample() is a special function used to turn the essential information of a rule book into a discrete set of n grains.

For this, the function requires the arguments book (the rule book used to define the sediment section), depth (defining

the centroid depth where the sample is created), and geometry (defining the geometrical shape of the sample container).

Currently, two types of sample containers are implemented: "cuboid" and "cylinder". Depending on which of the205
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two container shapes is used, further input is needed regarding height, width, length and radius. The function first

estimates the number of grains needed to fill the volume of the sample container. To do so, a test set of 1000 grains is sampled

using uniformly distributed random depth values inside the depth interval defined by the container dimension. With the discrete

grain depths at hand, the rule book is queried to get information about the likelihood with which grain may come from one of

the defined populations. The population value is then used to generate grain-specific information about the depth-dependent210

mean and standard deviation of the grain diameter and packing density to calculate the volume filled by this subset of 1000

grains. The percentage of the subset volume gives an estimate of the number of grains required to fill the entire sample volume.

The function will add 10 % to this number to account for inaccuracies due to the small test sample size and then generates a

full set of grains to fill the sampling container following the above-described workflow and ultimately removes the about 10 %

superfluous grains. The function output is a data.frame object with all grains, each described by the parameters contained215

in the rule book. The following code snippet shows an example (output slightly modified for illustrative purpose) of
:::::
creates

:
a

1 cm3 large cubic samplecreated by make_Sample(), containing 491 grains each described by eight parameters:

sample_1 <- make_Sample(book = book,

depth = 1,

geometry = "cuboid",220

height = 0.01,

width = 0.01,

length = 0.01)

str(sample_1)225

-

'data.frame': 491 obs. of 8 variables:

$ grains : num 1 2 3 4 5 6 7 8 9 10 ...

$ d_sample : num 0.997 0.999 0.999 1.002 1 ...

$ population: num 1 1 1 1 1 1 1 1 1 1 ...230

$ age : num 997 999 999 1002 1000 ...

$ population: num 0.997 0.999 0.999 1.002 1 ...

$ grainsize : num 2.4 2.12 1.27 1.57 1.58 ...

$ packing : num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...

$ density : num 2.56 2.45 2.5 2.62 2.53 ...235

- attr(*, "package")= chr "sandbox"

The element grains contains the IDs (grains) and (d_sample) the depth of each grain. The element population

specifies to which population a grain belongs (all 1 since we only used one population). The second (population) entry
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is just a necessary entry due to the sampling process and can be ignored. The remaining four elements (age, grainsize,

packing, density) correspond to what has been defined in the rule book.240

With prepare_Sieving(), one can simulate the physical sieving of a sample. The function requires the arguments

sample (the sample object to be processed) and interval (sieve interval in ϕ units). Based on this information, it will

remove all grains from the sample object that do not fall into the sieve intervals and return the updated data set.

Splitting a bulk sample into a set of subsamples is performed by the function prepare_Subsample(). This can be done

by splitting a sample into a defined number of equally large subsamples (specified by the argument number), by creating245

subsets of a defined volume (specified by the argument volume), or by creating subsamples defined by sample weight (speci-

fied using the argument weight). In the latter two cases, the remainder of the bulk sample that does not allow filling the last

subsample will be rejected. The volume option accounts for the packing density, and the weight option accounts for the specific

density of the sample grains.

A special kind of subsampling is performed by the function prepare_Aliquot(). Aliquots are defined in luminescence250

analysis as sample subsets that compose a monolayer of sediment, fixed onto small metal discs, supplied to the measurement

device. The function mimics this typical workflow step and requires the specification of the aliquot disc size containing the

grain monolayer and a packing density of the grains on that disc, usually 0.65. Note that this value differs from the original

packing density value used to define the rule book.

Finally, the package contains a convenience function convert_units(). This function can be used to convert grain-size255

units between the metric and the ϕ scale. Note that the package also contains further function add_Parameter(), which is

a helper function used by set_Rule(), and not for direct usage.

3.2 The loess deposit Gleina

We have defined a virtual sediment section using measured data from a
:::
use

:
a
:::

17
::
m
:::::

thick
:
real-world loess deposit for the

example cases discussed here. The section is in
::::
from

:
a former brickyard in the Saxonian Loess Region, eastern Germany260

(Meszner et al., 2013). The entire sequence has a thickness of about 17 m spanning over 26 distinguishable stratigraphic layers

with a Holocene Luvisol at the top and an ochre sand base (Meszner et al., 2011). The loess record gained regional popularity

for its prominent, intensely coloured interstadial soil complex called "Gleina soil complex". While the site is an important type

locality of superregional relevance, parts of its interpretation are still an open debate. Most importantly, Meszner (2015) called

for caution regarding the interpretation of the "Gleina soil complex" as a compound feature (ca. 40–80 ka, Zech et al. 2017).265

Rather, it should be considered as two separate layers with a hiatus of some 30 ka
::::::::::::::::::::::::::::::::::::
(Meszner et al., 2011, 2013; Meszner, 2015)

. For this site, we can access a detailed granulometric dataset (Meszner et al., 2021) along with a geochronological framework

(Zech et al., 2017), both suitable in the context of this study.

The grain-size distribution of all 42 samples of the loess section were measured with a Horiba LA950 laser particle sizer,

providing 98 grain-size classes. About 0.5 to 1.5 mg air-dried and homogenised material have been
::::
were treated with 10 %270

HCl for 24 hours and subsequently treated with 40 % H2O2 for 72 hours. Each sample has been
:::
was

:
measured for 5 s with

ultrasonic excitation for 10 s in the device to disaggregate particles mechanically. We used the Mie scattering theory with a
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refraction index of 1.55 and an absorption index of 1.33. The median distribution of 10 consecutive measurements per sample

has been exported for further analyses.

3.3 EMMAgeo as auxiliary tool275

To convert the quasi-continuous grain-size distributions into discrete populations, i.e. parametric descriptions (mean and stan-

dard deviation) of grain-size rules for sandbox, we unmixed the dataset using the R package EMMAgeo v0.9.6 (Dietze and

Dietze, 2016, 2019). This package allows end-member modelling analysis (EMMA) of grain-size data setsand uses principles

of eigenspace analysis to describe
:
;
:
it
::::::::
describes

:
grain-size distributions as a linear combination of end-member loadings and

scores. Loadings are the fundamental, genetically interpretable grain-size distributions inherent to all grains. They can be in-280

terpreted in terms of discrete sediment sources, transport pathways and/or transport processes. Scores depict the contribution

of each loading to each sample . Thus, scores
::
and

:
can be considered as a description of the relevance of a transport process for

a given sample. In the context of this study, loadings refer to the grain-size distribution of particular populations (parameter

definition), and scores refer to the depth-dependent likelihood of a population to be sampled (rule definition).

In the case of the Gleina loess section, EMMA has been used in the deterministic mode with a manually defined number of285

::::
Here,

:::
we

:::::
used

:::::::::::
deterministic

:::::::
EMMA

::::
with three end-members (q = 3) . The weight transformation limit has been set to zero

:::
and

::
no

:::::::::::::
transformation (l = 0). Both parameters were not extensively optimised because the goal of this analysis step was not to

achieve the best possible representation of the measured data set but to generate input data for sandbox in general agreement

with a real data set. The resulting loadings have been
::::
were approximated with log-normal distribution functions (i.e. normal

distribution functions in the ϕ space) to get the best fit values of mean and standard deviation for each of the three populations.290

The scores have been appended to the existing parameter data set of the Gleina loess section.

3.4 Mapping a deposit into sandbox

All analytical data of the Gleina loess section (Meszner et al., 2011), including the reanalysed grain-size data and end-member

scores, have been
::::
were linearly interpolated to equal intervals of 25 cm, starting at 0.5 m depth and ending at 10.75 m depth

(see SI for details on the data set). We have used the fine-grain luminescence ages (Zech et al., 2017) to build an interpolated295

age-depth relationship as true age-depth information, despite potential ambiguities, just for the sake of simplicity and to serve

as an example.

We have created a new empty rule book (gleina) and added two more grain populations to the default one, in agreement

with the results of the end-member modelling analysis. The relative contributions of the three end-members (i.e., their
::
to

:::::::::::
accommodate

:::
the

:::::
three

::::::::::::
end-members.

:::::
Their

:::::::
relative

:::::::::::
contributions

:
(depth-dependent scores, EM_scores) have been

::::
were300

used as population probabilities and added to the rule book. The parametric approximations of the end-member grain-size

distributions (EM_gsd) were added similarly
::
as

::::::::
grain-size

:::::
rules. We set the population-specific packing densities to 0.7 for the

coarse-grained end-member, 0.6 for the medium and 0.5 for the fine end-members, each with a standard deviation of 0.01.

Grain specific densities were set to 2.65 ± 0.01 g cm−3 for all populations, imposing predominantly quartz minerals. The

following code snippet is a one-to-one version of this descriptive text.305
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## load the measurement data

X <- read.table(file = "gleina_measurements.txt")

::::::::::::::::::::
X
::::
<-

::::::
read

:
.
::::::
table

:
(
:::::
file

:::
=

::
"
:::::::::::::::::::::::
gleina_interpolated

:
.
::::
txt

::
",

::::::::
header

:::
=

::::::
TRUE

:
)

## convert cm to m, get number of records310

X$depth_int <- X$depth_int / 100

n <- nrow(X)

## create empty rule book

gleina <- get_RuleBook(book = "empty")315

## add two further populations

gleina <- add_Population(book = gleina, populations = 2)

## assign rule definitions to lists320

depth <- list(X$depth_int)

age <- list(X$age_int)

EM_scores <- list(list(X$EM_1),

list(X$EM_2),

list(X$EM_3))325

::::::::::::::::::::::::::::::
EM_scores

::::
<-

::::::
list

:
(

:::::
list

:
(

:::::::
X$EM_1

::
),

::::::
list

::
(

:::::::
X$EM_2

::
),

::::::
list

:
(
::::::::
X$EM_3

::
))

EM_gsd <- list(list(mean = rep(6.38, n), sd = rep(0.9, n)),

list(mean = rep(4.69, n), sd = rep(0.5, n)),

list(mean = rep(4.29, n), sd = rep(0.5, n)))

EM_packing <- list(list(mean = rep(0.7, n), sd = rep(0.01, n)),330

list(mean = rep(0.6, n), sd = rep(0.01, n)),

list(mean = rep(0.5, n), sd = rep(0.01, n)))

EM_density <- list(list(mean = rep(2.65, n), sd = rep(0.01, n)),

list(mean = rep(2.65, n), sd = rep(0.01, n)),

list(mean = rep(2.65, n), sd = rep(0.01, n)))335

## add rule definitions

gleina <- set_Rule(book = gleina, parameter = "age",

value = age, depth = depth)

gleina <- set_Rule(book = gleina, parameter = "population",340
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value = EM_scores, depth = depth)

gleina <- set_Rule(book = gleina, parameter = "grainsize",

value = EM_gsd, depth = depth)

gleina <- set_Rule(book = gleina, parameter = "packing",

value = EM_packing, depth = depth)345

gleina <- set_Rule(book = gleina, parameter = "density",

value = EM_density, depth = depth)

::::::::::::::::::::::::::
gleina

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::
gleina

:
,

::::::::::::
parameter

::
=
:::
"

:::
age

:::
",

:::::::
value

::
=
:::::
age

:
,
:::::::
depth

:::
=

:::::::
depth

:
)

::::::::::::::::::::::::::
gleina

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::
gleina

:
,

::::::::::::
parameter

::
=
:::
"

::::::::::::
population

::
",

:::::::
value

:::
=

::::::::::::
EM_scores

:
,

:::::::
depth

::
=
::::::::
depth

:
)

::::::::::::::::::::::::::
gleina

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::
gleina

:
,

::::::::::::
parameter

::
=
:::
"

::::::::::
grainsize

:::
",

:::::::
value

::
=
:::::::::
EM_gsd

:
,
:::::::
depth

:::
=

:::::::
depth

:
)350

::::::::::::::::::::::::::
gleina

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::
gleina

:
,

::::::::::::
parameter

::
=
:::
"

::::::::
packing

::
",

::::::::
value

::
=
:::::::::::::
EM_packing

:
,
::::::::
depth

::
=
:::::::
depth

:
)

::::::::::::::::::::::::::
gleina

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::
gleina

:
,

::::::::::::
parameter

::
=
:::
"

::::::::
density

::
",

::::::::
value

::
=
:::::::::::::
EM_density

:
,
::::::::
depth

::
=
:::::::
depth

:
)

::::::::::

3.5 Application examples and parameterisation

To illustrate the basic functionality and potential applicability of sandbox, we investigate a set of research questions . We355

provide the R code that has been used to implement each
::::
three

::::::
simple

::::::::
research

::::::::
questions

:::
and

::::
two

::::
more

:::::::::
elaborated

:::::::::
examples.

:::
The

:::::
main

::::
goal of these tests in the SI

::
is

:::
not

::
to

:::::
create

:::
the

:::::
most

::::::
realistic

:::::::::::::
representations

::
of

:::::::::::
depositional

::::::::
processes

:::
and

::::::::
resulting

:::::::
sediment

::::::::
sections,

:::
but

:::::
rather

::
to
::::::::

illustrate
::::
how

::::::::::
parameters

:::
are

:::::::
defined,

:::::::
samples

:::
are

::::::::
examined

::::
and

:::
the

:::::::
model’s

::::::::
flexibility

::::
can

::
be

:::::::
utilised.

:::
See

:::
the

:::
SI

:::
for

:::
the

:::::
actual

:::::
code

:::::::::::::
implementation

:::::
along

::::
with

::::::::
additional

:::::::::
examples

::
on

:::::
more

:::::::
realistic

:::::::
physical

:::::::
process

:::::::::::
representation. The questions are as follows:360

1) How does the sample container geometry impact the age scatter? Container geometry means that we have inspected

the differences between cylindric and cuboid sample containers, all with the same volume. We simulated cylinders with 10 mm

diameter, cubes of 10 mm width and height and 0.8 mm length, and cuboids of 20 mm, 40 mm, and 80 mm width and 5 mm,

2.5 mm, and 1.25 mm height, respectively. While the real-world applicability of such container geometries is limited, the test

stresses the influence of sampling depth intervals, including minimal values. It can also be interpreted as mimicking manually365

extracting a thin layer of sediment without using a sample container
::
the

:::::::
manual

::::::::
extraction

:::
of

:
a
::::

thin
::::::::
sediment

:::::
layer. Cuboid

container lengths were set to 0.8 mm throughout. Note that we can work directly with the sampled material without any further

preparation steps. Thus, small sample volumes are sufficient. The virtual sampling depth for the test was set to 5 m, using the

depth-interpolated true ages of the sampled grains as a direct proxy for age scatter.

2) What is the effect of sample container size on age uncertainty? Here we test different cylinder diameters for different370

profile depths of the Gleina loess section. We have sampled the virtual Gleina section at 1 m intervals, using containers with

diameters ranging from 0.5 cm to 50 cm, keeping the volume constant at 0.5 cm3. Again, 0.5 cm and 50 cm wide containers

are far from reality. However, they define a safe lower and upper limit of possible cases and manually collected samples.
::::
This
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::::::
second

:::::::
question

::::::
differs

::::
from

:::
the

::::
first

:::
one

::
by

::::
also

:::::::::
accounting

:::
for

:::
the

:::::::::
deposition

::::
rate

::
as

:::
the

:::::::
expected

::::::::::::::
depth-dependent

::::
age

::::
span

::
in

:
a
:::::::
sample.375

3) What kind of standard luminescence age bias is
:::
can

:::
be expected due to

::::::::::
preparation

:::::
using

:::::::::
standard grain-size

interval processing
:::::::
intervals

:
if the three components building the loess section have different bleaching probabilities?

:::
The

::::::::
rationale

::
for

::::
this

:::::::
question

::
is

:::
that

::::::::
sediment

:::::::
deposits

:::
are

::::::::
typically

::::::::
composed

::
of

:::::::
material

:::::
from

:::::::
different

:::::::
sources,

::::::::::
contributed

::
by

::::::::
different

:::::::::
processes.

:::::::::
Depending

:::
on

:::
the

::::::::
transport

::::::::::
mechanism

:::
(for

::::::::
example

::::
low

::::::
energy

:::
but

:::
far

:::::::
distance

:::::::
aeolian

::::::::
transport

:::::
versus

::::
high

::::::
energy

:::::
night

::::
time

:::
hill

::::::
wash),

:::
the

::::::::
exposure

::
of

:::::
grains

:::
to

:::::::
daylight

::::
may

:::::
differ

:::
and

::
so

::::
may

:::
the

::::::::
resetting

::::::::
likelihood

:::
of380

::::
their

:::::::::::
luminescence

::::::
signal.

::::::
Poorly

:::::::
bleached

::::::
grains

::::
with

::
an

::::::::
inherited

:::::::::::
luminescence

:::::
signal

::::
will

::::::
appear

::::
older

::::
than

::::
their

:::::
actual

::::
last

:::::::
transport

::::::
event.

::
At

:::
the

:::::
same

:::::
time,

:::::::
different

::::::::
transport

:::::::::::
mechanisms

::
or

:::::::
energies

::::
will

:::::::::
contribute

:::::
grains

:::
of

:::::::
different

::::
size,

::::::
hence

::::::
linking

:::
age

:::::::::
inheritance

::::
with

:::::
grain

::::
size.

:::::
Over

::::
time,

:::
the

::::::
relative

::::::::::
importance

::
of

::::::::
transport

::::::::
processes

::::
with

::::
such

:::::::
different

:::::::::
bleaching

:::::::
potential

::::
may

::::::
change

::::
and

::
so

::::
may

:::
the

:::::::::
convoluted

::::
age

:::::::::
inheritance

:::::
effect

::
at

:::::::
different

::::::
depths

::
of

::
a
:::::::
sediment

:::::::
section.

:
For this test,

we have added a new specific rule (inherited), which defines the
::
an

:
inherited age in years for each population. For the385

coarse-grained population (end-member 3), we assumed a poor bleaching likelihood and thus a uniformly distributed random

age inheritance within the arbitrarily chosen range of 0 years to 5000 years. For the two other populations, we imposed uniform

random inheritance ages between 0 years and 200 years. We collected samples every 0.5 m using a 5 cm cylinder, sieved the

sampled material for the typical coarse grain (90–200 µm) and fine grain (4–11 µm) fraction (e.g., Kreutzer et al., 2012a)

and calculated the mean age composed of the true deposition age and the inheritance from each grain. In addition, we have390

prepared three additional data sets, this time adjusting the limits of the virtual sieve to isolate each of the three end-members

as good as possible (see Fig. 2 for intervals), in order to inspect the age differences inherent to the three different components

that constitute the sediment section.

::
4)

::::
How

::::
can

:::::::::::::::
depth-dependent

::::::::
packing

::::::::
densities

::
be

:::::::::
realised?

:::::
While

::::
the

:::::
above

::::::::
examples

::::::
mainly

::::::
aimed

::
at

:::::::
abstract

::::
and

::::::::
simplified

::::::::
sediment

::::::
section

:::::::::
properties,

::::
one

:::::
might

::::
also

::::
want

::
to

:::::::::
implement

:::::
more

:::::::::
physically

::
or

::::::::::::::::
sedimentologically

::::::::::
meaningful395

::::
rules.

:::::::::::
Exemplarily,

:::
we

:::::
show

:::
how

::
a
:::::::
variable,

::::::::::::::
depth-dependent

:::::::
packing

::::::
density

:::
can

:::
be

:::::::::::
implemented.

::::
This

:::::::
example

::::
may

:::
be

::::
used

::::
when

:::::::::
modelling

:::::::::
successive

::::::::
sediment

::::::::::
compaction

::::
with

:::::
depth

:::
due

::
to

:::::::::
increasing

::::::::::
overburden.

:::
For

::::
this,

:::
we

:::
use

::
a
::::::
simple

:::::::
porosity

:::::
model

::::::::::::::::::::::::::
(Sheldon and Retallack, 2001)

::
to

::::::
modify

:::
the

:::::::
packing

::::::
density

::
as

::
a
:::::::
function

::
of

::::::
depth.

::
5)

::::
How

::::
can

::::::::::::::
heteromorphism

::::
due

::
to

:::::::
distinct

:::::::
mineral

:::::
grain

:::::::
specific

::::::::
densities

:::
be

::::::::::::
implemented?

:::
This

::::::::
example

::::::::
simulates

::
the

::::::::
transport

::
of

::::::
equally

::::::
heavy

:::::
grains

::
of

:::::::
different

::::
size,

::
a
::::
case

:::
that

:::
can

:::
be

:::::::
expected

:::
for

::::::::
sediment

::
of

:::::::::::::
inhomogeneous

:::::::::::
composition.400

::
To

:::::::::::
parameterise

:::
this

::::::::
example,

::
we

::::::
change

::::
one

::
of

:::
the

::::
three

::::::::::
populations

::
of

:::
the

::::::
existing

::::
rule

:::::
book,

::
i.e.

:::
the

:::::::
smallest

:::::
grain

:::::::::
population

:::::::::::
corresponding

:::
to

::::::::::
end-member

:::
1,

:::::::
allowing

:::
for

::
it
::
to

:::
be

:::::
either

:::::::::
composed

::
of

::::::
quartz

:::::::
(specific

::::::
density

:::
of

::::
2650

:::::::
kg/m3)

::
or

::::::
zircon

:::::::
(specific

::::::
density

:::::
4600

:::::::
kg/m3).

:::
The

::::::::
diameter

::
of

:::
the

::::::
zircon

:::::
grains

::
is
::::

then
:::::::::

calculated
::
to

:::::
result

:::
in

::
an

:::::
equal

::::::
weight

::
as

:::
the

::::::
larger

:::::
quartz

::::::
grains.

::
To

:::::
make

:::
the

::::::
effects

::::::
visible,

:::
we

::::::::::
additionally

::::::
change

:::
the

:::::::::
grain-size

:::::::
standard

::::::::
deviation

::
of

:::::::::::
end-member

:
1
:::::
from

:::
0.9

::
to

:::
0.1.

:::
We

::::
note

::::
that

:::
this

:::
still

::
is
::
a

::::::::
simplified

::::::::
approach

:::
not

::::
fully

::
in

:::::::::
agreement

::::
with

::::
drag

:::::
force

:::::::::
constraints.

::::::::::::
Nevertheless,

:
it
::::::
serves405

::
the

::::::::::
illustration

::
of

:::
the

::::::
generic

::::::::
approach.

:
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Figure 2. End-member modelling results of the measured grain-size data of the Gleina section. Dashed lines in the loadings plot show fitted

log-normal distribution curves according to the parameters in the bottom legend panel. Grey shaded areas in the loadings panel depict grain-

size intervals used for sieving to enrich individual end-members. Sample IDs in the scores plot denote samples from top to bottom.

4 Results

4.1 End-member modelling analysis

Deterministic EMMA with three end-members (q = 3) and no weight limit transformation (l = 0
::::
(Fig.

::
2) resulted in an overall

R2 of 0.74 (sample-wise R2 = 0.93, class-wise R2 = 0.56). The class-wise R2 increased to 0.75 when omitting the low values410

in classes where the end-member loadings are close to zero due to only minor vol.-% values in the input data set, see Fig. 2.

The three end-members were unimodal with ϕ modes at 6.38, 4.68 and 4.29 (12 µm, 39 µm and 51 µm). Secondary , artificial ,

peaks
:::::::
artificial

:::::
modes

:
occurred below the main modes of the other end-members, as commonly encountered in EMMA (Dietze

and Dietze, 2019). Hence, normal functions were only fitted to the primary modes. The best fits were reached for ϕ 6.38±0.9,

4.68±0.5 and 4.29±0.5These values were used to feed the rule book with information about the grain-size distribution of the415
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Figure 3. Effect of sample container geometry on scatter of sampled grain ages. X-axes all scaled to the same range.

three populations (mean and standard deviation were set as constant, i.e., not varying with depth). The probability of grains to

be drawn from one of the three populations was defined by the respective end-member scores.

4.2 Effect of sample container geometry and size on age scatter

The sample container shape directly reflects the single-grain age distribution of the sampled material (Fig. 3). Cylinders produce

a sinusoidal distribution shape of ages with a standard deviation of 3.7 years, while cubic containers produce a flat distribution420

with a standard deviation of 4.2 years. Note that the absolute scatter is an arbitrary number with no real-world equivalent. It

merely depends on the deposition rate and container size (see below). Along that line, as the cuboids become more elongated

in the horizontal direction by factors 2, 4 and 8, the standard deviations of the flat age distributions decrease to 2.1 years, 1.1

years and 0.5 years, respectively. This purely geometric effect is also witnessed by the constant average age for all types of

sampling containers.425

Sample container size has a variable effect on the age scatter (Fig. 4), also depending on the deposition rate of the investigated

sediment section. In general, larger sample container sizes systematically increase the age scatter inherent to the sampled grains,

following a linear relationship. However, the sampling depth modulates the overall scatter, which determines the sediment

deposition rate here. For the deposition ranges of the virtual Gleina section, we found age scatter as high as 4624 years (using a

50 cm wide sampling depth interval) in the basal section with a deposition rate of 0.033 m ka−1. More realistically, 5 cm wide430

sampling containers still yielded an age scatter of 481 years. In the central parts of the section with deposition rates as high as

3.9 m per ka, that error reduced to 4 years and 43 years for container diameters of 5 and 50 cm, respectively.

4.3 OSL age bias due to preparation size
::::::::
prepared

:::::::::
grain-size

:
ranges

The impact of age inheritance can range from marginal to significant, depending on the analysed grain-size fraction. Note

that here we can ignore
::::::::
analytical

:
scatter in age and thus error bars in Fig. 5 because we implicitly know the true ages of the435

sampled grains and hence can focus completely on the systematic effects. Analysing the typically utilised coarse grain fraction

(90–200 µm, Fig. 5 a) can introduce a systematic mean age offset (difference between apparent and true age ) of up to 2500

years (up to 10 %). Thereby, the
::::
That offset is controlled by the relative contribution of the coarse-grained end-member to a
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Figure 4. Effect of cylindric sample container size. Warmer colours indicate a higher age scatter.

sample. The result is a stratigraphically inconsistent age-depth relationship with four age inversions. When using the typically

encountered size interval of the fine-grain fraction (4–11 µm, Fig. 5 b) to estimate average grain ages, the age offset is minimal,440

about 118 years on average. There are no age inversions visible in this size fraction. However, the age offset still correlates

with the contribution of end-member 1, from which a few grains still leak into the sieving
::::
sieve

:
interval.

When targeting grain-size intervals that specifically aim to isolate the three end-members inherent to the grain-size distribu-

tion of all samples, the coarse-grain end-member (Fig. 5 c) mimics the offset and stratigraphic inversion patterns of the coarse

grain samples. The intermediate end-member (Fig. 5 d) shows similar trends to the coarse one but with less severe effects (800445

years maximum offset). Finally, the fine-grain end-member (Fig. 5 e) shows an average age offset of 100 years (corresponding

to the imposed range of 0–200 years) without any relationship to the contribution of the coarse-grained end-member.

5 Discussion

4.1 Structure and implementation of sandbox
:::::::::::::::
Depth-dependent

:::::::
packing

:::::::
density

:::::::::
behaviour

The proposed structure of sandbox, consisting of grains, populations, parameters, rules, and functions, allows to consistently450

define synthetic sections (virtual twins of sediment deposits) that can be used to pursue a series of research questions, for

instance the study of the effects of sampling container sizeand grain sizerelated age inheritance on the expected age scatter.
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Figure 5. Age inheritance effects due to different sieve intervals of the modelled Gleina section. a) Typical coarse grain sieve intervals. b)

Typical fine-grain sieve intervals. c–e) Optimised sieve intervals to isolate the three inherent grain-size end-members best possible. See Fig. 2

for interval definitions. The left plot panels show average true depositional ages (grey dots) and apparent measurement ages (black dots),

composed of true and inherited ages per grain. Right plot panels show age inheritance (black lines) and contribution of end-member 1 (grey

lines) as a function of depth. Red arrows mark age inversions.

The latter one would be usually recognised as overdispersion,
::::::::
simulation

::
of

::
a
:::::::::::::
depth-dependent

:::::::
packing

::::::
density

::::::::::
relationship

::::
first

:::::::
required

::
to

:::::
define

:::
the

:::::::
function

::::
that

:::::
relates

:::::
these

::::
two

::::::
metrics,

:::::::::
following

:::
the

:::::::
porosity

:::::
model

:::
by

::::::::::::::::::::::::
Sheldon and Retallack (2001)

:
:
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Figure 6.
::::::::::::
Depth-dependent

:::::::
sediment

:::::::
packing

::::::
density

:::::::
evolution

::::
and

:::::::
resulting

:::::
effects

::
of

::::::::
generated

:::::::
samples.

::
a)

::::::::::
Exponential

:::::::::
relationship

:
of
:::::

depth
:::
and

:::::::
packing

::::::
density

:::::::
following

:::
the

:::::
model

:::
by

::::::::::::::::::::::
Sheldon and Retallack (2001)

::::
with

:
a
::::::::
decisively

::::
high

:::::::::
compaction

:::
rate

:::
of

:::::
10−1.

::
b)

:::::::
Resulting

::::::::
increasing

::::::
number

::
of

:::::
grains

:::
per

::::::
equally

::::
large

::::::
sample

::::::::
containers

::
(2

::
m

:::::::
sampling

:::::::
interval),

:::::::
showing

::::
some

:::::
scatter

:::
due

::
to
:::

the
::::
also

::::::::::::
depth-dependent

:::::::::
contribution

::
of

:::::::::
populations

::
of

:::::::
different

:::
size.

::::::::::::::::::::::::::::::
rho_depth

::::
<-

::::::::
rho_qz

::
-
:::::::::
rho_qz

::*:::::::
rho_0

:::*:::::
exp

::
(-

:
k
:::* ::::::::::::::

X$depth_int
:
)
:::::

455

::::::::::

:::::
Where

:
rho_qz

:
is

:::
the

:::::::
specific

:::::
quartz

:::::
grain

:::::::
density

:::::
(2650

:::::::
kg/m3), rho_0

:
is
:::
the

:::::
initial

:::::::
relative

:::::::
porosity

::
at

::::
zero

::::::
depth,

:::
for

:::::
loessic

:::::::
material

::::::::
typically

::::::
around

:::
0.6

::::::::::::::::
(Blume et al., 2010)

:
,
:::
and k

:
is
:::
an

::::::::
empirical

:::::::
material

::::::::
dependent

::::::::::
compaction

:::
rate

::::::::::
coefficient,

:::
here

:::::::::
arbitrarily

:::
set

::
to

:::::
10−1.

::
In

::
a

::::::
second

::::
step,

:::
this

::::::::::::::
depth-dependent

:::::::
packing

::::::
density

::::
can

::::::
simply

::
be

::::::
added

::
as

:
a
::::
rule

:::
for

::
all

:::::
three

:::::::::
populations

::
of

:::
the

:::::::
existing

:::
rule

:::::
book,

:::
for

:::::::
example

::::
with

:
a
:::::::
constant

::::::
scatter

::
of

::
10

::::::
kg/m3

:
(rho_scatter <- rep(10, length(rho_depth))

:
).460

:::
The

::::::::
resulting

:::::::::::::
depth-dependent

:::::::
packing

:::::::
density

::::
(Fig.

:
6
::
a)
:::::::
follows

:::
the

:::::::
expected

::::::::::
exponential

:::::
trend.

:

::::::::::::::::::::::::::::::::::::
gleina_packing

::::
<-

::::::::::
set_Rule

::
(

::::
book

:::
=

::::::::
gleina

:
,
::::::::::::
parameter

:::
=

::
"
:::::::::
packing

::
",

:::::::::::::::::::::::::
value

:::
=

::::::
list

:
(

:::::
list

:
(

:::::
mean

::
=
::::::::::::
rho_depth

:
,
::::
sd

::
=
:::::::::::::::
rho_scatter

::
),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
::::::::::::
rho_depth

::
,

:::
sd

:::
=

::::::::::::::
rho_scatter

::
),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
::::::::::::
rho_depth

::
,

:::
sd

:::
=

::::::::::::::
rho_scatter

::::
)),465

:::::::::::::::::::::::::
depth

:::
=

:::::::
depth

:
)

::::::::::

::::::::
Sampling

:::
the

:::::::
modified

::::
rule

::::
book

::
at
::
2

::
m

::::::::
sampling

:::::::
intervals

::::
with

:::::
small

:::::::::
containers

::::
(0.05

::::
mm

::::::
cuboid

::::
edge

::::
size)

:::::::::
resembles

:::
the

:::::
effect

:::
that

::::::
denser

:::::::
packing

:::::
yields

::
in

::::::
general

:::::
more

:::::
grains

::::
with

:::::::::
increasing

:::::
depth.

:::::::::
However,

:::
the

::::
trend

::
is

::::::::::::
superimposed

::
by

:::
the

::::
also

:::::::::::::
depth-dependent

:::::::::::
contribution

::
of

:::
the

::::
three

::::::::::::
end-members,

::::
each

::::
with

::
a

:::::::
different

:::::::::
grain-size.470
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4.2
::::::::::::::

Heteromorphism
::
of

::::::
grains

::::
with

:::::::
distinct

:::::::
specific

:::::::
density

::
To

:::::::::
implement

:::
an

::::
equal

:::::::::::
contribution

::
of

:::::
grains

:::::
from

:::
two

::::::::::
populations

::
of

:::::
equal

:::::
grain

::::
mass

:::
but

::::::::::::::
correspondingly

:::::::
different

:::::::
mineral

::::::
density

::::
and,

:::::
hence

::::::::
diameter,

:::
we

::::
first

:::::::::
determined

:::
the

:::::
mass

::
of

:
a
::::
one

:::
mm

:::::
large

::::::
quartz

::::
grain

::::
and

::::
used

:::
this

:::::
mass

::
to

:::::
solve

:::
for

:::
the

:::::::
diameter

::
of

:::
an

::::::
equally

:::::
heavy

::::::
zircon

::::
grain

::
to

:::::::
retrieve

:::
the

:::::::
diameter

:::::::::
conversion

::::::
factor

:::
(i.e,

:
83.20754

:::
%).

::::::::::::::::::::::::::
m_sand

::::
<-

::::::
2650

::*::::::
(4/3

:::*:::
pi

:::*::::::::
0.0005

:
3
::
)475

::::::::::::::::::::::::::
d_zirc

:::
=

::
2
:::* ::

(
:::::::
m_sand

:::
/

::::::
(4/3

::*::::
pi

::*::::::::
4600))

::::::
(1/3)

::::::::::::::::::::::::::::::::::
f_conversion

:::
<-

:::::::::
d_zirc

::*:::::
100

::
/
:::::::
0.001

::::::::::

::::::::::
Accordingly,

:::
the

:::::::
average

:::::::::
grain-size

::
of

::::::
quartz

:::::
grains

:::::
(6.38

::
ϕ)

:::::::
reduces

::
to

::::
6.65

::
ϕ
:::
for

:::::::
equally

:::::
heavy

::::::
zircon

::::::
grains.

:::::
Since

:::
we

::::
have

:::::
added

::
a
::::
new

:::::::::
population,

:::
the

:::::::
packing

::::::::
densities

::::
and

::::
also

:::
the

::::::
specific

:::::
grain

::::::::
densities

::::
need

::
to
:::

be
:::::::::
re-defined.

:::::
Note

::::
that

::
in480

::::
order

::
to
:::::
make

::::
this

:::::
small

::::::
change

::
in

::::::::
diameter

::::::
visible

::::
(Fig.

:::
7),

:::
we

::::::
change

:::
the

:::::::
standard

::::::::
deviation

:::
of

::::::::::
end-member

::
1
::::
from

::::
0.9

::
to

:::
0.1

::
ϕ.

::::::::::::::::::::::::::::::::
gleina_zirc

::::
<-

::::::::::::::::::
add_Population

:
(
:::::
book

::
=
:::::::::
gleina

:
,
::::::::::::::
populations

:::
=

:::
1)

:::::::::::::::::::

::::::::::::::::::::::::::::::::
EM_gsd_zirc

::::
<-

::::::
list

:
(
:::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(6.38,

:::
n

::
),

::::
sd

::
=
:::::
rep

::::::
(0.1,

::
n
::::
)),485

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(4.69,

:::
n

::
),

::::
sd

::
=
:::::
rep

::::::
(0.5,

::
n
::::
)),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(4.29,

:::
n

::
),

::::
sd

::
=
:::::
rep

::::::
(0.5,

::
n
::::
)),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(6.65,

:::
n

::
),

::::
sd

::
=
:::::
rep

::::::
(0.1,

::
n
::::
)))

:::::::::::::::::::

:::::::::::::::::::::::::::::::::::::
EM_packing_zirc

::::
<-

::::::
list

:
(
:::::
list

:
(
:::::
mean

::
=
:::::
rep

::::::
(0.7,

::
n
:::
),

:::
sd

:::
=

:::::
rep

:::::::
(0.01,

::
n
::::
)),490

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

::::::
(0.7,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

::
n
::::
)),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

::::::
(0.7,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

::
n
::::
)),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

::::::
(0.7,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

::
n
::::
)))

:::::::::::::::::::

:::::::::::::::::::::::::::::::::::::
EM_density_zirc

::::
<-

::::::
list

:
(
:::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(2.65,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

::
n
::::
)),495

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(2.65,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

:::
n

:::
)),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(2.65,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

:::
n

:::
)),

::::::::::::::::::::::::
list

:
(
:::::
mean

::
=
:::::
rep

:::::::
(4.60,

:::
n

::
),

::::
sd

::
=
:::::
rep

:::::::
(0.01,

:::
n

:::
)))

::::::::::

::::
Also

:::::::
updated

::::
need

::
to

::
be

:::
the

:::::::
relative

:::::::::::
contributions

::
of

:::
the

:::::
initial

:::::::::::
end-member

::
1

::::::
because

:::::
now,

:
it
:::::
needs

::
to
:::::

share
:::
its

:::::::::
abundance500

::::
with

::
the

::::::
zircon

::::::
grains.

:::::
Thus,

:::
the

::::::::::::::
depth-dependent

::::::::::
contribution

:::::
needs

::
to

::
be

:::::::
updated

:::
for

::::
both

::::::::::
populations,

:::
as

::::
well.

:

:::::::::::::::::::::::::::::::::::
EM_contr_zirc

:::
<-

::::::
list

::
(

::::
list

::
(

:::::::
X$EM_1

::
/
:::::
2),

::::::
list

:
(
:::::::
X$EM_2

:::
),

::::::
list

:
(
:::::::
X$EM_3

:::
),

::::::
list

:
(

:::::::
X$EM_1

::
/
:::::
2))

::::::::::
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::::::
Finally,

:::
the

::::
new

::::
rules

::::
need

::
to
:::
be

:::::
added

::
to

:::
the

::::
rule

::::
book

::
to

:::::::::
implement

:::
all

:::
the

:::::::
changes.

:

::::::::::::::::::::::::::::::::
gleina_zirc

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::::::::
gleina_zirc

:
,

::::::::::::
parameter

::
=
:::
"

::::::::::::
population

::
",505

:::::::::::::::::::::::::
value

:::
=

::::::::::::::::
EM_contr_zirc

::
,

:::::::
depth

::
=
:::::::::::::
depth_fill

::
)

:::::::::::::::::::

::::::::::::::::::::::::::::::::
gleina_zirc

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::::::::
gleina_zirc

:
,

::::::::::::
parameter

::
=
:::
"

::::::::::
grainsize

:::
",

:::::::::::::::::::::::::
value

:::
=

::::::::::::::
EM_gsd_zirc

:
,
:::::::
depth

:::
=

:::::::::::::
depth_fill

:
)

:::::::::::::::::::
510

::::::::::::::::::::::::::::::::
gleina_zirc

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::::::::
gleina_zirc

:
,

::::::::::::
parameter

::
=
:::
"

::::::::
packing

::
",

:::::::::::::::::::::::::
value

:::
=

:::::::::::::::::::
EM_packing_zirc

:
,
:::::::
depth

:::
=

:::::::::::::
depth_fill

:
)

:::::::::::::::::::

::::::::::::::::::::::::::::::::
gleina_zirc

::::
<-

:::::::::::
set_Rule

:
(
:::::
book

::
=
:::::::::::::::
gleina_zirc

:
,

::::::::::::
parameter

::
=
:::
"

::::::::
density

::
",

:::::::::::::::::::::::::
value

:::
=

:::::::::::::::::::
EM_density_zirc

:
,
:::::::
depth

:::
=

:::::::::::::
depth_fill

:
)515

::::::::::

:::::
When

:::::
taking

:
a
:::::::
random

::::::
sample

::
at

:
a
:::::
depth

:::
that

::
is

:::::::::
dominated

::
by

:::::::::::
end-member

:
1
:
(i.e. , unexpected variance in the age distribution

regarding a pre-defined central age.
:::
10.7

:::
m,

:::
cf.

::::
Fig.

::
2

:::
and

::::
SI),

:::
the

::::::::::
distribution

:::
of

:::::::::
grain-sizes

::
is
::::::::::

dominated
::
by

::::
the

::::::
shared

:::::::::
occurrence

::
of

:::::
both,

:::
the

:::::::
original

::::::
quartz

:::::::::::
end-member

:::
and

:::
the

::::::
added

::::::
zircon

:::::::::
population.

::::
The

::::::::
resulting

::::::::
dominant

::::::
double

:::::
peak

::
in

:::
the

::::::::
grain-size

::::::::
spectrum

::::
(Fig.

::
7

::
a)

:::::::::
underlines

:::
the

:::::
shared

:::::::::::
contribution

::
of

::::
these

::::
two

::::::
mineral

::::::
grains

:::
and

::
is

::::
also

:::::::
reflected

:::
by

:::
the520

:::::
almost

:::::
equal

::::::::::
distribution

::
of

:::::::
specific

:::::::
densities

::::
(Fig.

::
7
::
b)

:::::::::
throughout

:::
the

:::::::
sample.

:

5
:::::::::
Discussion

5.1
::::::::

Structure
:::
and

::::::::::::::
implementation

:::
of

:::::::
sandbox

:::
The

::::::::
proposed

:::::::
structure

::
of
:
sandbox

:
,
::::::::
consisting

:::
of

:::::
grains,

:::::::::::
populations,

:::::::::
parameters,

:::::
rules,

::::
and

::::::::
functions,

::::::
allows

::
to

::::::::::
consistently

:::::
define

::::::::
synthetic

:::::::
sections

::
as

:::::
virtual

:::::
twins

::
of

::::::::
sediment

::::::::
deposits. Further extension of any given

:
a rule book is possible regarding525

additional
::
by

::::::
adding populations, grain parameters and rule definitions

:::
rules. The available distribution functions to describe

parameters and rules cover a significant range of use cases. Adding other functions would require updating the R code of

the package, either by a new package release or by editing the functions manually. Both is possible due to the R language

constraints and because the package only uses standard R packages by default.

The fundamental assumption inherent to
::
of sandbox is a valid, true age-depth relationship. At face value, this assumption530

implies that a sediment section fulfils
:::::
fulfills

:
the stratigraphic principle. However, this enforced principle is implemented

through a spline function. Such an interpolator of discrete age-depth pairs works appropriately as long as there is steady

accretion of material with time. However, it reaches limits (and fails its purpose) when stratigraphic gaps need to be addressed.

In such a case it is better to create two separate synthetic sediment sections, one above and one below the gap
::::::::
additional

:::::
effort

:
is
:::::::
required

:::
to

::::::
account

:::
for

:::::::::::
stratigraphic

::::
gaps

:::
(see

:::
SI).535
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Figure 7.
::::::::
Properties

::
of

:
a
:::::
virtual

::::::
sample

::::::
created

:
at
::
a
::::
depth

::
of

::
11

::
m
::::
from

::
a

:::
rule

::::
book

::::
with

:::
both

:::::
quartz

:::
and

:::::
zircon

:::::
grains

::::
(see

::
SI

::
for

:::::::
details).

:
a)
::::::::
Grain-size

:::::::::
distribution,

:::::::::
dominated

::
by

:::::
narrow

::::::::::
distributions

:::
(0.1

:
ϕ
:::::::
standard

::::::::
deviation)

::
of

:
a
:::::
quartz

:::::::::
end-member

::
1

::::
(6.38

::
ϕ)

:::
and

::
an

::::::::
additional

::::
zircon

:::::::::
population

::::
(6.65

:::
ϕ)

::
as

:::
well

::
as
:::::::::

suppressed
:::::
minor

::::::::::
contributions

::
of

::::::
coarser

:::::
quartz

:::::::::::
end-members.

::
b)

::::::::
Histogram

::
of
:::

the
::::::

specific
:::::

grain

::::::
densities

::
of
:::

all
::::::
grains,

::::::
showing

::
a
::::::
roughly

:::::
equal

::::::::
occurrence

::
of
:::

the
::::

two
:::::::
dominant

:::::::::
populations

::
of
::::::

quartz
:::::
(2650

:::::
kg/m3)

::::
and

:::::
zircon

:::::
(4600

::::::
kg/m3).

5.2 The virtual Gleina section

A cornerstone for subsequent analysis examples was translating the
:::
The measurement-based description of the Gleina loess

section
:::
was

:::::::::
translated into parameters and rules for sandbox. End-member modelling analysis yielded meaningful results:

the three
::::
three

:::::::::::::
predominantly

::::::::
unimodal end-members are predominantly unimodal (Fig 2). The secondary mode of EM 3 that

emerges right below the main mode of EM 1 is a typical model artifact
::::::
artefact

:
(Dietze and Dietze, 2019) and should thus not540

be interpreted as genetically meaningful. However, EM 2 has a suppressed secondary mode around 1 µm, which is statistically

robust (high R2 values) and does not interfere with a mode of any other end-member. Thus, this secondary mode may indeed

represent a transport regime that contributed a primarily bimodal grain-size distribution. It has been repeatedly reported that

loess particles are transported not just as single grains of medium to coarse silt size but also as aggregates of smaller particles,

either forming silt-sized agglomerates or adhering to such larger particles (Vandenberghe, 2013). In general, the three end-545

member loadings show the typical properties of Central European loess deposits (e.g., Bertran et al., 2016). The dominance

of the coarse silt fraction – in the Gleina case, two distinct populations (EMs 2 and 3) that both contribute predominantly to

the least pedogenetically altered depth intervals (Fig 2) – and an additional contribution of fine silt, in the Gleina case, this is

EM 1. Interestingly, none of the morphologically distinct palaeo-soil horizons (Meszner et al., 2011) exhibits remarkable and

distinct contributions of clay-sized particles. Instead, it is EM 1 that dominates the distributions in the pedogenetically altered550

depth intervals.
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5.3 Geometric sampling effects

The shapes of the employed
:::::::
Different

:
sample containers have , in general, purely geometric effects on the age composition

of each sample
:
a

:::::
purely

:::::::::
geometric

:::::
effect

::
on

::
a
:::::::
sample’s

::::
age

::::::::::
composition

:
(Fig 3): circular containers result in a sinusoidal age

distribution and rectangular containers in a flat one. From a relative age scatter perspective, cylindric containers are preferential555

to cube-shaped ones of the same vertical extent because most grains are sampled from the desired target depth. Furthermore,

flatter containers result in linearly decreasing relative age scatter. These findings may be rather obvious and
:::::
could

::
be

::::::
tested

:::
also

::::
with

::::
even

::::
less

::::::::
scripting

:::::::
overhead

::::
just

::
by

:::::::
drawing

:::::::
random

:::::::
numbers

:::::
from

:
a
:::::::::
parametric

::::::::::
distribution

:::::::
function.

::::::::::::
Nevertheless,

:::
they

:
serve as a simple example of how easily questions may be approached quantitatively yet systematically with sandbox.

Container size and shape become more relevant when
::::
also the material deposition rate is considered. For high deposition560

rates, like those typical for loess environments (e.g., the central part of the Gleina section between 8 m and 3 m depth, Fig. 4),

age differences among grains due to container size is small, a few years per cm container height. However, when section

intervals with low loess deposition rates are sampled, such as the basal and top parts with more prominent pedogenic features,

the age scatter can increase by several orders of magnitude simply because the grains in the container represent a larger range

of true ages. Hence, age scatter due to sampling is no artifact but actually represents the range of smapled grain ages. In the565

Gleina sectionthat we use as an example, a standard luminescence sampling cylinder of 5 cm diameter can thus add an age

scatter of several hundred years, regardless of the absolute depositional age.

While there are ways to minimise this sample container size effect, the documented practice in published articles seems to

show that in most cases standard sampling containers are used. Reducing the age scatter may be accomplished by using flatter

and more elongated sampling containers or even extracting material from horizontally aligned slits carved into an outcrop570

when this is possible. This sampling procedure requires more manual adjustment and is thus prone to other shortcomings (e.g.,

sample contamination, light-shielding efforts). Nevertheless, we advocate that virtual sediment modelling is used
::::
useful

:
in

advance to estimate the expected age scatter effect for given sample container geometries if one has a prior order of magnitude

estimate of the deposition rate, for example, based on
:::::::::::
morphologic

::::::
deposit

:::::::
features

::
or

:
stratigraphic relationships with other

sections.575

5.4 Sample population effects

In the age bias modelling exercise, we have explored how it is possible to simulate grain population-specific age inheritance

effects and to which extent these can impact the resulting subsample ages when subsampling is achieved by sieving. Then,

we have shown how one can attribute age inheritance phenomena to the underlying grain-size based populations identified by

EMMA.580

Real-world analogues of age inheritance could be poorly bleached grains, an effect that in many cases has been attributed

to a transport process that exposes those grains to direct sunlight only randomly and for brief time intervals. Examples of such

processes would be bedload or near bed transport in turbulent rivers or dislocation as
:::
are

::::
near

:::
bed

::::::
fluvial

::::::::
transport, rapid mass

wasting processes or rapid transport by
:::
and

:
soil erosion (Fuchs and Owen, 2008; Fuchs et al., 2010). Typically, such specific
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transport processes tend to focus also the grain-size distribution of the material they carry (Weltje, 1997; Vandenberghe, 2013).585

Hence, this problem fulfils
::::::
fulfills the preconditions for end-member modelling analysis in a particular way. The technique

allows isolating the transport processes due to their characteristic grain-size distributions. The resulting end-member loadings

information can then be used to adjust the sieve interval limits for subsequent age determination analyses, to the extent that

other analytical operations permit this.
::::::
Mineral

::::::
grains

::
of

::::::
specific

:::::::
density

::::
other

::::
than

::::::
quartz,

::::
such

::
as

::::::
zircon

::::
have

:
a
::::::
similar

::::::
effect:

::
the

::::::
higher

::::::
density

::::
will

:::::
result

::
in

:::::::
smaller

:::::
grains

::::::::::
transported

::
at

:::
the

::::
same

::::::
energy

:::::
level

::
of

:::
the

:::::::
transport

::::::::
medium.

::::
This

::
in

::::
turn

::::
will590

::::
cause

::
a
:::::::
bimodal

:::::::::
grain-size

:::::::::
distribution

:::::
(Fig.

:
7
:::
a),

:::::
which

::::
can

::
be

::::::::
identified

:::
by

:::::::
EMMA

:::
and

:::
be

::::::::
accounted

:::
for

:::
by

:::::::
adjusted

:::::
sieve

:::::::
intervals.

:::::::::
Explicitly

::::::
testing

:::
the

::::::::
potential

::
to

:::::::
identify

::::::
zircon

::::::::::::
contamination

::
of

:::::
OSL

:::::::
samples

::::::
would

::
be

::
a
::::::
further

:::::::
relevant

::::
and

::::::
feasible

::::::::::
application

::
of sandbox,

:::
but

::
is

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

:::::
study.

:

We found that straightforward application of good practice, isolating the typically utilised coarse grain or fine grain fractions

for luminescence dating, can lead to two very different age estimates between the
:::
for

:::
the

:::::::
different

:
fractions. Unfortunately,595

in principle, it is not possible to tell which of the two is more correct than the other – apart from the fact that in our exam-

ple, one of the age-depth relationships was stratigraphically consistent, whereas the other was not. This inability to identify

the "correct" solution is due to the phenomenon of multiplicity: different mechanisms leading to the same, equivocal result.

The two-grain size fractions are subject to different microdosimetric effects, and sample preparation work flows, both being

potential causes of differences in the resulting depositional age estimates (e.g., Fuchs and Lomax, 2019). In addition, the two600

grain-size fractions are also subject to different transport processes and depositional circumstances. These two classes of ef-

fects, methodological and transport dynamics, can affect the resulting age estimates in a cumulative and counteracting way.

Hence, to at least account for the transport class of effects, we recommend applying EMMA before deciding on the grain-size

fraction to use for subsequent age determination workflows. This approach does not only quantify the number and grain-size

characteristics of the populations inherent to a set of samples but it also allows adjusting the grain-size fractions for age deter-605

mination to ideally avoid overlapping of end-members. In other words, the sample preparation process isolates only grains that

belong to the same transport regime

5.5
:::::::::::

Implementing
:::::

more
::::::::
realistic,

:::::::::
physically

::::::
based

::::
rules

::::::::
Physically

::::::
based

::::::
process

:::::
laws

:::
are

::::
not

:::::::::::
implemented

::
to

:
sandbox

::
by

:::::::
default.

::::::
While

:::::
there

:::
are

:::::::
obvious

:::::
links

::::::
among

:::::
grain

:::::::::
parameters

::
of

::::
real

:::::
world

:::::::
deposits

:::::::
(specific

::::::
density

::::
and

:::::::::
grain-size,

::::::::
grain-size

::
or

:::::
shape

::::
and

:::::::
packing

::::::
density,

:::::
depth

::::
and

:::::::
packing610

::::::
density,

::::
and

::
so

::::
on),

:::::
these

:::
are

:::
not

::::::::::
represented

::::
from

:::
the

:::::
start.

::::::::
However,

::
if
::
a
:::::
model

::::::::
exercise

:::::::
requires

::::
such

:::::::
process

:::::::::
simulating

:::::::::::
relationships,

::::
these

:::
can

:::
be

:::::
added

::
by

:::::::
defining

:::::
rules.

::::
The

:::::::
research

::::::::
questions

:
4
::
to

::
5

:::::::
highlight

::::
how

::::
one

:::
can

::::::::::
exemplarily

:::::::::
implement

::::
such

:::::::
physical

:::::::::::
relationships

::::
with

:
a
::::::
limited

:::::::
amount

::
of

::::
extra

::::::::::
definitions.

:::
The

::::::::::::::
depth-dependent

:::::::
packing

:::::::
density

::::::::
evolution

::::
(Fig.

:::
6)

:::::
shows

::::
how

:::::
such

:::::::
imposed

:::::::::::
relationships

::::::
clearly

:::::
affect

::::::::::
subsequent

::::::
analysis

::::::
steps,

::
for

::::::::
example

::
by

:::::::::
increasing

:::
the

:::::::
number

::
of

::::::
grains

:::
per

:::::::
sample.

::::::::
However,

:::
the

:::::
value

::::
used

:::
for

:::
the

::::::::::
compaction

::::
rate615

::::::::
coefficient

::
k
::::
was

::
set

::
to
:::
an

::::::::::::
unrealistically

::::
high

::::::
number

:::
for

:::::::::
illustrative

:::::::
purpose.

::::
This

:::::::
implied

:::::::
roughly

:
a
::::::::
doubling

::
of

:::
the

:::::::
packing

::::::
density

::
of

::::::
loessic

:::::::
material

::::::
within

:::
just

::::
ten

:::::
metres

:::
of

::::::::
sediment

::::::::
thickness.

:::::::
Mixing

:::::
grains

::
of

::::::::
different

::::::::::
mineralogy,

::::
here

:::::::
directly

::::::::::
implemented

:::
by

:::
the

:::::::
specific

:::::
grain

::::::
density,

::
is
::

a
:::::::
realistic

:::::::
scenario

::
in
:::::

many
::::

real
:::::
world

:::::
cases

::
of
:::::::::::

depositional
:::::::
systems.

::::
The

::::
two
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::::::::
examples

::
(as

:::::
well

::
as

::::::
further

::::
ones

:::::::
detailed

::
in

:::
the

:::
SI)

:::::::::
illustrated

:::
the

::::::::
necessary

:::::::::
flexibility

::
of

:
sandbox

::
but

::::
also

:::
the

:::::::::
additional

::::
need

::
in

:::::::
scripting

:::
the

:::::::
desired

::::::
features.620

5.6 Potential further applications

This article’s primary purpose is to introduce the synthetic sediment section modelling framework sandbox, particularly with

emphasis on luminescence-based age determination. We have demonstrated how the framework can be modified in general.

Thus, it is possible and encouraged to apply the package beyond such simple or rather specific examples. sandbox can also be

used to pursue questions inherent to other radiometric age determination techniques, such as
::::::::::
radiocarbon,

::::::::::
cosmogenic

:::::::
nuclide,625

electron spin resonance, radiocarbon dating,
::::::::::::::
palaeomagnetism

:::
and detrital zircon dating, or even varved lake sediments or den-

drochronology age models. When parameters are assigned for grains’ mineralogical or chemical composition
::::
grain

::::::::
properties,

further scientific questions can be approached. For example, from disciplines like provenance analysis (based on detrital zircon

age distributions, mineralogical composition, or rare earth element concentrations). In the supplementary material
::::::::::
information

of this article we provide an example about how sandbox can be linked with other R packages, such as RLumModel630

(Friedrich et al., 2016) and Luminescence (Kreutzer et al., 2012b).

Inverse problems (Zeeden et al., 2018) are another potential cross-topic field of
::
for

:::
the

:
application of sandbox. In many

cases, there are no analytical solutions to link multi-parameter workflows to given sets of outcomes. Hence, one can only run

large scenarios with different parameter combinations to identify the parameter space that can deliver plausible solutions. The

sandbox framework provides the flexibility and efficiency needed to run many such scenarios for different questions.635

A further independent field of application regards the definition of reference data sets, for example, to test age model

approaches (e.g., Galbraith et al., 2005) or to explore the potentials and limitations of mixed-age distributions (Arnold and

Roberts, 2009) based on real-world examples. Especially in light of the last two applications fields, inverse problems and

reference data, sandbox provides the tool for creating virtual twins of sediment section, and hence, to define the problem

solution as a basis for comparing the performance of competing or new analytical routines. This is mainly in times of evolving640

machine learning approaches essential as those powerful tools rely on well-defined and labelled training or reference data.

5.7 Limitations

The structure of the package was designed to allow for extensive flexibility and computational efficiency
::::::::
simplicity. This re-

quired setting a few fundamental assumptions, which resulted in structural limitations. Some of these limitations may be partly

accounted for by workarounds. Most fundamentally, sandbox has no methods to account for erosional processes implicitly.645

As mentioned above (Sect. 5.1), the framework is based on a valid and intact age-depth relationship.

There is no support for post-depositional modification of grain properties at the moment. Such post-depositional dynamics

may be added by defining further rules. For example, pedoturbation may be implemented as the probability to find grains from

depths other than the actual sampling depths for each grain in a sample container, i.e., a rule that says if one sample at 5 m

depth there is a 10 % chance to sample grains from 10 cm below.650
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The 1D structure is another
::::
albeit

:::::::
intended

:
structural limitation of sandbox; wanted though.

:::
As

::
a

:::::
result,

::
it

::
is

::
for

::::::::
example

:::
not

:::::::
possible

::
to

::::::
account

:::
for

::::::
effects

:::
like

::::::::
increased

:::::::
packing

::::::
density

::::
due

::
to

::::::::
grain-size

:::::::::
differences

::::::
among

:::
the

::::::::::
populations,

::
as

::::::
would

::
be

:::::::
expected

:::::
when

:::::::
smaller

:::::::
particles

:::
can

:::
fill

:::
the

::::
voids

:::::::
between

:::::
larger

:::::
ones.

:::::::::
Currently,

::
the

:::::::
packing

::::::
density

::::
only

::::::::
becomes

:::::::
relevant

:::::
during

:::
the

::::::::
sampling

:::::::
process

:::::
where

::
it

:::::::::
determines

:::
the

::::::
number

:::
of

:::::
grains

::::
that

:::
can

:::
fill

:
a
::::::
sample

::
of

::
a
:::::
given

::::::
volume. If in future the

demand arises, the model can be expanded to 2D or 3D. However, this would come at the cost of defining rules not just for the655

depth direction but also in lateral directions. At present it is more feasible to tackle such scenarios by defining different virtual

sediment sections.

There are no topologic relations among the sampled grains. Apart from depth information for each grain, sandbox can

neither provide information on the 3D location of the grains within a sample container nor on the distances among their

centroids. This precludes asking questions that require grain-to-grain information.660

6 Conclusions

The R package sandbox provides a flexible and scalable framework to tackle research questions emerging from palaeoenvironmental

:::::::::::
environmental

:
reconstruction and numerical landscape representation. Its structure and available functions allow creating a vir-

tual twin of given or artificially designed sediment sections focusing on sediment grains and their properties along a depth

vector. The current focus on geochronology is a pragmatic one. The framework can be used for numerous further cross-665

discipline topics, including geochemical analysis, soil formation representation, inverse modelling, and reproducible reference

data set generation.

7 Data and code availability

The sandbox source code will be made
::
is available as an R package on CRANand

:
.
::::
The

:::::
living source code and development

:
is
:
transparently accessible via GitHub (https://github.com/coffeemuggler/sandbox). The supplementary materials

::::::::::
information670

contain an extensive manual to the package and the code used to prepare the figures in the main
:::
this text.

Author contributions. Michael Dietze designed the code and initiated the manuscript. Sebastian Kreutzer reviewed and optimised package

code, linked RLumModel and contributed age data for the loess section rule book. Margret C. Fuchs advised on the early stages of the package

and translated luminescence laboratory techniques to package functions. Sascha Meszner contributed all field-based sedimentological and

stratigraphic base data and provided the grain-size measurement data and interpretation. All authors shared responsibilities in writing the675

manuscript.

Acknowledgements. SK has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement No 844457 (CREDit).

25



References

Aitken, M. J.: An Introduction to Optical Dating, Oxford University Press, Oxford University Press, 1998.680

Arnold, L. and Roberts, R.: Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment

mixtures, Quaternary Geochronology, 4, 204–230, https://doi.org/10.1016/j.quageo.2008.12.001, 2009.

Bertran, P., Liard, M., Sitzia, L., and Tissoux, H.: A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France,

Journal of Quaternary Science, 31, e2909 – 13, https://doi.org/10.1002/jqs.2909, 2016.

Blaauw, M. and Christen, J.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474,685

https://doi.org/10.1214/ba/1339616472, 2011.

Blume, H.-P., Schffer, F., Brümmer, G., Schachtschabel, P., Horn, R., Kandler, E., Kögel-knabner, I., Ketzschmar, R., Stahr, K., Wilke, B.-M.,

and Welp, G.: Lehrbuch der Bodenkunde, Springer, 2010.

Dietze, E. and Dietze, M.: Grain-size distribution unmixing using the R package EMMAgeo, 68, 29–46, e&G Quaternary Sci. J., 2019.

Dietze, M. and Dietze, E.: EMMAgeo: End-Member Modelling of Grain-Size Data, r package version 0.9.6, 2016.690

Dietze, M. and Kreutzer, S.: sandbox: Probabilistic Numerical Modelling of Sediment Properties, https://CRAN.R-project.org/package=

sandbox, r package version 0.2.0, 2021.

Friedrich, J., Kreutzer, S., and Schmidt, C.: Solving ordinary differential equations to understand luminescence: ’RLum-

Model’ an advanced research tool for simulating luminescence in quartz using R, Quaternary Geochronology, 35, 88–100,

https://doi.org/10.1016/j.quageo.2016.05.004, 2016.695

Fuchs, M. and Lomax, J.: Stone pavements in arid environments: Reasons for De overdispersion and grain-size dependent OSL ages, Qua-

ternary Geochronology, 49, 191–198, https://doi.org/10.1016/j.quageo.2018.05.013, 15th International Conference on Luminescence and

Electron Spin Resonance Dating, 11-15 September 2017, Cape Town, South Africa, 2019.

Fuchs, M. and Owen, L.: Luminescence dating of glacial and associated sediments: review, recommendations and future directions, Boreas,

37, 636–659, https://doi.org/10.1111/j.1502-3885.2008.00052.x, 2008.700

Fuchs, M., Fischer, M., and Reverman, R.: Colluvial and alluvial sediment archives temporally resolved by OSL dating: Implications for re-

constructing soil erosion, Quaternary Geochronology, 5, 269–273, https://doi.org/10.1016/j.quageo.2009.01.006, 12th International Con-

ference on Luminescence and Electron Spin Resonance Dating (LED 2008), 2010.

Galbraith, R. F., Roberts, R. G., and Yoshida, H.: Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial

experiment, Radiation Measurements, 39, 289–307, 2005.705

Hales, T. C.: The sphere packing problem, Journal of Computational and Applied Mathematics, 44, 41 – 76, https://doi.org/10.1016/0377-

0427(92)90052-y, 1992.

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative

computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface

dynamics, Earth Surface Dynamics, 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.710

Kreutzer, S., Fuchs, M., Meszner, S., and Faust, D.: OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz

of different grain sizes, Quaternary Geochronology, 10, 102–109, https://doi.org/10.1016/j.quageo.2012.01.004, 2012a.

Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., Fischer, M., and Fuchs, M.: Introducing an R package for luminescence dating analysis,

Ancient TL, 30, 1–8, 2012b.

26

https://doi.org/10.1016/j.quageo.2008.12.001
https://doi.org/10.1002/jqs.2909
https://doi.org/10.1214/ba/1339616472
https://CRAN.R-project.org/package=sandbox
https://CRAN.R-project.org/package=sandbox
https://CRAN.R-project.org/package=sandbox
https://doi.org/10.1016/j.quageo.2016.05.004
https://doi.org/10.1016/j.quageo.2018.05.013
https://doi.org/10.1111/j.1502-3885.2008.00052.x
https://doi.org/10.1016/j.quageo.2009.01.006
https://doi.org/10.1016/0377-0427(92)90052-y
https://doi.org/10.1016/0377-0427(92)90052-y
https://doi.org/10.1016/0377-0427(92)90052-y
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.1016/j.quageo.2012.01.004


Krumbein, E. A. W. C.: The sediments of Barataria Bay, Journal of Sedimentary Petrology, 7, 1–15, https://doi.org/10.1306/D4268F8B-715

2B26-11D7-8648000102C1865D, 1937.

Lowry, J., Coulthard, T., and Hancock, G.: Assessing the long-term geomorphic stability of a rehabilitated landform using the CAESAR-

Lisflood landscape evolution model, in: Proceedings of the Eighth International Seminar on Mine Closure, edited by Tibbett, M., Fourie,

A., and Digby, C., pp. 611–624, Australian Centre for Geomechanics, https://doi.org/10.36487/ACG_rep/1352_51_Lowry, 2013.

Meszner, S.: Loess from Saxony, Ph.D. thesis, TU Dresden, Germany, 2015.720

Meszner, S., Fuchs, M., and Faust, D.: Loess-Palaeosol-Sequences from the loess area of Saxony (Germany), E&G Quaternary Science

Journal, 60, https://doi.org/10.3285/eg.60.1.03, 2011.

Meszner, S., Kreutzer, S., Fuchs, M., and Faust, D.: Late Pleistocene landscape dynamics in Saxony, Germany: Paleoenvironmental recon-

struction using loess-paleosol sequences, Quaternary International, 296, 95 – 107, https://doi.org/10.1016/j.quaint.2012.12.040, 2013.

Meszner, S., Dietze, M., and Faust, D.: Grain-size data from the loess profiles Ostrau and Gleina in Saxony (Germany) (1.0.0), https:725

//doi.org/10.5281/zenodo.4446863, https://doi.org/10.5281/zenodo.4446863, 2021.

R Development Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria, http://CRAN.R-project.org, 2021.

Schoorl, J., Sonneveld, M., and Veldkamp, A.: Three-dimensional landscape process modelling: The effect of DEM resolution, Earth Surface

Processes and Landforms, 25, 1025–1034, https://doi.org/10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z, 2000.

Sheldon, N. and Retallack, G.: Equation for compaction of paleosols due to burial, Geology, 29, 247–250, https://doi.org/10.1130/0091-7613,730

2001.

Tucker, G., Lancaster, S., Gasparini, N., and Bras, R.: The Channel-Hillslope Integrated Landscape Development Model (CHILD), pp.

349–388, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4615-0575-4_12, 2001.

Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful proxy for process identification, Earth Science Reviews, 121,

18–30, https://doi.org/10.1016/j.earscirev.2013.03.001, 2013.735

Weltje, G. J.: End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem, Math-

ematical Geology, 29, 503–549, 1997.

Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 2. Nondimensional-

ization and applications, Water Resources Research, 27, 1685–1696, https://doi.org/10.1029/91WR00936, 1991.

Zech, M., Kreutzer, S., Zech, R., Goslar, T., Meszner, S., McIntyre, C., Häggi, C., Eglinton, T., Faust, D., and Fuchs, M.: Comparative 14-C740

and OSL dating of loess-paleosol sequences to evaluate post-depositional contamination of n-alkane biomarkers, Quaternary Research,

87, 180–189, https://doi.org/10.1017/qua.2016.7, 2017.

Zeeden, C., Dietze, M., and Kreutzer, S.: Discriminating luminescence age uncertainty composition for a robust Bayesian modelling, Qua-

ternary Geochronology, 43, 30–39, https://doi.org/0.1016/j.quageo.2017.10.001, 2018.

27

https://doi.org/10.1306/D4268F8B-2B26-11D7-8648000102C1865D
https://doi.org/10.1306/D4268F8B-2B26-11D7-8648000102C1865D
https://doi.org/10.1306/D4268F8B-2B26-11D7-8648000102C1865D
https://doi.org/10.36487/ACG_rep/1352_51_Lowry
https://doi.org/10.3285/eg.60.1.03
https://doi.org/10.1016/j.quaint.2012.12.040
https://doi.org/10.5281/zenodo.4446863
https://doi.org/10.5281/zenodo.4446863
https://doi.org/10.5281/zenodo.4446863
https://doi.org/10.5281/zenodo.4446863
http://CRAN.R-project.org
https://doi.org/10.1002/1096-9837(200008)25:9%3C1025::AID-ESP116%3E3.0.CO;2-Z
https://doi.org/10.1130/0091-7613
https://doi.org/10.1007/978-1-4615-0575-4_12
https://doi.org/10.1016/j.earscirev.2013.03.001
https://doi.org/10.1029/91WR00936
https://doi.org/10.1017/qua.2016.7
https://doi.org/0.1016/j.quageo.2017.10.001

