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Abstract.

Past environmental information is typically inferred from proxy data contained in accretionary sediments. The validity of

proxy data and analysis workflows are usually assumed implicitly, with systematic tests and uncertainty estimates restricted to

modern analogue studies or reduced-complexity case studies. However, a more generic and consistent approach to exploring

the validity and variability of proxy functions would be to translate a sediment section into a model scenario: a "virtual twin".5

Here, we introduce a conceptual framework and numerical tool set that allows the definition and analysis of synthetic sediment

sections. The R package sandbox describes arbitrary stratigraphically consistent deposits by depth-dependent rules and grain-

specific parameters, allowing full scalability and flexibility. Virtual samples can be taken, resulting in discrete grain-mixtures

with defined parameters. These samples can be virtually prepared and analysed, for example to test hypotheses. We illustrate

the concept of sandbox, explain how a sediment section can be mapped into the model and explore geochronological research10

questions related to the effects of sample geometry and grain-size specific age inheritance. We summarise further application

scenarios of the model framework, relevant for but not restricted to the broader geochronological community.

1 Introduction

Information about the evolution of earth-surface dynamics beyond the time span of instrumental records is predominantly

gathered from sediment deposits, serving as host material of proxy data. Proxies are based on the presupposition that a specific15

sediment property is representative of an unknown environmental variable or can be unequivocally converted into such. The

validity of proxies is usually an assumption based on conceptual relationships, modern analogue data, or physical principles.

Further implicit assumptions arise from practical and methodological constraints, such as minimal post-depositional alteration,

representative sampling, appropriate sample preparation and measurement, and robust estimation of uncertainty ranges. All

these preconditions are typically assumed or at least considered to be of generic validity, but their impact on the interpretations20

is rarely tested.
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Numerical modelling of the earth surface processes has reached an advanced level (Willgoose et al., 1991; Schoorl et al.,

2000; Tucker et al., 2001; Lowry et al., 2013; Hobley et al., 2017). Yet, the commonly utilised landscape evolution models

almost exclusively focus on specific parts of the terrestrial sediment cascade, such as weathering, erosion, and material transport

processes, or at least have model-specific strengths and weaknesses in representing elements of this process phalanx. However,25

the formation of sediment deposits as proxy carriers is rarely considered. Most often, sediment is simply flushed out of the

terminal node or pixel of the modelled area, or deposition is reduced to the pure formation of geometric bodies (e.g., Lowry

et al., 2013). Despite its importance, the host material of our environmental information is significantly understudied from a

numerical perspective.

Describing a sediment deposit by a model would include a geometric description of the entire body (width, length, depth)30

as well as a thematic description of its constituents (e.g., voids, grains and their geometrical, mineralogical, or chemical

composition) by a vast number of parameters. As an example, describing a ten metre deep and one metre wide and long

column of loess would require describing as many as 1014 single grains, and each by a series of parameters. Depending on

the research question, one might reduce the geometric dimension of the deposit and thus the number of individual constituents

to describe. Likewise, it is possible to limit the number of parameters used to define each constituent. However, the general35

challenge remains. An alternative to this geometric and parametric reductionist approach is a model not at the scale of its

discrete constituents but one with model-wide rules that describe the properties of potential constituents at any given location

within the sedimentary deposit.

Here, we introduce the R package sandbox, a novel framework to create virtual sediment deposits. We explain the concept

and structure of sandbox along with a step-by-step description of how to map a "real world" loess section into a model. We40

illustrate different potential applications using simple examples, acknowledging that more realistic representations are possible

with additional parameterisation efforts. While we focus on geochronometric data, various other applications can be pursued.

The SI contains an extensive tutorial to the package, elaborated examples on how to implement more realistic deposition

effects, and all code used to create the figures of this article.

2 Philosophy and structure of sandbox45

sandbox is a free and open framework to build and analyse virtual sediment sections in R (R Development Core Team, 2021).

The package (Dietze and Kreutzer, 2021) is available at the Comprehensive R Archive Network (CRAN). The current developer

version is available on GitHub (https://github.com/coffeemuggler/sandbox/). The term framework implies that sandbox is

not tailored to a specific task but instead provides methods to use the tool in different scenarios. Specifically, sandbox

does not impose any default physical rules to mimic sedimentation processes. Nevertheless, such process-based rules can be50

implemented if desired (see SI for examples). Users can reduce or expand the default range of parameters applied to describe

the constituents of a sediment section.

sandbox is essentially a one-dimensional model. It describes the geometry of a sedimentary deposit only by its depth while

assuming infinite width and length. Boundary conditions are treated irrelevant apart from the distance to surface.
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Figure 1. Concept of the model sandbox. Grains are the atomic elements of the model. They are drawn from populations and assigned

parameters, which in turn are controlled by rules. Both rules and parameters are stored in rule books that act as coherent reference objects.

Preparation functions are used to virtually process samples that are generated based on rule books.

sandbox has a parametric (termed rule-based from here on) and probabilistic design. Sediment properties are defined by55

depth-dependent rules, containing the definitions of grain properties as probability density function parameters.

sandbox allows not only to build synthetic sediment sections but also to sample them, prepare the samples, measure them

and work with the synthetic results as with real-world measurement data. The function make_Sample() generates a finite

number of sediment particles based on the rule-controlled parameters together with information on the sampling depth and

sample container geometry. This step is the transition from rule-based to the discrete data realm.60

Understanding sandbox (Fig. 1) requires some key terms used in the modelling environment:

Population. A population is the most basic, coherent element of the entire model. A population is a set of sediment grains

with common characteristics. All grains from one population share the same (range of) properties of certain parameters, such

as grain size, depositional age or mineralogic composition.

Grain. Grains are the atomic elements of the model. They are always sampled from populations and described by a set of65

parameters. Each population has a defined probability of occurrence, which is defined as a parameter.

Parameter. Parameters are used to describe populations and, hence, sediment grains drawn from these populations. They

can be seen as the "thematic" definition of a virtual sediment deposit. There are two major groups of parameters: general and

specific. General parameters are depth-dependent sediment descriptions regardless of the population the grains are sampled

from. Examples of general parameters are water content and external dose rate (ionising radiation per time unit). Specific70
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parameters describe sediment grains with respect to the population to which a grain belongs. Hence, for each population, there

is another parameter definition. Examples are grain size, element or mineral constituents and specific density.

Rule. Rules describe how parameters change with depth. Rules can be regarded as the "spatial" definition of a sediment

deposit. They are defined as interpolation functions based on parameter-depth relationships. The default interpolation function

is a spline.75

Rule book. A rule book is the combination of parameters ("thematic" definition) and rules ("spatial" definition) to one

coherent reference book. A rule book ultimately comprises the definition of the entire virtual sediment section and generates

individual samples. There is an empty rule book available by default. A user can modify a rule book’s content at any time.

Analysis function. Once a rule book defines a virtual sediment deposit, it can be "exploited" using the pre-selection of

available functions, for example, by generating sets of samples with make_Sample(). These samples can then be subject80

to additional analysis functions of the package, such as prepare_Sieving() and prepare_Subsample(). All these

prepare-functions use information stored in each grain.

3 Materials and methods

3.1 Available functions

To start from scratch, it is necessary to create a new empty rule book, which can then be expanded by adding rules and param-85

eters. A new rule book can be created by the function get_RuleBook(), using the default keyword book = "empty".

book <- get_RuleBook(book = "empty")

This will generate a list object with all principal elements required to define a virtual sediment section: a book name

($book), a true age definition ($age), and the definition of population likelihoods ($population), grain-sizes ($grainsize),

packing density ($packing) and specific grain density ($density).90

True age means that there is an initial age for each grain depending on its depth. With depths and ages defined at discrete

intervals and interpolated by a spline function, sandbox uses a very simplistic representation of the sediment accumulation

process by default. It does not account for hiatuses or autocorrelated incremental sedimentation pulses followed by pauses

(Blaauw and Christen, 2011). However, such dedicated relationships can be implemented if required (see SI for examples).

Grain-sizes are defined on a ϕ-scale throughout (ϕ=−log2(
D
D0

), with D the diameter in µm and D0 the reference diameter95

1000 µm) to account for the non-normal distribution of these data (Krumbein, 1937). Packing density describes the ratio

between compound sample volume and the volume of solid particles in that sample. For regular spheres in a 3D space, the

close-packing density cannot exceed 0.74 (Hales, 1992). For natural soil material, the packing density is usually around 0.3

to 0.6 (Blume et al., 2010). The packing density becomes relevant for sandbox when taking virtual samples by volume or

further volume-based processing steps. The specific grain density (2.65 g cm−3 for quartz) is needed to define grain masses.100

The function add_Population() allows adding other grain populations to a rule book, which by default only has one.

Populations can be added at any time, and all specific rules of the rule book will be updated for the respective number of
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additional populations. The function requires specifying the rule book to be updated and providing the number of populations

to add.

Using add_Rule() allows to expand the range of applications and add, for example, information about the chemical or105

mineralogical composition of a sediment section. The new rule will automatically add the corresponding new parameter. The

function requires specifying the rule book to be changed (book), a name (name) for the new rule and corresponding parameter,

whether it is a specific or general rule (group), and how the resulting parameter is allowed to vary (type). Possible variation

types are type = "exact" (no variation), type = "normal" (variability according to a normal distribution defined

by additional rules of mean and standard deviation), type = "uniform" (variability according to a uniform distribution110

defined by minimum and maximum values), and type = "gamma" (variability following a Gamma distribution defined by

its shape and scale parameters as well as an offset constant). Depending on the type of variability, the function will add the

required parameters (value, mean, sd, min, max, shape, scale, offset) to the rule book. To add, for example, a rule that defines

a uniformly varying pH value for all populations, the following code is needed:

book3 <- add_Rule(book = book,115

name = "pH",

group = "general",

type = "uniform")

The function set_Rule() allows defining the actual rules of the rule book. An empty rule book just contains the tem-

plates of required rules (five in total). These templates need to be filled with proper definitions. This is the main purpose of120

set_Rule(). Depending on how a rule defines the parameter variability, one needs to provide different information along

with their respective depth intervals to establish the right interpolation function. To define the rule for grain depositional ages,

one needs to define a list that contains the depth intervals for the corresponding true age information and assign this to the rule

book. To assign grain density rules, allowing for variability around a mean with a given standard deviation, one needs to create

a nested list, one for each population, containing the means and standard deviations at the corresponding depth intervals. The125

below example will first define the rules as a one-metre depth interval, with a linear age increase of 1 ka per metre. Then, the

density for the population (P1) is defined as 2.5 g cm−3 on average, but with a depth-dependent standard deviation. Finally,

the grain packing density is set to 0.5 without scatter throughout the sediment section.

## describe rule definitions

depth <- list(c(0, 1, 2, 3))130

age <- list(c(0, 1000, 2000, 3000))

density <- list(P1 = list(mean = c(2.5, 2.5, 2.5, 2.5),

sd = c(0.0, 0.1, 0.2, 0.0)))

packing <- list(P1 = list(mean = rep(0.5, 4),

sd = rep(0, 4)))135
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## assign age rule

book <- set_Rule(book = book,

parameter = "age",

value = age,140

depth = depth)

## assign density rule

book <- set_Rule(book = book,

parameter = "density",145

value = density,

depth = depth)

## assign packing rule

book <- set_Rule(book = book,150

parameter = "packing",

value = packing,

depth = depth)

make_Sample() is a special function used to turn the essential information of a rule book into a discrete set of n grains.

For this, the function requires the arguments book (the rule book used to define the sediment section), depth (defining155

the centroid depth where the sample is created), and geometry (defining the geometrical shape of the sample container).

Currently, two types of sample containers are implemented: "cuboid" and "cylinder". Depending on which of the two

container shapes is used, further input is needed regarding height, width, length and radius. The function output is a

data.frame object with all grains, each described by the parameters contained in the rule book. The following code snippet

creates a 1 cm3 large cubic sample:160

sample_1 <- make_Sample(book = book,

depth = 1,

geometry = "cuboid",

height = 0.01,

width = 0.01,165

length = 0.01)

With prepare_Sieving(), one can simulate the physical sieving of a sample. The function requires the arguments

sample (the sample object to be processed) and interval (sieve interval in ϕ units). Based on this information, it will

remove all grains from the sample object that do not fall into the sieve intervals and return the updated data set.
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Splitting a bulk sample into a set of subsamples is performed by the function prepare_Subsample(). This can be done170

by splitting a sample into a defined number of equally large subsamples (specified by the argument number), by creating

subsets of a defined volume (specified by the argument volume), or by creating subsamples defined by sample weight (speci-

fied using the argument weight). In the latter two cases, the remainder of the bulk sample that does not allow filling the last

subsample will be rejected. The volume option accounts for the packing density, and the weight option accounts for the specific

density of the sample grains.175

A special kind of subsampling is performed by the function prepare_Aliquot(). Aliquots are defined in luminescence

analysis as sample subsets that compose a monolayer of sediment, fixed onto small metal discs, supplied to the measurement

device. The function mimics this typical workflow step and requires the specification of the aliquot disc size containing the

grain monolayer and a packing density of the grains on that disc, usually 0.65. Note that this value differs from the original

packing density value used to define the rule book.180

Finally, the package contains a convenience function convert_units(). This function can be used to convert grain-size

units between the metric and the ϕ scale. Note that the package also contains further function add_Parameter(), which is

a helper function used by set_Rule(), and not for direct usage.

3.2 The loess deposit Gleina

We use a 17 m thick real-world loess deposit from a former brickyard in the Saxonian Loess Region, eastern Germany (Meszner185

et al., 2011, 2013; Meszner, 2015). For this site, we can access a detailed granulometric dataset (Meszner et al., 2021) along

with a geochronological framework (Zech et al., 2017), both suitable in the context of this study.

The grain-size distribution of all 42 samples of the loess section were measured with a Horiba LA950 laser particle sizer,

providing 98 grain-size classes. About 0.5 to 1.5 mg air-dried and homogenised material were treated with 10 % HCl for 24

hours and subsequently treated with 40 % H2O2 for 72 hours. Each sample was measured for 5 s with ultrasonic excitation for190

10 s in the device to disaggregate particles mechanically. We used the Mie scattering theory with a refraction index of 1.55 and

an absorption index of 1.33. The median distribution of 10 consecutive measurements per sample has been exported for further

analyses.

3.3 EMMAgeo as auxiliary tool

To convert the quasi-continuous grain-size distributions into discrete populations, i.e. parametric descriptions (mean and stan-195

dard deviation) of grain-size rules for sandbox, we unmixed the dataset using the R package EMMAgeo v0.9.6 (Dietze

and Dietze, 2016, 2019). This package allows end-member modelling analysis (EMMA) of grain-size data sets; it describes

grain-size distributions as a linear combination of end-member loadings and scores. Loadings are the fundamental, genetically

interpretable grain-size distributions inherent to all grains. They can be interpreted in terms of discrete sediment sources, trans-

port pathways and/or transport processes. Scores depict the contribution of each loading to each sample and can be considered200

as a description of the relevance of a transport process for a given sample. In the context of this study, loadings refer to the

grain-size distribution of particular populations (parameter definition), and scores refer to the depth-dependent likelihood of a
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population to be sampled (rule definition). Here, we used deterministic EMMA with three end-members (q = 3) and no trans-

formation (l = 0). The resulting loadings were approximated with log-normal distribution functions (i.e. normal distribution

functions in the ϕ space) to get the best fit values of mean and standard deviation for each of the three populations.205

3.4 Mapping a deposit into sandbox

All analytical data of the Gleina loess section (Meszner et al., 2011), including the reanalysed grain-size data and end-member

scores, were linearly interpolated to equal intervals of 25 cm, starting at 0.5 m depth and ending at 10.75 m depth (see SI

for details on the data set). We used the fine-grain luminescence ages (Zech et al., 2017) to build an interpolated age-depth

relationship as true age-depth information, despite potential ambiguities, just for the sake of simplicity and to serve as an210

example.

We created a new empty rule book (gleina) and added two more grain populations to the default one, to accommodate the

three end-members. Their relative contributions (depth-dependent scores, EM_scores) were used as population probabilities

and added to the rule book. The parametric approximations of the end-member grain-size distributions (EM_gsd) were added

as grain-size rules. We set the population-specific packing densities to 0.7 for the coarse-grained end-member, 0.6 for the215

medium and 0.5 for the fine end-members, each with a standard deviation of 0.01. Grain specific densities were set to 2.65 ±
0.01 g cm−3 for all populations, imposing predominantly quartz minerals. The following code snippet is a one-to-one version

of this descriptive text.

## load the measurement data

X <- read.table(file = "gleina_interpolated.txt", header = TRUE)220

## convert cm to m, get number of records

X$depth_int <- X$depth_int / 100

n <- nrow(X)

225

## create empty rule book

gleina <- get_RuleBook(book = "empty")

## add two further populations

gleina <- add_Population(book = gleina, populations = 2)230

## assign rule definitions to lists

depth <- list(X$depth_int)

age <- list(X$age_int)

EM_scores <- list(list(X$EM_1), list(X$EM_2), list(X$EM_3))235

8



EM_gsd <- list(list(mean = rep(6.38, n), sd = rep(0.9, n)),

list(mean = rep(4.69, n), sd = rep(0.5, n)),

list(mean = rep(4.29, n), sd = rep(0.5, n)))

EM_packing <- list(list(mean = rep(0.7, n), sd = rep(0.01, n)),

list(mean = rep(0.6, n), sd = rep(0.01, n)),240

list(mean = rep(0.5, n), sd = rep(0.01, n)))

EM_density <- list(list(mean = rep(2.65, n), sd = rep(0.01, n)),

list(mean = rep(2.65, n), sd = rep(0.01, n)),

list(mean = rep(2.65, n), sd = rep(0.01, n)))

245

## add rule definitions

gleina <- set_Rule(book = gleina, parameter = "age", value = age, depth = depth)

gleina <- set_Rule(book = gleina, parameter = "population", value = EM_scores, depth = depth)

gleina <- set_Rule(book = gleina, parameter = "grainsize", value = EM_gsd, depth = depth)

gleina <- set_Rule(book = gleina, parameter = "packing", value = EM_packing, depth = depth)250

gleina <- set_Rule(book = gleina, parameter = "density", value = EM_density, depth = depth)

3.5 Application examples and parameterisation

To illustrate the basic functionality and potential applicability of sandbox, we investigate three simple research questions and

two more elaborated examples. The main goal of these tests is not to create the most realistic representations of depositional

processes and resulting sediment sections, but rather to illustrate how parameters are defined, samples are examined and the255

model’s flexibility can be utilised. See the SI for the actual code implementation along with additional examples on more

realistic physical process representation. The questions are as follows:

1) How does the sample container geometry impact the age scatter? Container geometry means that we have inspected

the differences between cylindric and cuboid sample containers, all with the same volume. We simulated cylinders with 10

mm diameter, cubes of 10 mm width and height and 0.8 mm length, and cuboids of 20 mm, 40 mm, and 80 mm width and 5260

mm, 2.5 mm, and 1.25 mm height, respectively. While the real-world applicability of such container geometries is limited, the

test stresses the influence of sampling depth intervals, including minimal values. It can also be interpreted as mimicking the

manual extraction of a thin sediment layer. Cuboid container lengths were set to 0.8 mm throughout. Note that we can work

directly with the sampled material without any further preparation steps. Thus, small sample volumes are sufficient. The virtual

sampling depth for the test was set to 5 m, using the depth-interpolated true ages of the sampled grains as a direct proxy for265

age scatter.

2) What is the effect of sample container size on age uncertainty? Here we test different cylinder diameters for different

profile depths of the Gleina loess section. We have sampled the virtual Gleina section at 1 m intervals, using containers with

diameters ranging from 0.5 cm to 50 cm, keeping the volume constant at 0.5 cm3. Again, 0.5 cm and 50 cm wide containers
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are far from reality. However, they define a safe lower and upper limit of possible cases and manually collected samples. This270

second question differs from the first one by also accounting for the deposition rate as the expected depth-dependent age span

in a sample.

3) What kind of luminescence age bias can be expected due to preparation using standard grain-size intervals if the

three components building the loess section have different bleaching probabilities? The rationale for this question is that

sediment deposits are typically composed of material from different sources, contributed by different processes. Depending275

on the transport mechanism (for example low energy but far distance aeolian transport versus high energy night time hill

wash), the exposure of grains to daylight may differ and so may the resetting likelihood of their luminescence signal. Poorly

bleached grains with an inherited luminescence signal will appear older than their actual last transport event. At the same time,

different transport mechanisms or energies will contribute grains of different size, hence linking age inheritance with grain

size. Over time, the relative importance of transport processes with such different bleaching potential may change and so may280

the convoluted age inheritance effect at different depths of a sediment section. For this test, we have added a new specific rule

(inherited), which defines an inherited age in years for each population. For the coarse-grained population (end-member

3), we assumed a poor bleaching likelihood and thus a uniformly distributed random age inheritance within the arbitrarily

chosen range of 0 years to 5000 years. For the two other populations, we imposed uniform random inheritance ages between 0

years and 200 years. We collected samples every 0.5 m using a 5 cm cylinder, sieved the sampled material for the typical coarse285

grain (90–200 µm) and fine grain (4–11 µm) fraction (e.g., Kreutzer et al., 2012a) and calculated the mean age composed of

the true deposition age and the inheritance from each grain. In addition, we have prepared three additional data sets, this time

adjusting the limits of the virtual sieve to isolate each of the three end-members as good as possible (see Fig. 2 for intervals),

in order to inspect the age differences inherent to the three different components that constitute the sediment section.

4) How can depth-dependent packing densities be realised? While the above examples mainly aimed at abstract and290

simplified sediment section properties, one might also want to implement more physically or sedimentologically meaningful

rules. Exemplarily, we show how a variable, depth-dependent packing density can be implemented. This example may be used

when modelling successive sediment compaction with depth due to increasing overburden. For this, we use a simple porosity

model (Sheldon and Retallack, 2001) to modify the packing density as a function of depth.

5) How can heteromorphism due to distinct mineral grain specific densities be implemented? This example simulates295

the transport of equally heavy grains of different size, a case that can be expected for sediment of inhomogeneous composition.

To parameterise this example, we change one of the three populations of the existing rule book, i.e. the smallest grain population

corresponding to end-member 1, allowing for it to be either composed of quartz (specific density of 2650 kg/m3) or zircon

(specific density 4600 kg/m3). The diameter of the zircon grains is then calculated to result in an equal weight as the larger

quartz grains. To make the effects visible, we additionally change the grain-size standard deviation of end-member 1 from 0.9300

to 0.1. We note that this still is a simplified approach not fully in agreement with drag force constraints. Nevertheless, it serves

the illustration of the generic approach.
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Figure 2. End-member modelling results of the measured grain-size data of the Gleina section. Dashed lines in the loadings plot show fitted

log-normal distribution curves according to the parameters in the bottom legend panel. Grey shaded areas in the loadings panel depict grain-

size intervals used for sieving to enrich individual end-members. Sample IDs in the scores plot denote samples from top to bottom.

4 Results

4.1 End-member modelling analysis

Deterministic EMMA (Fig. 2) resulted in an overall R2 of 0.74 (sample-wise R2 = 0.93, class-wise R2 = 0.56). The three end-305

members were unimodal with ϕ modes at 6.38, 4.68 and 4.29 (12 µm, 39 µm and 51 µm). Secondary artificial modes occurred

below the main modes of the other end-members, as commonly encountered in EMMA (Dietze and Dietze, 2019). Hence,

normal functions were only fitted to the primary modes. The best fits were reached for ϕ 6.38±0.9, 4.68±0.5 and 4.29±0.5.
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Figure 3. Effect of sample container geometry on scatter of sampled grain ages. X-axes all scaled to the same range.

4.2 Effect of sample container geometry and size on age scatter

The sample container shape directly reflects the single-grain age distribution of the sampled material (Fig. 3). Cylinders produce310

a sinusoidal distribution shape of ages with a standard deviation of 3.7 years, while cubic containers produce a flat distribution

with a standard deviation of 4.2 years. Note that the absolute scatter is an arbitrary number with no real-world equivalent. It

merely depends on the deposition rate and container size (see below). Along that line, as the cuboids become more elongated

in the horizontal direction by factors 2, 4 and 8, the standard deviations of the flat age distributions decrease to 2.1 years, 1.1

years and 0.5 years, respectively. This purely geometric effect is also witnessed by the constant average age for all types of315

sampling containers.

Sample container size has a variable effect on the age scatter (Fig. 4), also depending on the deposition rate of the investigated

sediment section. In general, larger sample container sizes systematically increase the age scatter inherent to the sampled grains,

following a linear relationship. However, the sampling depth modulates the overall scatter, which determines the sediment

deposition rate here. For the deposition ranges of the virtual Gleina section, we found age scatter as high as 4624 years (using a320

50 cm wide sampling depth interval) in the basal section with a deposition rate of 0.033 m ka−1. More realistically, 5 cm wide

sampling containers still yielded an age scatter of 481 years. In the central parts of the section with deposition rates as high as

3.9 m per ka, that error reduced to 4 years and 43 years for container diameters of 5 and 50 cm, respectively.

4.3 OSL age bias due to prepared grain-size ranges

The impact of age inheritance can range from marginal to significant, depending on the analysed grain-size fraction. Note325

that here we can ignore analytical scatter in age and thus error bars in Fig. 5 because we implicitly know the true ages of the

sampled grains and focus completely on the systematic effects. Analysing the typically utilised coarse grain fraction (90–200

µm, Fig. 5 a) can introduce a systematic mean difference between apparent and true age of up to 2500 years (up to 10 %). That

offset is controlled by the relative contribution of the coarse-grained end-member to a sample. The result is a stratigraphically

inconsistent age-depth relationship with four age inversions. When using the typically encountered size interval of the fine-330

grain fraction (4–11 µm, Fig. 5 b) to estimate average grain ages, the age offset is minimal, about 118 years on average. There
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Figure 4. Effect of cylindric sample container size. Warmer colours indicate a higher age scatter.

are no age inversions visible in this size fraction. However, the age offset still correlates with the contribution of end-member

1, from which a few grains still leak into the sieve interval.

When targeting grain-size intervals that specifically aim to isolate the three end-members inherent to the grain-size distribu-

tion of all samples, the coarse-grain end-member (Fig. 5 c) mimics the offset and stratigraphic inversion patterns of the coarse335

grain samples. The intermediate end-member (Fig. 5 d) shows similar trends to the coarse one but with less severe effects (800

years maximum offset). Finally, the fine-grain end-member (Fig. 5 e) shows an average age offset of 100 years (corresponding

to the imposed range of 0–200 years) without any relationship to the contribution of the coarse-grained end-member.

4.4 Depth-dependent packing density behaviour

The simulation of a depth-dependent packing density relationship first required to define the function that relates these two340

metrics, following the porosity model by Sheldon and Retallack (2001):

rho_depth <- rho_qz - rho_qz * rho_0 * exp(-k * X$depth_int)

Where rho_qz is the specific quartz grain density (2650 kg/m3), rho_0 is the initial relative porosity at zero depth, for loes-

sic material typically around 0.6 (Blume et al., 2010), and k is an empirical material dependent compaction rate coefficient, here

arbitrarily set to 10−1. In a second step, this depth-dependent packing density can simply be added as a rule for all three popula-345

13



500 2500

2

4

6

8

10

D
e
p
th

 (
m

)

20 40 80
vol.-% EM 3

500 2500

200 800

Sieve interval 90–200 µm

Sieve interval 89–144 µm (EM3)

Sieve interval 23–29 µm (EM2)

true age
true + inherited age

a)

b)

d)

e)

c)

90 105

Sieve interval 3–7 µm (EM1)

2

4

6

8

10

D
e
p
th

 (
m

)
2

4

6

8

10

D
e
p
th

 (
m

)

2

4

6

8

10

D
e
p
th

 (
m

)

Inhertited age (a)True / apparent age (a)

100 140 180

10000 20000 30000 40000

Sieve interval 4–11 µm

2

4

6

8

10

D
e
p
th

 (
m

)

Figure 5. Age inheritance effects due to different sieve intervals of the modelled Gleina section. a) Typical coarse grain sieve intervals. b)

Typical fine-grain sieve intervals. c–e) Optimised sieve intervals to isolate the three inherent grain-size end-members best possible. See Fig. 2

for interval definitions. The left plot panels show average true depositional ages (grey dots) and apparent measurement ages (black dots),

composed of true and inherited ages per grain. Right plot panels show age inheritance (black lines) and contribution of end-member 1 (grey

lines) as a function of depth. Red arrows mark age inversions.

tions of the existing rule book, for example with a constant scatter of 10 kg/m3 (rho_scatter <- rep(10, length(rho_depth))).

The resulting depth-dependent packing density (Fig. 6 a) follows the expected exponential trend.
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Figure 6. Depth-dependent sediment packing density evolution and resulting effects of generated samples. a) Exponential relationship

of depth and packing density following the model by Sheldon and Retallack (2001) with a decisively high compaction rate of 10−1. b)

Resulting increasing number of grains per equally large sample containers (2 m sampling interval), showing some scatter due to the also

depth-dependent contribution of populations of different size.

gleina_packing <- set_Rule(book = gleina, parameter = "packing",

value = list(list(mean = rho_depth, sd = rho_scatter),

list(mean = rho_depth, sd = rho_scatter),350

list(mean = rho_depth, sd = rho_scatter)),

depth = depth)

Sampling the modified rule book at 2 m sampling intervals with small containers (0.05 mm cuboid edge size) resembles the

effect that denser packing yields in general more grains with increasing depth. However, the trend is superimposed by the also

depth-dependent contribution of the three end-members, each with a different grain-size.355

4.5 Heteromorphism of grains with distinct specific density

To implement an equal contribution of grains from two populations of equal grain mass but correspondingly different mineral

density and, hence diameter, we first determined the mass of a one mm large quartz grain and used this mass to solve for the

diameter of an equally heavy zircon grain to retrieve the diameter conversion factor (i.e, 83.20754 %).

m_sand <- 2650 * (4/3 * pi * 0.0005^3)360

d_zirc = 2 * (m_sand / (4/3 * pi * 4600))^(1/3)

f_conversion <- d_zirc * 100 / 0.001
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Accordingly, the average grain-size of quartz grains (6.38 ϕ) reduces to 6.65 ϕ for equally heavy zircon grains. Since we

have added a new population, the packing densities and also the specific grain densities need to be re-defined. Note that in

order to make this small change in diameter visible (Fig. 7), we change the standard deviation of end-member 1 from 0.9 to365

0.1 ϕ.

gleina_zirc <- add_Population(book = gleina, populations = 1)

EM_gsd_zirc <- list(list(mean = rep(6.38, n), sd = rep(0.1, n)),

list(mean = rep(4.69, n), sd = rep(0.5, n)),370

list(mean = rep(4.29, n), sd = rep(0.5, n)),

list(mean = rep(6.65, n), sd = rep(0.1, n)))

EM_packing_zirc <- list(list(mean = rep(0.7, n), sd = rep(0.01, n)),

list(mean = rep(0.7, n), sd = rep(0.01, n)),375

list(mean = rep(0.7, n), sd = rep(0.01, n)),

list(mean = rep(0.7, n), sd = rep(0.01, n)))

EM_density_zirc <- list(list(mean = rep(2.65, n), sd = rep(0.01, n)),

list(mean = rep(2.65, n), sd = rep(0.01, n)),380

list(mean = rep(2.65, n), sd = rep(0.01, n)),

list(mean = rep(4.60, n), sd = rep(0.01, n)))

Also updated need to be the relative contributions of the initial end-member 1 because now, it needs to share its abundance

with the zircon grains. Thus, the depth-dependent contribution needs to be updated for both populations, as well.

EM_contr_zirc <- list(list(X$EM_1 / 2), list(X$EM_2), list(X$EM_3), list(X$EM_1 / 2))385

Finally, the new rules need to be added to the rule book to implement all the changes.

gleina_zirc <- set_Rule(book = gleina_zirc, parameter = "population",

value = EM_contr_zirc, depth = depth_fill)

gleina_zirc <- set_Rule(book = gleina_zirc, parameter = "grainsize",390

value = EM_gsd_zirc, depth = depth_fill)

gleina_zirc <- set_Rule(book = gleina_zirc, parameter = "packing",

value = EM_packing_zirc, depth = depth_fill)

395
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Figure 7. Properties of a virtual sample created at a depth of 11 m from a rule book with both quartz and zircon grains (see SI for details).

a) Grain-size distribution, dominated by narrow distributions (0.1 ϕ standard deviation) of a quartz end-member 1 (6.38 ϕ) and an additional

zircon population (6.65 ϕ) as well as suppressed minor contributions of coarser quartz end-members. b) Histogram of the specific grain

densities of all grains, showing a roughly equal occurrence of the two dominant populations of quartz (2650 kg/m3) and zircon (4600

kg/m3).

gleina_zirc <- set_Rule(book = gleina_zirc, parameter = "density",

value = EM_density_zirc, depth = depth_fill)

When taking a random sample at a depth that is dominated by end-member 1 (i.e. 10.7 m, cf. Fig. 2 and SI), the distribution

of grain-sizes is dominated by the shared occurrence of both, the original quartz end-member and the added zircon population.

The resulting dominant double peak in the grain-size spectrum (Fig. 7 a) underlines the shared contribution of these two mineral400

grains and is also reflected by the almost equal distribution of specific densities (Fig. 7 b) throughout the sample.

5 Discussion

5.1 Structure and implementation of sandbox

The proposed structure of sandbox, consisting of grains, populations, parameters, rules, and functions, allows to consistently

define synthetic sections as virtual twins of sediment deposits. Further extension of a rule book is possible by adding popula-405

tions, grain parameters and rules. The available distribution functions to describe parameters and rules cover a significant range

of use cases. Adding other functions would require updating the R code of the package, either by a new package release or by

editing the functions manually.
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The fundamental assumption of sandbox is a valid, true age-depth relationship. At face value, this assumption implies

that a sediment section fulfills the stratigraphic principle. However, this enforced principle is implemented through a spline410

function. Such an interpolator of discrete age-depth pairs works appropriately as long as there is steady accretion of material

with time. However, additional effort is required to account for stratigraphic gaps (see SI).

5.2 The virtual Gleina section

The measurement-based description of the Gleina loess section was translated into parameters and rules for sandbox. End-

member modelling analysis yielded three predominantly unimodal end-members (Fig 2). The secondary mode of EM 3 that415

emerges right below the main mode of EM 1 is a typical model artefact (Dietze and Dietze, 2019) and should thus not be

interpreted as genetically meaningful. However, EM 2 has a suppressed secondary mode around 1 µm, which is statistically

robust (high R2 values) and does not interfere with a mode of any other end-member. Thus, this secondary mode may indeed

represent a transport regime that contributed a primarily bimodal grain-size distribution. It has been repeatedly reported that

loess particles are transported not just as single grains of medium to coarse silt size but also as aggregates of smaller particles,420

either forming silt-sized agglomerates or adhering to such larger particles (Vandenberghe, 2013). In general, the three end-

member loadings show the typical properties of Central European loess deposits (e.g., Bertran et al., 2016).

5.3 Geometric sampling effects

Different sample containers have a purely geometric effect on a sample’s age composition (Fig 3): circular containers result in a

sinusoidal age distribution and rectangular containers in a flat one. From a relative age scatter perspective, cylindric containers425

are preferential to cube-shaped ones of the same vertical extent because most grains are sampled from the desired target depth.

Furthermore, flatter containers result in linearly decreasing relative age scatter. These findings may be rather obvious and could

be tested also with even less scripting overhead just by drawing random numbers from a parametric distribution function.

Nevertheless, they serve as a simple example of how easily questions may be approached quantitatively yet systematically with

sandbox.430

Container size and shape become more relevant when also the material deposition rate is considered. For high deposition

rates, like those typical for loess environments (e.g., the central part of the Gleina section between 8 m and 3 m depth, Fig. 4),

age differences among grains due to container size is small, a few years per cm container height. However, when section

intervals with low loess deposition rates are sampled, such as the basal and top parts with more prominent pedogenic features,

the age scatter can increase by several orders of magnitude simply because the grains in the container represent a larger range435

of true ages. Hence, age scatter due to sampling is no artifact but actually represents the range of smapled grain ages. In the

Gleina section, a standard luminescence sampling cylinder of 5 cm diameter can thus add an age scatter of several hundred

years, regardless of the absolute depositional age.

While there are ways to minimise this sample container size effect, the documented practice in published articles seems to

show that in most cases standard sampling containers are used. Reducing the age scatter may be accomplished by using flatter440

and more elongated sampling containers or even extracting material from horizontally aligned slits carved into an outcrop
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when this is possible. This sampling procedure requires more manual adjustment and is thus prone to other shortcomings (e.g.,

sample contamination, light-shielding efforts). Nevertheless, we advocate that virtual sediment modelling is useful in advance

to estimate the expected age scatter effect for given sample container geometries if one has a prior order of magnitude estimate

of the deposition rate, for example, based on morphologic deposit features or stratigraphic relationships with other sections.445

5.4 Sample population effects

In the age bias modelling exercise, we have explored how it is possible to simulate grain population-specific age inheritance

effects and to which extent these can impact the resulting subsample ages when subsampling is achieved by sieving. Then,

we have shown how one can attribute age inheritance phenomena to the underlying grain-size based populations identified by

EMMA.450

Real-world analogues of age inheritance could be poorly bleached grains, an effect that in many cases has been attributed

to a transport process that exposes those grains to direct sunlight only randomly and for brief time intervals. Examples of

such processes are near bed fluvial transport, rapid mass wasting and soil erosion (Fuchs and Owen, 2008; Fuchs et al., 2010).

Typically, such specific transport processes tend to focus also the grain-size distribution of the material they carry (Weltje,

1997; Vandenberghe, 2013). Hence, this problem fulfills the preconditions for end-member modelling analysis in a particular455

way. The technique allows isolating the transport processes due to their characteristic grain-size distributions. The resulting

end-member information can then be used to adjust the sieve interval limits for subsequent age determination analyses, to the

extent that other analytical operations permit this. Mineral grains of specific density other than quartz, such as zircon have a

similar effect: the higher density will result in smaller grains transported at the same energy level of the transport medium.

This in turn will cause a bimodal grain-size distribution (Fig. 7 a), which can be identified by EMMA and be accounted for460

by adjusted sieve intervals. Explicitly testing the potential to identify zircon contamination of OSL samples would be a further

relevant and feasible application of sandbox, but is beyond the scope of this study.

We found that straightforward application of good practice, isolating the typically utilised coarse grain or fine grain fractions

for luminescence dating, can lead to two very different age estimates for the different fractions. Unfortunately, in principle,

it is not possible to tell which of the two is more correct than the other – apart from the fact that in our example, one of465

the age-depth relationships was stratigraphically consistent, whereas the other was not. This inability to identify the "correct"

solution is due to the phenomenon of multiplicity: different mechanisms leading to the same, equivocal result. The two-grain

size fractions are subject to different microdosimetric effects, and sample preparation work flows, both being potential causes of

differences in the resulting depositional age estimates (e.g., Fuchs and Lomax, 2019). In addition, the two grain-size fractions

are also subject to different transport processes and depositional circumstances. These two classes of effects, methodological470

and transport dynamics, can affect the resulting age estimates in a cumulative and counteracting way. Hence, to at least account

for the transport class of effects, we recommend applying EMMA before deciding on the grain-size fraction for subsequent age

determination workflows. This approach does not only quantify the number and grain-size characteristics of the populations

inherent to a set of samples but it also allows adjusting the grain-size fractions for age determination to ideally avoid overlapping

of end-members.475
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5.5 Implementing more realistic, physically based rules

Physically based process laws are not implemented to sandbox by default. While there are obvious links among grain pa-

rameters of real world deposits (specific density and grain-size, grain-size or shape and packing density, depth and packing

density, and so on), these are not represented from the start. However, if a model exercise requires such process simulating re-

lationships, these can be added by defining rules. The research questions 4 to 5 highlight how one can exemplarily implement480

such physical relationships with a limited amount of extra definitions.

The depth-dependent packing density evolution (Fig. 6) shows how such imposed relationships clearly affect subsequent

analysis steps, for example by increasing the number of grains per sample. However, the value used for the compaction rate

coefficient k was set to an unrealistically high number for illustrative purpose. This implied roughly a doubling of the packing

density of loessic material within just ten metres of sediment thickness. Mixing grains of different mineralogy, here directly485

implemented by the specific grain density, is a realistic scenario in many real world cases of depositional systems. The two

examples (as well as further ones detailed in the SI) illustrated the necessary flexibility of sandbox but also the additional

need in scripting the desired features.

5.6 Potential further applications

This article’s primary purpose is to introduce the synthetic sediment section modelling framework sandbox, particularly with490

emphasis on luminescence-based age determination. We have demonstrated how the framework can be modified in general.

Thus, it is possible and encouraged to apply the package beyond such simple or rather specific examples. sandbox can also

be used to pursue questions inherent to other age determination techniques, such as radiocarbon, cosmogenic nuclide, electron

spin resonance, palaeomagnetism and detrital zircon dating, or even varved lake sediments or dendrochronology age models.

When parameters are assigned for mineralogical or chemical grain properties, further scientific questions can be approached.495

For example, from disciplines like provenance analysis (based on detrital zircon age distributions, mineralogical composition,

or rare earth element concentrations). In the supplementary information of this article we provide an example about how

sandbox can be linked with other R packages, such as RLumModel (Friedrich et al., 2016) and Luminescence (Kreutzer

et al., 2012b).

Inverse problems (Zeeden et al., 2018) are another potential cross-topic field for the application of sandbox. In many500

cases, there are no analytical solutions to link multi-parameter workflows to given sets of outcomes. Hence, one can only run

large scenarios with different parameter combinations to identify the parameter space that can deliver plausible solutions. The

sandbox framework provides the flexibility and efficiency needed to run many such scenarios for different questions.

A further independent field of application regards the definition of reference data sets, for example, to test age model

approaches (e.g., Galbraith et al., 2005) or to explore the potentials and limitations of mixed-age distributions (Arnold and505

Roberts, 2009) based on real-world examples. Especially in light of the last two applications fields, inverse problems and

reference data, sandbox provides the tool for creating virtual twins of sediment section, and hence, to define the problem
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solution as a basis for comparing the performance of competing or new analytical routines. This is mainly in times of evolving

machine learning approaches essential as those powerful tools rely on well-defined and labelled training or reference data.

5.7 Limitations510

The structure of the package was designed to allow for flexibility and computational simplicity. This required setting a few

fundamental assumptions, which resulted in structural limitations. Some of these limitations may be partly accounted for by

workarounds. Most fundamentally, sandbox has no methods to account for erosional processes implicitly. As mentioned

above (Sect. 5.1), the framework is based on a valid and intact age-depth relationship.

There is no support for post-depositional modification of grain properties at the moment. Such post-depositional dynamics515

may be added by defining further rules. For example, pedoturbation may be implemented as the probability to find grains from

depths other than the actual sampling depths for each grain in a sample container, i.e., a rule that says if one sample at 5 m

depth there is a 10 % chance to sample grains from 10 cm below.

The 1D structure is another albeit intended structural limitation of sandbox. As a result, it is for example not possible to

account for effects like increased packing density due to grain-size differences among the populations, as would be expected520

when smaller particles can fill the voids between larger ones. Currently, the packing density only becomes relevant during the

sampling process where it determines the number of grains that can fill a sample of a given volume. If in future the demand

arises, the model can be expanded to 2D or 3D. However, this would come at the cost of defining rules not just for the depth

direction but also in lateral directions. At present it is more feasible to tackle such scenarios by defining different virtual

sediment sections.525

There are no topologic relations among the sampled grains. Apart from depth information for each grain, sandbox can

neither provide information on the 3D location of the grains within a sample container nor on the distances among their

centroids. This precludes asking questions that require grain-to-grain information.

6 Conclusions

The R package sandbox provides a flexible and scalable framework to tackle research questions emerging from environ-530

mental reconstruction and numerical landscape representation. Its structure and available functions allow creating a virtual

twin of given or artificially designed sediment sections focusing on sediment grains and their properties along a depth vector.

The current focus on geochronology is a pragmatic one. The framework can be used for numerous further cross-discipline

topics, including geochemical analysis, soil formation representation, inverse modelling, and reproducible reference data set

generation.535
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7 Data and code availability

The sandbox source code is available as an R package on CRAN. The living source code and development is transparently ac-

cessible via GitHub (https://github.com/coffeemuggler/sandbox). The supplementary information contain an extensive manual

to the package and the code used to prepare the figures in this text.

Author contributions. Michael Dietze designed the code and initiated the manuscript. Sebastian Kreutzer reviewed and optimised package540

code, linked RLumModel and contributed age data for the loess section rule book. Margret C. Fuchs advised on the early stages of the package

and translated luminescence laboratory techniques to package functions. Sascha Meszner contributed all field-based sedimentological and

stratigraphic base data and provided the grain-size measurement data and interpretation. All authors shared responsibilities in writing the

manuscript.
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