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Abstract  15 
Age-depth relationships are the key elements in paleoenvironmental studies to place proxy measurements into a 
temporal context. However, potential influencing factors of the available radiocarbon data and the associated 

modeling process can cause serious divergences of age-depth relationships from true chronologies, which is 

particularly challenging for paleolimnological studies in Arctic regions. This paper provides geoscientists with a 
tool-assisted approach to compare outputs from age-depth modeling systems and to strengthen the robustness of 20 
age-depth relationships. We primarily focused on the development of age determination data from a data collection 
of high latitude lake systems (50° N to 90° N, 55 sediment cores, and a total of 602 dating points). Our approach 

used five age-depth modeling systems (Bacon, Bchron, clam, hamstr, Undatable) that we linked through a multi-
language Jupyter Notebook called LANDO (“Linked age and depth modeling”). Within LANDO we have 

implemented a pipeline from data integration to model comparison to allow users to investigate the outputs of the 25 
modeling systems. In this paper, we focused on highlighting three different case studies: comparing multiple 

modeling systems for one sediment core with a continuously deposited succession of dating points (CS1), for one 

sediment core with scattered dating points (CS2), and for multiple sediment cores (CS3). For the first case study 
(CS1), we showed how we facilitate the output data from all modeling systems to create an ensemble age-depth 

model. In the special case of scattered dating points (CS2), we introduced an adapted method that uses independent 30 
proxy data to assess the performance of each modeling system in representing lithological changes. Based on this 

evaluation, we reproduced the characteristics of an existing age-depth model (Lake Ilirney, EN18208) without 
removing age determination data. For multiple sediment cores (CS3) we found that when considering the 

Pleistocene-Holocene transition, the main regime changes in sedimentation rates do not occur synchronously for 

all lakes. We linked this behavior to the uncertainty within the dating and modeling process, as well as the local 35 
variability in catchment settings affecting the accumulation rates of the sediment cores within the collection near 

the glacial-interglacial transition. 

 

1 Introduction 

LakesLake sediments are important terrestrial archives for recording climate variability in the high latitudes of the 40 
Northern Hemisphere (Biskaborn et al., 2016; Smol, 2016; Lehnherr et al., 2018; Subetto et al., 2017; Syrykh et 
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al., 2021; Diekmann et al., 2017). The identification of age-depth relationships in those lake sediments helps us to 
put their measured sediment properties in a temporal context (Bradley, 2015; Lowe and Walker, 2014; Blaauw 

and Heegaard, 2012). We can determine these relationships by directly counting the annual laminated layers 
(varves) (Brauer, 2004; Zolitschka et al., 2015), or by using indirect age determination methods such as 45 
radiocarbon, optically stimulated luminescence (OSL), or lead-cesium (Lead-210/Cesium-137) dating (Lowe and 
Walker, 2014; Bradley, 2015; Appleby, 2008; Hajdas et al., 2021). Defining a reliable age-depth relationship for 

paleoenvironmental studies in cold regions is particularly challenging, as varves only exist in rare cases and the 

determination of ages mostly depends on radiocarbon dating (Strunk et al., 2020 and references therein). Because 
of primarily financial restrictions, however, only a few selected samples are taken from sediment core sections to 50 
determine the corresponding ages of certain depths (Blaauw et al., 2018; Ciarletta et al., 2019; Olsen et al., 2017). 
We therefore rely on model calculations to define the ages between the samples. In addition to the mathematical 

challenges that arise when establishing age-depth relationships, the selection of appropriate dating material has an 
impact on the modeling process.  

In the special case of Arctic lake systems, the amount of material for radiocarbon dating, i.e. aquatic/terrestrial 55 
macrofossils and organic remains, is extremely low (Abbott and Stafford, 1996; Colman et al., 1996; Strunk et al., 

2020). Radiocarbon dating is therefore often based on the organic carbon content in bulk sediment samples, which 

can be relatively small due to the lower bioproductivity in those lakes (Strunk et al., 2020 and references therein). 
However, the use of bulk sediments is problematic, as some portions of contributing carbon are not occurring at 

the same time as the deposition but may reveal inherited ages from reworked older materials (Rudaya et al., 2016; 60 
Biskaborn et al., 2013b, 2019; Schleusner et al., 2015). Several methods are available for pre-treating bulk 

sediment samples to address sample-based dating uncertainties (Brock et al., 2010; Strunk et al., 2020; Rethemeyer 
et al., 2019; Bao et al., 2019; Dee et al., 2020). Each pre-treatment method may yield a different result for the same 

material due to the influence of humic acids, fulvic acids, and humins (Brock et al., 2010; Strunk et al., 2020; 

Abbott and Stafford, 1996). Similarly, older, inert material incorporated by living organism, known as “reservoir 65 
effect” or “hard-water effect”, distorts the actual radiocarbon age by up to ±10 000 years (Ascough et al., 2005; 

Austin et al., 1995; Lougheed et al., 2016). Such a distortion creates methodological and mathematical errors in 
the development of age-depth relationships, which possibly leads to a misinterpretation of these relationships.  

There are numerous geochronological software systems (from now on simply called modeling systems) available 
to the geoscientific community, which try to solve the challenges stated above (Trachsel and Telford, 2017; Wright 70 
et al., 2017; Lacourse and Gajewski, 2020). Implemented methodsMethods have been implemented for detecting 
outliers, accounting for varying sedimentation rates, or using bootstrapping processes to support the construction 

of an age-depth model (Parnell et al., 2011; Lougheed and Obrochta, 2019; Bronk Ramsey, 2009, 2008).  

However, the correct usage of those systems requires a high degree of understanding of the underlying 
mathematical methods and models. Trachsel and Telford (2017) noted that, despite the users’ impact on the 75 
outcome of the model by setting priors and parameters, most users do not have any prior objective insights into 
appropriately choosing the right parameters. Wright et al. (2017), Trachsel and Telford (2017), and Lacourse and 

Gajewski (2020) even showed that the results produced by modeling systems could diverge from the true 
chronology. An in-depth comparison of the results is therefore extremely error-prone. Due to time constraints, 

users usually, users only select and apply one modeling system for paleoenvironmental interpretation. 80 
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The objective of this paper is to reduce the effort involved in applying different methods for determining age-depth 
relationships and to make their results comparable. We provide a tool to link five selected modeling systems in a 

single multi-language Jupyter Notebook. We introduce an ensemble age-depth model that uses uninformed models 
to create data-driven, semi-informed age-depth relationships. We demonstrate the power of our tool by 

highlighting three case studies in which we examine our application for individual sediment cores and a collection 85 
of multiple sediment cores. Throughout this paper, the term “LANDO” refers to our implementation, which stands 

for “Linked age and depth modeling”. The current development version of LANDO is accessible via GitHub 

(https://github.com/GPawi/LANDO). 

In this paper, we use published age determination data from 55 sediment cores from high latitude lake systems 

(50° N to 90° N). This unique collection of age determination data allows us to thoroughly test LANDO by 90 
examining changes of sedimentation rates over time for various modeling and lake systems. The harmonization of 

the acquired data follows the conceptual framework described in Pfalz et al. (2021).  

2 Methods 

A key element in our data-science based approach for developing comparable age-depth relationships was to 
facilitate the use of modeling systems independent from their original proprietary development environment. A 95 
multi-language data analysis environment, such as the SoS notebook (Peng et al., 2018) or GraalVM (Niephaus et 

al., 2019), provides an interface that enables the comparison of modeling systems without being limited to one 
programming language or environment. Our implementation used the SoS notebook as its backbone. The SoS 

notebook is a native Python- and JavaScript-based Jupyter Notebook (Kluyver et al., 2016), which extends to other 
languages through so-called “Jupyter kernels”. We developed our implementation with the focus on four languages 100 
and their respective kernels: Python, R, Octave, and MATLAB. This selection allowed us to use the most common 
modeling systems. 

According to Lacourse and Gajewski (2020), the most commonly used modeling systems are Bacon (Blaauw and 

Christen, 2011), Bchron (Haslett and Parnell, 2008; Parnell et al., 2008), OxCal (Bronk Ramsey, 1995; Bronk 
Ramsey and Lee, 2013), and clam (Blaauw, 2010). We additionally considered the MATLAB/Octave software 105 
Undatable (Lougheed and Obrochta, 2019), as an alternative to the classical Bayesian approach, and the R package 
hamstr (Dolman, 2022).   

In our study, we were able to connect five of the above-mentioned modeling systems in the SoS notebook, namely: 
Bacon, Bchron, clam, hamstr, and Undatable. All modeling systems assume a monotonic deposition process, i.e. 

a positive accumulation rate over the entire core length (Trachsel and Telford, 2017; Lougheed and Obrochta, 110 
2019). Modeling system clam uses five different regression-based techniques in combination with a Monte Carlo 

procedure to repeatedly interpolate between calibrated dates. Because clam tries to fit the regression curves to the 

data, in some cases this can lead to age inversions, which clam automatically filters out. (cf. Trachsel and Telford, 
2017; Blaauw, 2010)  

The modeling procedure of Undatable involves a weighted random sampling from both calibrated age and depth 115 
uncertainties (expressed as probability density functions) for all dating points and an advanced bootstrapping 

process over a user-defined number of simulations. The advanced bootstrapping procedure includes removing age 

https://github.com/GPawi/LANDO
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inversions from the simulation runs as well as inserting connection points between calibrated dates to account for 
uncertainties in sediment accumulation rates between the dating points. (cf. Lougheed and Obrochta, 2019) 

The Bayesian modeling systems Bacon, Bchron, and hamstr subdivide the sediment core into smaller increments 120 
for the modeling process but differ in their division technique. Bacon separates the core into equal segments, while 

hamstr extends Bacon’s algorithm by adding additional hierarchical accumulation structures to each segment 
(Trachsel and Telford, 2017; Dolman, 2022; Blaauw and Christen, 2011). Bchron estimates the number of 

increments between calibrated dates by a compound Poisson-gamma distribution (Trachsel and Telford, 2017; 

Parnell et al., 2011). For age-depth calculations, Bacon uses prior distributions for the accumulation rate (gamma 125 
distribution) and autocorrelation memory (beta distribution) between segments, which users can fit with values for 

the mean and shape of these distributions (Blaauw and Christen, 2011). Similarly, hamstr relies on user input for 
the shape of the gamma distribution and values for the memory but estimates the mean value for the accumulation 

rate from the available age determination data by using a robust linear regression (Dolman, 2022). Bchron does 
not require any specific hyperparameters selection due to its fully automated numerical best-fit approach (Wright 130 
et al., 2017; Haslett and Parnell, 2008). All three Bayesian modeling systems use iterations of the Markov chain 
Monte Carlo (MCMC) algorithm to estimate the calibrated ages and confidence intervals at each depth within the 

sediment core (Dolman, 2022; Blaauw and Christen, 2011; Haslett and Parnell, 2008). 

The workflow of LANDO consists of five major components: Input – Preparation – Execution – Result aggregation 
– Evaluation of model performance. 135 

2.1 Input 

To work with LANDO users need to provide age determination data, e.g., data from radiocarbon or OSL dating, 

and associated metadata as listed in Table 1. We developed two import options for the users: through a single 
spreadsheet or a connection to a database. For this study, we used a connection to a PostgreSQL database, which 

we developed after the conceptual framework as described in Pfalz et al. (2021), via the Python package 140 
“SQLAlchemy” (Bayer, 2012). We divided age determination input data into two attribute categories: necessary 
and recommended. The category “necessary” focused on the prerequisites of the individual modeling systems as 

well as project-related attributes, such as unique identifiers, i.e., “measurementid”, “labid”. However, a larger 
comprehensive set of descriptive metadata helps a better understanding of the data (Cadena-Vela et al., 2020; 

Thanos, 2017). We added four additional attributes from the category “recommended” to facilitate the 145 
interpretation of age-depth models regarding their age determination data.  

Table 1 – Necessary and recommended attributes for age determination input data, when used with LANDO. 
Attributes apply for both input methods through either a database or a spreadsheet. 

Attribute Description Data type 
Necessary/ 

Recommended 

measurementid 

Composite key composed of a unique CoreID, a 
blank space, and the depth below sediment 
surface (mid-point cm) with max. two decimal 
digits of corresponding analytical age 
measurement - example: “CoreA1 100.5”, when 
users obtained sample of CoreA1 between 100 
and 101 cm depth  

string Necessary 
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thickness Thickness of the sample slice used for age 
determination in [cm] float Necessary 

labid Unique sample identifier that was provided by 
the laboratory for age determination string Necessary 

lab_location Name of city, where laboratory that conducted 
the analysis resides string Recommended 

material_category 

One of the eight categories that describes the 
material best, based on the categories from age-
depth modeling system Undatable (Lougheed 
and Obrochta, 2019) 
14C marine fossil  tiepoint 
14C terrestrial fossil paleomag 
14C sediment U/Th 
tephra other 

string Necessary 

material_description Short description of the used material string Recommended 

material_weight Weight of analyzed carbon used in radiocarbon 
dating in [µgC] float Recommended 

age 
Uncalibrated radiocarbon age in [uncal yr BP], 
or non-radiocarbon ages as values in [yr BP] 
(BP = Before Present (before 1950 CE)) 

float Necessary 

age_error Error of the uncalibrated radiocarbon age andor 
non-radiocarbon age in [yr]  float Necessary 

pretreatment_dating 
Concise description or abbreviation of sample 
pre-treatment - example: “ABA”, when 
radiocarbon pre-treatment comprises of an 
acid-base-acid sequence 

string Recommended 

reservoir_age 
Additional reservoir effect (also known as hard-
water effect or age offset) identified by the user 
in [yr]; if unknown, then insert 0  

float Necessary 

reservoir_error Error of reservoir age known to the user in [yr]; 
if unknown, then insert 0 float Necessary 

 

If users decide to use a spreadsheet as input option, then the spreadsheet should follow the same attribution as the 150 
database. In addition, we implemented an input prompt for further information, such as the year of core drilling 

and core length, to ensure comparability to our database implementation. We provide an example spreadsheet with 
all attributes in the expected format in the repository mentioned in the “Code and data availability” section of this 

paper.  

2.2 Preparation 155 

The preparation component consisted of two separate steps. First, we checked each age determination dataset, 

whether a reservoir effect was influencing the radiocarbon data. In the absence of a known reservoir age or recent 
surface sample, we used available radiocarbon data points and a fast-calculating modeling system to predict the 

age of the upper most layer within a sediment core. In our approach, we used the hamstr package with a default 
value of 6000 iterations. We then compared the predicted value for the upper most layer with the year of the core 160 
retrieval, i.e., our target age. We accounted for an uncertainty in the estimate by allowing an extra 10% error 

between predicted age and target age. If a gap between predicted and target age is observable, then we assumed a 
reservoir effect is present. We calculatedapproximated the reservoir effect by subtracting the target age from the 

mean predicted age, whereas the associated error we based on the two-sigma uncertainty ranges of the prediction. 
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LANDO allow users to add the calculated reservoir age and its uncertainty range to the corresponding attributes 165 
(“reservoir_age” and “reservoir_error”). Depending on the choice of the user, this addition affects either all 

radiocarbon samples or only bulk sediment samples, or users completely discard the output for the subsequent 
modeling process.  

As second step in the preparation component, we built a module that automatically changes the format of the 
available data to the individually desired input of each of the five modeling systems implemented in LANDO. We 170 
primarily used the Python package “pandas” (Reback et al., 2020) for the transformation within the module. We 

transferred the newly transformed age determination data to the corresponding programming language for age-
depth modeling using the built-in “%get” function of SoS notebook. 

2.3 Execution 

We developed LANDO with the specific ability of createcreating multiple age-depth models for multiple dating 175 
series from spatially distributed lake systems. Hence, reducing overall computing time was one of our highest 
priorities. We achieved this reduction by applying existing parallelization back-ends for both R and Python, such 

as “doParallel” (Microsoft Corporation and Weston, 2020a) and “Dask” (Dask Development Team, 2016), 
respectively. For each modeling system in R, we wrote a separate script that takes advantage of the parallelization 

back-end “doParallel”. Besides the individual modeling system packages, we made use of different R libraries, 180 
such as “tidyverse” (Wickham et al., 2019), “parallel” (R Core Team, 2021), “foreach” (Microsoft Corporation 
and Weston, 2020c), “doRNG” (Gaujoux, 2020), and “doSNOW” (Microsoft Corporation and Weston, 2020b). 

We neglected the use of parallelization for the Undatable software in MATLAB, since even the sequential 
execution for several sediment cores in our test setup was on the order of a few minutes. However, we achieved 

comparable results with Undatable in Octave using the parallelization package “parallel” (Fujiwara et al., 2021). 185 

As mentioned before, the selection of model priors and parameters has an impact on the modeling outcome,. This 

is challenging if no objective prior knowledge exist. To lower our impact and to avoid introducing biases in the 

modeling process, we used the default values from each modeling system as our own default values (Blaauw et 
al., 2021; Blaauw, 2021; Parnell et al., 2008; Dolman, 2022; Lougheed and Obrochta, 2019). In our adaptation of 

clam, the parameter “poly_degree” controls the polynomial degree of models for type 2, while the parameter 190 
“smoothing” controls the degree of smoothing for type 4 and 5. In the original version of clam, users adjust both 

parameters with the single option “smooth” (Blaauw, 2021). Furthermore, the default value for “ssize” within the 
original version of Bacon is 2000. We increased this value to 8000 to ensure good MCMC mixing for problematic 

cores, as recommended by (Blaauw et al., . (2021). In case the user has in-depth knowledge about his sediment 
core and wants to change certain values, we opted for making crucial parameters accessible within the SoS 195 
notebook outside of the executing scripts. Table 2 provides an overview of all values which users can access and 

change for the individual systems. However, we limited the access to some parameters for operational purposes, 
such as the number of iterations or the resolution of the output.  

Table 2 – Default values for each modeling system, which users can access and change within LANDO.  

Modeling system  Parameter Default value 
Bacon    
 acc.shape 1.5 
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 acc.mean 20 
 mem.strength 10 
 mem.mean 0.5 
 ssize 8000 
Bchron 
 
clam 

not applicable  - 

 types 1 to 5 
 poly_degree 1 to 4 
 smoothing 0.1 to 1.0 
hamstr    
 K c(10,10) 
Undatable    
 xfactor 0.1 
 bootpc 30 

 200 

2.4 Result aggregation 

After every model run, we received 10000 age estimates (also known as “iterations” or “realizations”) per 
centimeter from each modeling system for every sediment core. We transferred these results back to Python using 

the built-in “%put” function of SoS notebook, where in the next module, we calculated per centimeter the median 
and mean age values as well as one-sigma and two-sigma age ranges. For the summarizing statistics, we used 205 
standard Python libraries such as “pandas” (Reback et al., 2020) and “numpy” (Harris et al., 2020). We appended 
the model name as an attribute to the statistics to allocate each result to its modeling system. In addition, we 

implemented a module, which helped us to push the aggregated result to our initial database to reuse in follow-up 

research projects. In a similar approach to the input component, we established the connection to our designed 
PostgreSQL database via the package “SQLAlchemy” (Bayer, 2012). 210 

Similarly, we used the 10000 age estimates per centimeter for calculating the sedimentation rates. Our calculation 
used three different approaches to calculate sedimentation rates: “naïve”, “moving average over three depths”, and 

“moving average over five depths”. Table 3 lists the appropriate equations for each approach. The user can decide 
which one of the three approaches best applies to the individual sediment record. We summarized the output into 

the basic summarizing statistics (mean, median, one-sigma ranges, and two sigma ranges) accessible to the users, 215 
but added the model name and employed approach as additional attributes. If users use more than one sediment 

core for sedimentation rate calculation, then LANDO will automatically execute the sedimentation rate calculation 

in parallel using the “Dask” back-end (Dask Development Team, 2016) and the “joblib” Python package (Joblib 
Development Team, 2020). 

Table 3 – Approaches to calculate sedimentation rates within LANDO. The value represents the layer of interest 220 
within a sediment core for which the calculation is necessary. Both 𝑥𝑥𝑖𝑖+1  and 𝑥𝑥𝑖𝑖+2 are the following layers, while 

𝑥𝑥𝑖𝑖−1 and 𝑥𝑥𝑖𝑖−2 are the previous layers. The unit for the resulting sedimentation rate is centimeter per year 

[cm/yr]. 

Approach  Equation 

Naïve (default) sedimentation rate (xi) = 
depth(xi)− depth (xi−1)

age(xi)− age(xi−1)
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Moving average over three depths  sedimentation rate (xi) = 
depth(xi+1)− depth (xi−1)

age(xi+1)− age(xi−1)
 

Moving average over five depths sedimentation rate (xi) = 
depth(xi+2)− depth (xi−2)

age(xi+2)− age(xi−2)
 

 

2.5 Evaluation of model performance  225 

To evaluate the performance of each modeling system, we looked at three different case studies: 

Case Study no. 1 - Comparison of multiple modeling systems for one sediment core with a continuously 

deposited sequence of dating points (“Continuously deposited sequence” – CS1) 

Case Study no. 2 - Comparison of multiple modeling systems for one sediment core with a disturbed sequence 

(including inversions) of dating points (“Inconsistent sequence” – CS2) 230 

Case Study no. 3 - Comparison of sedimentation rate changes for multiple sediment cores (“Multiple cores” 
– CS3) 

We examined both sedimentation rate and age-depth modeling results in each of the three case studies. For the 
first case study, we selected the sediment core EN18218 (Vyse et al., 2021) to showcase the generated output of 

LANDO. The 6.53 m long sediment record obtained from Lake Rauchuvagytgyn, Chukotka (67.78938° N, 235 
168.73352° E, core location water depth: 29.5 m) during an expedition in 2018 consisted of 23 bulk sediment 

samples used for radiocarbon sampling. The authors determined an existing age offset of 785 ± 31 yr BP (years 
Before Present, i.e., before 1950 CE), which we used in our modeling process as well.  

As a counterexample, for the second case study, we have chosen the sediment core EN18208 (Vyse et al., 2020). 

During the same expedition to Russia’s Far East in 2018, scientists recovered this EN18208 core from Lake Ilirney, 240 
Chukotka (67.34030° N, 168.29567° E, core length: 10.76 m, core location water depth: 19.0 m). The authors 

based their age-depth model on four OSL dates and 17 radiocarbon dates from bulk sediment samples as well as 
an age offset of 1721 ± 28 yr BP.  However, in addition to the age offset, we included all seven available OSL and 

25 radiocarbon dates for this core in our study.  

Both cores are also part of the “Multiple cores” case study with a total of 55 sediment cores (Figure 1). More 245 
details on each sediment cores are accessible in the corresponding references, which we list in Table 4. 

Table 4 – List of all datasets used in this study. Main data source or repository are either the Pangaea database, 
PaleoLake database, or tables within the main body or supplementary material of publications. Data accessible 

links to the main data source. Paper reference includes citation to the latest version of the corresponding 
dataset. 250 

CoreID PaleoLake 

Database 

ID 

Age-Depth 

Model 

Available 

Main Data 

Source / 

Repository 

Data Accessible Paper 

Reference 
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16-KP-04-L19  Yes Publication https://doi.org/10.1111/bor

.12521 

Andreev et al., 

2021 
2008-3  Yes Publication https://doi.org/10.1016/j.q

uascirev.2012.06.002 

Rudaya et al., 

2012 
BC2008  No Publication https://doi.org/10.1016/j.rg

g.2016.07.005 

Zhdanova et 

al., 2017 

BL02-2007  No Publication https://doi.org/10.1016/j.rg
g.2015.05.012 

Khazin et al., 
2016 

BN2016-1  Yes Publication https://doi.org/10.1177/095
96836211019093 

Rudaya et al., 
2021 

Chupa-8 295 No PaleoLake 
DB 

https://clck.ru/N5ksZ -- 
PALEOLAKE 

DATABASE ID 295 

Kolka et al., 
2015 

Co1309 76 Yes Publication https://doi.org/10.1111/bor
.12379 

Gromig et al., 
2019 

Co1412  Yes Publication https://doi.org/10.1111/bor
.12476 

Baumer et al., 
2021 

CON01-603-5  Yes Pangaea https://doi.pangaea.de/10.1
594/PANGAEA.856103 

Piotrowska et 
al., 2004 

Dolgoe2012 335 No Publication https://doi.org/10.7868/S0
435428118020049 

Kolka et al., 
2018 

EN18208  Yes Pangaea https://doi.pangaea.de/10.1

594/PANGAEA.921228 

Vyse et al., 

2020 
EN18218  Yes Publication https://doi.org/10.5194/bg-

18-4791-2021 

Vyse et al., 

2021 
ESM-1  Yes Publication https://doi.org/10.1016/j.q

uascirev.2012.03.004 

Mackay et al., 

2012 
KAS-1  No Publication https://doi.org/10.1017/qua

.2017.21 

Lozhkin et al., 

2017 

Korzhino2010 336 No PaleoLake 
DB 

https://clck.ru/N5ksZ -- 
PALEOLAKE 

DATABASE ID 336 

Syrykh et al., 
2021 

LENDERY180-4 342 No PaleoLake 

DB 

https://clck.ru/N5ksZ -- 

PALEOLAKE 
DATABASE ID 342 

Shelekhova et 

al., 2021b 

LENDERY192 343 No PaleoLake 
DB 

https://clck.ru/N5ksZ -- 
PALEOLAKE 

DATABASE ID 343 

Shelekhova et 
al., 2021b 

LENDERY200-1 344 No PaleoLake 
DB 

https://clck.ru/N5ksZ -- 
PALEOLAKE 

DATABASE ID 344 

Shelekhova et 
al., 2021b 

https://doi.org/10.1111/bor.12521
https://doi.org/10.1111/bor.12521
https://doi.org/10.1016/j.rgg.2015.05.012
https://doi.org/10.1016/j.rgg.2015.05.012
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LENDERY203-3 345 No PaleoLake 

DB 

https://clck.ru/N5ksZ -- 

PALEOLAKE 
DATABASE ID 345 

Shelekhova et 

al., 2021b 

LOT83-7 321 No PaleoLake 
DB 

https://clck.ru/N5ksZ -- 
PALEOLAKE 

DATABASE ID 321 

Syrykh et al., 
2021 

LS-9  Yes Publication https://doi.org/10.1016/S0
277-3791(00)00120-7 

Pisaric et al., 
2001 

Maloye-1  No Publication https://doi.org/10.1017/qua
.2017.21 

Lozhkin et al., 
2017 

MC2006  No Publication https://doi.org/10.1016/j.rg
g.2015.05.012 

Khazin et al., 
2016 

Muan2018 339 No PaleoLake 

DB 

https://clck.ru/N5ksZ -- 

PALEOLAKE 
DATABASE ID 339 

Shelekhova 

and Lavrova, 
2020 

Okun2018 338 No Publication https://doi.org/10.17076/li
m1319 

Shelekhova et 
al., 2021a 

OSIN 110 No Publication https://doi.org/10.17076/li
m305 
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Figure 1 – Map of geographical distribution of lake sediment cores used for our study (triangles, n = 55). 

Orange triangles (n = 34) represent sediment cores for which we obtained age determination data from a 
related publication. Purple triangles (n=13) show datasets we collected from the publicly accessible Pangaea 255 

database (Diepenbroek et al., 2002). Red triangles (n = 8) indicate referenced datasets provided by the 
PaleoLake Database (Syrykh et al., 2021). ArcGIS Basemap: GEBCO Grid 2014 modified by AWI. The outer 

ring in the graphic corresponds to 45° N. 

2.5.1 Numerical combination of model outputs 

To introduce the ensemble model in LANDO, we combined the outputs from all five modeling systems into one 260 
composite model. We considered the outermost limits (min. and max. values) of all confidence intervals (one-

sigma or two-sigma) as our boundary for the ensemble model. By taking these outermost limits into account, we 

artificially increased the area of uncertainty covered by the ensemble model, but we made sure that we were 
representing all possible outcomes and maximizing the likelihood of including the true chronology. We also 

included a weighted average (�̅�𝑥) of the age estimates and sedimentation rates, which we calculated using the 265 
following equations: 

x� =  �
nk
n

m

k=1

∗ x�k          (Eq.1) 

n =  �nk

m

k=1

                  (Eq. 2) 

with m being the number of participating modeling systems, n as the total number of iterations as well as 𝑥𝑥𝑘𝑘��� and 

𝑛𝑛𝑘𝑘 representing the median value (either for age estimate or sedimentation rate) and the associated number of 270 
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iterations from each modeling system, respectively. In some cases, the weights from each modeling system are 
equal, as they produce the same number of iterations. Then we can simplify Eq. 1 to represent the arithmetic mean:  

x� = 
1
m
�x�k

m

k=1

          (Eq.3) 

For our “Multiple cores” case study (CS3), we additionally had to ensure comparability of sedimentation rates 
between sediment cores, since each model assigns a different age value to its sedimentation rate value per 275 
centimeter. Therefore, we binned sedimentation rate results into 1000-year bins for each age-depth model as well 
as the ensemble model and calculated the weighted averages and their confidence intervals within these bins. 

Inside LANDO, users can change the initial bin size of 1000 years to the desired resolution.  

2.5.2 Detection and filtering of unreasonable models 

For cases in which age-depth models do not agree with each other, e.g., “Inconsistent sequence” case study (CS2), 280 
we have built in the option of importing data from measured sediment properties, also known as proxies. Because 
of compositional and density variations of deposits, changes in sedimentation rates imply changes in the deposition 

of proxies (Baud et al., 2021; Biskaborn et al., 2021; Vyse et al., 2021). By including appropriate, independent 
proxy data on lithological changes within the sediment core, we can weight each model based on its performance 

to represent these variations in sedimentation rate. Users should provide the independent sediment proxy data as 285 
file with two columns, namely “compositedepth” which should be the measurement depths (as mid-point 

centimeter below sediment surface), and “value” representing the values of the proxy. This simplification makes 

it possible to import different available proxies or statistical representations of proxy data, i.e., results from 
ordination techniques (PCA, MDS, etc.), into the optimization process and to visualize the behavior of the age-

depth models in comparison to these proxies. 290 

In order to evaluate the performance, we adapted the fuzzy change point approach by Hollaway et al. (2021) to 

work with our input data and desired outcome on a depth-dependent scale instead of a time series. Similarly to 
Hollaway et al. (2021), our approach firstly detected change points within the proxy data and each modeling system 

output by fitting an ARIMA model to the data and then extractextracted change points by using the “changepoint” 

R package (Killick and Eckley, 2014; Killick et al., 2016) on the residuals of the ARIMA model. If we found no 295 
change points in the proxy data via this approach, we applied the “changepoint” R package on the raw independent 

sediment proxy data instead. Through the additional bootstrapping process introduced by Hollaway et al. (2021), 
we were able to set up confidence intervals for the extracted change points. Subsequently, we searched for the 

intersection between the change points plus their confidence interval for each age-depth model with the 
independent proxy data. After converting the change points for both age-depth model and independent proxy data 300 
into triangular fuzzy numbers, we obtained similarity scores using the Jaccard similarity score of the fuzzy number 
pairs as described in Hollaway et al. (2021). The similarity score can reach numbers between zero (no match) and 

one (perfect match). However, the threshold of excluding an age-depth model from the generated combined model 

depends on the imported proxy data and number of detected change points. Therefore, the user can set the threshold 
accordingly to their proxy within LANDO, but we have implemented the default value for this threshold to 0.1, 305 
which corresponds to an overlap of 10% of the change points between model and proxy data.  
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In addition to the criterion of preparing the proxy data in the format of “depth vs. value” in a separate file, we 
suggest using a proxy with a high resolution. As a high-resolution proxy, we define a proxy with more than 50 

measurements per meter of core length. For our “Inconsistent sequence” case study (CS2), we used high-
resolution elemental proxy data from XRF (X-ray fluorescence) measurement as our independent proxy data. As 310 
our evaluation element to optimize the age-depth models, we selected zircon (“Zr”), which itself is an indicator 
for minerogenic/detrital input (Vyse et al., 2020 and references therein). The zircon proxy data of EN18208 has a 

resolution of 200 measurements per meter of core length. 

To achieve a realistic comparison between sediment cores in the “Multiple cores” case study (CS3), we looked at 
the individual age-depth model outputs for each sediment core to determine whether an optimization step was 315 
required. We have only selected sediment cores with a published age-depth model (n = 33) so that we can refer to 
lithological boundaries from the original publication. During the analysis, we saw that nine sediment cores needed 

to be optimized due to strong inconsistencies between models over the entire length of each core. In twelve cases, 
where models within the lower section of the cores did not match, we considered proxy-based optimization to 

improve the model outcome when high-resolution data was available. 320 

2.5.3 Display of models 

To display the results from age-depth modeling and sedimentation rate calculation, we decided to create our own 

plots, instead of reusing the plots from each individual modeling system. Our plot header contains the unique 
CoreID; additionally, the header indicates whether the user decided to apply a reservoir correction on the 

radiocarbon data or not. Our single core plots consist of two main panels: On the left-hand side, the panel shows 325 
the results from the age-depth modeling process with the calibrated ages (in calibrated years Before Present, i.e., 

before 1950 CE) on the x-axis and the composite depth of the sediment core (in centimeter) on the inverted y-axis. 
On the right-hand side, the panel displays the result from the sedimentation rate calculation (in cm/yr, centimeter 

per year) on the x-axis plotted against the same composite depth on the inverted y-axis. For better readability of 

the strong variability of sedimentation rate, we used the log scale for the x-axis of the right panel. Generally, 330 
LANDO draws the ensemble age-depth model and sedimentation rate in grey with the weighted average as dashed 

line.  

For all models, LANDO will display the median values for age and sedimentation rate as solid lines. Both panels 

further display the corresponding one-sigma range and two-sigma range per centimeter for each model. Depending 
on the user’s selection, users can plot both sigma ranges, only one of the two sigma ranges, or just the median 335 
ages. To include age determination data within the plots, LANDO internally calibrates the radiocarbon data with 
the “BchronCalibrate” function of the Bchron package (Haslett and Parnell, 2008; Parnell et al., 2008) with either 

the IntCal20 (Reimer et al., 2020), Marine20 (Heaton et al., 2020), or SHCal20 (Hogg et al., 2020) calibration 

curve. This allows users to analyze samples from locations other than the terrestrial northern hemisphere. By 
default, the left panel contains each age data point as a predefined symbol with its one-sigma uncertainty as error 340 
bar. The symbol used by LANDO depends on the material category defined in the input file for each dating point.  

If users decide to filter out unreasonable age-depth models, similar to “Inconsistent sequence” case study (CS2), 

we added the option to plot the independent proxy data and therefrom derived lithology as an additional panel on 
the left-hand side for a better interpretability. Further, LANDO highlights the boundaries of lithological change 
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and its confidence interval in both sedimentation rate and age-depth model plots. The optimized plot includes a 345 
goodness-of-fit for each involved modeling system to represent the change points at the bottom of the plot. 

When using LANDO for multiple sediment cores, the overall plot holds for each sediment core the results from 
the binned weighted average sedimentation rate calculation (as median sedimentation rate in cm/yr, centimeter per 

year) against the selected age bins (in calibrated years Before Present, i.e., before 1950 CE) for each modeling 
system. This visual illustration allows user to compare multiple sediment cores based on the time axis. 350 

For people with color vision deficiency, we incorporated the extra option to plot the resulting age-depth plots with 

different line styles and textures to support the visual differentiation between each model. Figure S4 in the 
supplementary material shows the color-blind friendly output created by LANDO. With LANDO we want to 

support inclusivity in science, but we look forward to feedback from the community on how we can improve 
LANDO in this regard. 355 

2.6 Further analysis – Sedimentation rate development over time 

To identify similar temporal shifts in sedimentation regimes in our case study “Multiple cores” (CS3), we 

examined our data collection of 55 sediment cores regarding a general tendency in sedimentation rate shifts. First, 
we considered the 11 700-yr BP (Before Present, i.e., before 1950 CE) boundary as our marker for the change 

between Holocene and Late Pleistocene to separate the datasets (Rasmussen et al., 2006; Lowe and Walker, 2014; 360 
Walker et al., 2008). We selected this marker because numerous studies suggest a general difference in 
sedimentation regimes between these periods (e.g., Baumer et al., 2021; Bjune et al., 2021; Kublitskiy et al., 2020; 

Müller et al., 2009; Wolfe, 1996; Vyse et al., 2021). As some of the models were below the 11 700-yr BP marker, 
the calculation of the mean sedimentation rate for the Late Pleistocene featured only a subset of sediment cores 

(total number of sediment cores with measurement in Late Pleistocene: 20). Then, for each age model of the 365 
sediment cores in the subset, we used the two-sigma ranges around 11 700 yr BP to determine whether the 

maximum absolute change occurred exactly at 11 700 yr BP or around our set marker. For this investigation, we 

changed the bin size to 100-year bins to allow comparison between each modeling system and the combined 
models. Using maximum from the interquartile ranges of the two-sigma ranges for each model (see supplementary 

material Figure S3), we defined the observation period from 8700 to 14 700 yr BP (corresponds to a range of ± 370 
3000 years). We then checked the data within the time span to see where the maximum change in sedimentation 

rate occurred. If the calculated age for the new marker was at the edge of our time span, we iteratively increased 
the outer limit by 100 years (up to a maximum of 18 000 yr BP) to see if the calculated age still reflected the 

maximum absolute change. We then used the newly defined marker to calculate the mean sedimentation rate for 
before and after the marker. 375 

 

3 Results 

3.1 “Continuously deposited sequence” – Case Study no. 1 

All five age-depth models were able to produce an age-depth relationship for sediment core EN18218 (“Lake 
Rauchuvagytgyn”) with only small diversions in between some of the calibrated ages. Figure 2 depicts the two 380 
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visual outputs produced by LANDO. Panel (a) displays all models side by side, while panel (b) shows the 
combined output from all models.  

 

Figure 2 – Generated output from LANDO for sediment core EN18218 (14C data from Vyse et al., 2021) as an 

example of continuous lacustrine sedimentation over time. Panel (a) consists of a comparison between age-depth 385 
models from all five implemented modeling systems (left plot) and their calculated sedimentation rate (right 
plot). Colored solid lines indicate both the median age and median sedimentation rate for all models, while 

shaded areas represent their respective one-sigma and two-sigma ranges in the same colors with decreasing 
opacities. Panel (b) shows the ensemble age-depth model (left plot) and its sedimentation rate (right plot). The 

dashed line in panel (b) represents the weighted average age estimates (left plot) and the weighted average 390 
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sedimentation rates (right plot) for the ensemble model, while the grey area represents the two-sigma 
uncertainty, i.e., the outermost limits of two-sigma ranges from all models. Both plots on the left of (a) and (b) 

show the depth below sediment surface on the inverted  y-axis as composite depth of the sediment core in 
centimeter (cm) and the calibrated ages on the x-axis in calibrated years Before Present (cal. yr BP, i.e., before 

1950 CE). Black circles within (a) and (b) indicate the calibrated 14C bulk sediment samples with their mean 395 
calibrated age using the IntCal20 calibration curve (Reimer et al., 2020) and their one-sigma uncertainty as 

error bars. The plots on the right display the sedimentation rate in centimeter per year (cm/yr, x-axis as log-

scale) against the depth below sediment surface as the composite depth of the sediment core in centimeter (cm, 
inverted  y-axis). 

All models revealed highest sedimentation rates for the interval between 108 cm and 133 cm. Mean values ranged 400 
from 0.242 cm/yr (hamstr) to 0.764 cm/yr (clam) within this interval, whereas the median sedimentation rate varied 

between 0.107 cm/yr (Bacon) and 0.314 cm/yr (clam). In the lower segment of EN18218 (653 cm to 504 cm), the 
models showed a stronger disagreement among each other with larger varying mean and median values for 

sedimentation rate. In three instances, the majority of models noticeable dropped to lower sedimentation rate 
values. We found the first two declines in sedimentation rate between 366 cm and 339 cm as well as between 249 405 
cm and 222 cm with median sedimentation rates from 0.012 cm/yr (hamstr) to 0.027 cm/yr (Bacon) and from 

0.013 cm/yr (hamstr) to 0.025 cm/yr (Bacon), respectively. The last significant downward shift occurred between 
66 cm and 57 cm, where hamstr decreased the median sedimentation rate tenfold from 0.15 to 0.015 cm/yr between 

66 cm and 64 cm.  

In our ensemble model, we found the highest value for weighted average sedimentation rate at 128 cm with 0.4483 410 
cm/yr (two-sigma range: 0.032 - 2.338 cm/yr), which corresponded to weighted average age estimate of 4846 cal 
yr BP (two-sigma range: 4301 - 5384 cal yr BP). Throughout the core, the cumulative two-sigma uncertainty of 

the ensemble model ranged from 0.002 cm/yr to 2.486 cm/yr.  

3.2 “Inconsistent sequence” – Case Study no. 2 

For the second case studyFor the second case study, we considered an example where the underlying age 415 
determination data within the core are very contradictory to each other (see Figure 3). Before considering modeling 
such an age-depth relationship with conflicting data, users need to investigate and try to understand the reasons 

for any outliers. Fitting any age-depth model, including the LANDO ensemble, to such divergent data should be 
done with extreme caution and we do not recommend doing so without further deliberate investigation. Here we 

primarily aim to illustrate the range of age-depth models obtained within the ensemble as well as the results of the 420 
optimization with our proxy-based lithology.  

During the standard modeling procedure with LANDO, four out of five modeling systems produced an output for 

sediment core EN18208 (“Lake Ilirney”). The modeling system clam was unable to produce an age-depth model 
for this core. Figure 3 shows the visual outputs with all models in panel (a) and the combined model in panel (b).  

Figure 4 consists of three panels showing the results from the proxy-based optimization process using zircon (Zr). 425 
Panel (a) shows the visual output from the optimization process, while panel (b) and (c) illustrate the optimized 

age-depth model with the highest matching score and the resulting ensemble model, respectively. 
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Figure 3 – Generated output from LANDO for sediment core EN18218 (OSL and 14C data from Vyse et al., 
2020) as an example of discontinuous lacustrine sedimentation. Panel (a) consists of a comparison between age-430 
depth models from four out of five implemented modeling systems (left plot) and their calculated sedimentation 
rate (right plot). The modeling system clam was unable to produce an age-depth model for this core. Colored 

solid lines indicate both the median age and median sedimentation rate for all four models, while shaded areas 

represent their respective one-sigma and two-sigma ranges in the same colors with decreasing opacities. Panel 
(b) shows the ensemble age-depth model (left plot) and its sedimentation rate (right plot). The dashed line in 435 

panel (b) represents the weighted average age estimates (left plot) and the weighted average sedimentation rates 
(right plot) for the ensemble model, while the grey area represents the two-sigma uncertainty, i.e., the outermost 

limit of two-sigma ranges from all four models. Both plots on the left of (a) and (b) show the depth below 
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sediment surface on the inverted  y-axis as composite depth of the sediment core in centimeter (cm) and the 
calibrated ages on the x-axis in calibrated years Before Present (cal. yr BP, i.e., before 1950 CE). Black circles 440 

within (a) and (b) indicate the calibrated 14C bulk sediment samples with their mean calibrated age using the 
IntCal20 calibration curve (Reimer et al., 2020) and their one-sigma uncertainty as error bars. Black down-

pointing triangles show mean ages from OSL analysis and their one-sigma uncertainty as error bars.  The plots 
on the right display the sedimentation rate in centimeter per year (cm/yr, x-axis as log-scale) against the depth 

below sediment surface as the composite depth of the sediment core in centimeter (cm, inverted  y-axis). 445 

While Undatable was the only modeling system that considered the dating point at 1066 cm before following the 
next dating point at 966 cm, all remaining three modeling systems assumed a steady accumulation (mean 

sedimentation rate: 0.0575 cm/yr) from 1076 cm before overlapping their paths with Undatable. At the depth of 
795 cm, we found the next divergence between the age-depth models. Undatable followed the younger OSL dates 

and the young radiocarbon date at 666 cm. Bacon, Bchron, and hamstr continued with the radiocarbon date at 561 450 
cm, before taking different paths until age determination point at 184 cm. All modeling systems again overlapped 

their paths from 184 cm to the sediment surface with a mean sedimentation rate of 0.0277 cm/yr. 
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Figure 4 – Optimized visual output for EN18208 (OSL and 14C data from Vyse et al., 2020). We used high-
resolution X-ray fluorescence (XRF) measurements of zircon (Zr) as independent proxy to evaluate model 455 

performance to represent lithological changes. Panel (a) extends the existing panel (a) of Figure 3 by adding a 
plot on the left to show the proxy-derived lithology used to filter unreasonable models. This added plot consists 

of the proxy measurements of Zr (in counts per second) along the depth below sediment surface as the composite 
depth of the sediment core in centimeter (cm) and the derived lithological boundaries (solid horizontal lines) 

plus their uncertainty range (dashed horizontal lines). Both age-depth model and sedimentation rate plot contain 460 
the same lithological boundaries as visual aid. The text box in the bottom middle lists the models with their 
matching score related to the proxy-derived lithology. Panel (b) shows the model (hamstr) with the highest 

matching score (0.0237). Panel (c) depicts our ensemble model based on this model. The age-depth models 
displayed in panel (b) and (c) show strong similarities with the age-depth model developed by Vyse et al. (2020). 

During the optimization process, our adapted algorithm located four lithological boundaries with its uncertainty 465 
range from the independent proxy data: 189.5 cm (182 – 192.5 cm), 646 cm (638 – 657 cm), 890.5 cm (874 – 912 

cm), and 1051.5 cm (1043 – 1061.5 cm). We found the highest matching score from the optimization for hamstr 
(Score: 0.0237). Table 5 shows the average sedimentation rate for each proxy-derived lithological unit (PLU) of 

the ensemble model of EN18208. 

Table 5 – Average sedimentation rate of EN18208 divided into proxy-derived lithological units. The calibrated 470 
mean model range indicates the mean age estimates of the ensemble model for the corresponding depths of the 

proxy-derived lithological unit (PLU). 

Proxy-derived 
lithological unit 

Corresponding depths below 
sediment surface [cm] 

Calibrated mean model 
range [cal yr BP] 

Average sedimentation 
rate [cm/yr] 

PLU1 0 – 190 -67 – 17752  0.0152 
PLU2 190 – 646 17752 – 29073 0.1664 

PLU3 646 – 891 29073 – 34244 0.1073 
PLU4 891 – 1052 34244 – 44499 0.0307 

 

3.3 “Multiple cores” – Case Study no. 3 

In contrast to the previous case studies, this case study focused on understanding the development of sedimentation 475 
rates over time, with the emphasis on the transition from the Holocene to the Pleistocene. We used age 

determination data from 33 sediment cores with a published age-depth model to show the standard output of 
LANDO for multiple sediment cores, while using all datasets for the subsequent analyses. Figure 5 shows the 

ensemble models with weighted average sedimentation rates binned into 1000-year bins from our multi-core 
investigation with 33 published sediment cores (see Figure S1 for the individual models in the supplementary 480 
material). We set the boundaries from 0 to 21 000 cal yr BP within these figures to cover the time span from the 

present to the Last Glacial Maximum (LGM) (Clark et al., 2009). Below the number for each core in Figure 5 are 
the proxies used for their optimization. In 17 out of 55 cases within our entire collection, the ensemble model was 

based on four out of five models, as neither clam or Undatable was able to find a suitable age-depth model (for 
more details, please see Table S1 in the supplementary material). The maximum time span covered by the sediment 485 
cores varied between 2000 yr BP (CoreID: PG1972) and 320 000 yr BP (CoreID: PG1351). The average non-
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optimized sedimentation rate ranged between 0.004 cm/yr (CoreID: LOT83-7) and 1.142 cm/yr (CoreID: 
PG1228). In total, we optimized seven sediment cores, as in most cases neither high-resolution data was available 

nor the provided proxy data represented a lithological proxy when crosschecked with the original publication. 
From these seven sediment cores, we reconstructed the proxy-based lithology twice with TOC as a low-resolution 490 
proxy (CoreID: PG1228 & PG1437).  

 

Figure 5 – Optimized combined models for 33 sediment cores with a published age-depth model displayed as 

weighted average sedimentation rate (in centimeter per year, cm/yr – y-axis) binned into 1000-year bins (in 

calibrated years Before Present, cal. yr BP, i.e. before 1950 CE – x-axis) for the last 21 000 years. Dashed line 495 
represents the weighted average sedimentation rate, whereas the grey areas are the respective two-sigma 

ranges. Each grid cell contains the unique core identifier of each involved sediment core. In seven cases, the 
letters below each number give the name of the independent proxy used for optimization process. 

To visualize the difference in sedimentation rates between two neighboring and fundamentally different 
environmental settings, i.e. Pleistocene glacial and Holocene interglacial, we used the datasets that were split at 500 
the Holocene-Pleistocene boundary at 11 700 yr BP. Figure 6 shows the mean sedimentation rate for Holocene 

and Late Pleistocene for each model with its one-sigma uncertainty. Figure S3 in the supplementary material gives 
an overview over the overall uncertainty for all models. Among all models, clam models have the lowest range on 

average for both Holocene (0.0135 cm/yr) and Late Pleistocene (0.0011 cm/yr), while the combined models show 
the greatest uncertainty on average in the Holocene (0.0942 cm/yr) and for the Late Pleistocene (0.0711 cm/yr). 505 
The sediment core PG1228 (latitude: 74.473° N) showed the highest individual sedimentation rate for the Holocene 
in Undatable (median sedimentation rate: 1.1013 cm/yr). We observed a significant reduction of about 77 % for 

the optimized model of the same core (0.1264 cm/yr), compared to its combined model (0.5615 cm/yr).  
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Figure 6 – Average sedimentation rate in centimeter per year (cm/yr) for each sediment core in our data 510 
collection of 55 sediment cores divided into Holocene dataset (from present to 11 700 yr BP, orange lines) and 

Late Pleistocene dataset (from 11 700 yr BP to 21 000 yr BP, blue lines). Each plot displays the one-sigma 
range of sedimentation rate within each dataset for each model and sediment core. In addition, filled circles 

represent the mean value for the optimized models. 

For our data compilation, we found the largest absolute change in sedimentation rates within the modeling systems 515 
on average between 9600 and 11 900 yr BP (Figure 7). For our combined and optimized models, however, the 
largest change averaged between 10 500 yr BP and 10 700 yr BP. Still, all sediment cores covered the entire range 

of our initial time span from 8700 to 14 700 yr BP within the models. Using the results of the largest change in 
sedimentation rate for each sediment core and model as new markers, we again split the datasets into two separate 

datasets. One dataset contained mostly Holocene sedimentation rate values (Holocene dataset), while the other 520 
contained mostly Late Pleistocene values (Late Pleistocene dataset). Therefore, the initial display (Figure 6) 
changed slightly to Figure 8. Most notable was the increase in total number of sediment cores in Late Pleistocene 

dataset with an individual separation (n = 38) compared to the Late Pleistocene dataset with the separation at 11 
700 yr BP (n = 19). 
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 525 

Figure 7 – Boxplot representing the years with the biggest absolute change in sedimentation rate for our data 

collection of 55 sediment cores. Sedimentation rate results from each model binned into 100-year bins to allow 

comparisons between the modeling systems. The initial observation time span covers 8700 to 14 700 yr BP. The 
orange line corresponds to the median value for each model. 

 530 

Figure 8 – Average sedimentation rate in centimeter per year (cm/yr) for each sediment core in our data 

collection of 55 sediment cores divided into Holocene dataset (orange lines) and Late Pleistocene dataset (blue 

lines). The exact value for the split of the datasets for each individual core and each model depends on the 
results of the maximum change in sedimentation rate within the observation period 8700 to 14 700 yr BP. Each 
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plot displays the one-sigma range of sedimentation rate within each dataset for each model and sediment core. 535 
In addition, filled circles represent the mean value for the optimized models. 

4 Discussion 

4.1 Assessment of different case studies  

By comparing the cases for the two single sediment cores, it becomes clear how age-depth relationships may 
diverge depending on the individual modeling system and its treatment of available dating points (cf. Wright et 540 
al., 2017; Trachsel and Telford, 2017; Lacourse and Gajewski, 2020). In the case of EN18218 (“Continuously 

deposited sequence” – CS1), all five implemented modeling systems yield an agreeing and continuous chronology. 
However, the two radiocarbon dates at 81.25 cm and 114.75 cm have a significant impact on the model’s 

interpretation for these depths. Vyse et al. (2021) argued that these two dates are outliers resulting from reworking 
and mixing effects within the sediment column. According to the authors, no additional proxy data from EN18218 545 
would support the immediate increase in sedimentation rate for these depths and hence, they excluded both dates 
from the modeling process. Because we are not considering any additional proxy data to evaluate age-depth models 

in their geoscientific context, but rather include all provided age determination data into the modeling process, the 
consideration of these two radiocarbon dates on the basis of all available models leads to higher sedimentation 

rate. Nonetheless, the example here shows how the comprehensive application of the different modeling systems 550 
may help to identify doubtful dating points.  

We saw a disagreement between the modeling systems in the case of sediment record EN18208 (“Inconsistent 

sequence” – CS2), which we expected prior to the execution of our application, due to the scattered dating points 
in the original data. Vyse et al. (2020) linked this scatter of age data points observed in the interval between 282 

and 755 cm of EN18208 to the redeposition of older carbon. They implied that to produce reliable age-depth model 555 
they had to exclude both OSL and radiocarbon dating points for these depths. However, our optimized combined 

model agrees with their established age-depth model and can reproduce the characteristics of the existing model 

by Vyse et al. (2020), without removing dating points. In addition, in three out of four cases, our proxy-derived 
lithology with its uncertainty matches the lithological boundaries set by the authors of the EN18208 study, 

according to criteria based on acoustic sub-bottom profiling. Only the first original boundary (196 cm) is outside 560 
our confidence interval from 182 cm to 192 cm. We still showed that our approach could set logical boundaries 

for sediment cores by solely relying on high-resolution proxy data. 

Despite a strong similarity between our optimized model and the existing model developed by Vyse et al. (2020), 

the highest score showed a low similarity value (0.0237) using our similarity scale from zero (no match) to one 
(perfect match). Although we chose the highest matching score to demonstrate LANDO’s ability of filtering out 565 
disagreeing models, we do not support the strategy of choosing a single age-depth model with such a low matching 

score. Rather, users should investigate the cause of the scatter in the age determination data and/or change the 
default values within LANDO. For example, to deal with the scatter in the data, users can increase the Undatable 

parameter “bootpc” to a higher value - as suggested by Lougheed and Obrochta (2019) - to account for a higher 
uncertainty in the given data.  570 

Given a dataset with scatter dating points, users should also consider that models with small confidence intervals 
may underestimate the potential variability of their studied system. There are valid reasons for using models with 
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a low uncertainty, especially when the given data support such interpretations. However, although the results of 
these low-uncertainty models may reflect the true chronology in similar case to EN18218 (“Inconsistent sequence” 

– CS2), we recommend using the combined LANDO model to include all possible outcomes. A larger uncertainty 575 
band reduces the tendency to choose a model that fits a particular hypothesis. For palaeoenvironmental 

reconstruction, users canFor palaeoenvironmental reconstruction, users should also propagate these increased 
uncertainties into their proxy interpretation, which is often underrepresented (Lacourse and Gajewski, 2020;  

McKay et al., 2021).  

Even though LANDO can produce age-depth models for multiple sediment cores (“Multiple cores” – CS3), we 580 
must assume limitations in the geoscientific validity for some of the results. In a few cases, an optimization of age-

depth models with independent proxy data would have been necessary, but such independent data were 
inaccessible or did not exist. As for these cases age-depth relationships between implemented modeling systems 

seem to disagree (see Figure S1 in the supplementary material), the results from our combined model might over- 
or underestimate the true sedimentation rate. On the other hand, optimization using proxy data can reduce these 585 
biases.  

For instance, during the examination of the Holocene and the Pleistocene sedimentation rates (Figure 6), we 

noticed that one sediment core (PG1228) had an extremely high mean sedimentation rate for the Holocene dataset 

in Undatable. Similar to the second case study (“Inconsistent sequence” – CS2), we found scattered age data 
points for this sediment core, which influenced the modeling process of Undatable. Further, the result then affected 590 
our combined model by increasing the overall sedimentation rate for the Holocene in this core. However, LANDO 
identified the Undatable model as an outlier based on the lithology established through independent TOC proxy 

data. The optimized model then agreed well with the original publication by Andreev et al. (2003), which further 
increased the validity of our approach. Our findings suggest that high-resolution proxy data should accompany 

geochronological studies to enable a more concise and realistic assessment of the development of sedimentation 595 
rates over time in high latitude lake systems. 

We further improved the validity of some results of our multi-core study by comparing our LANDO output with 

the available age-depth models from publications. In four cases (CoreID: 2008-3, Co1309, LS-9, PG1205), we 
adjusted our initial output to the previously published age-depth models (Rudaya et al., 2012; Gromig et al., 2019; 

Pisaric et al., 2001; Wagner et al., 2000). One reason for the discrepancy was that the age determination data were 600 
not available for the entire length of sediment cores and LANDO extrapolated beyond these dating points to match 

the core length. In the case of PG1205 (Wagner et al., 2000) with a core length of 9.85 m, dating points were 
available for the upper 2.5 meters (Table 4) and therefore LANDO extrapolated the remaining seven meters to 

cover the entire sediment core. However, the extrapolated results in accumulation rates do not reflect the geological 

history of the lake record provided by Wagner et al. (2000). We have therefore changed the length of the sediment 605 
core to the last dating point to avoid strong extrapolation. In case of Co1309 (Gromig et al., 2019), the age-depth 

model required the introduction of a hiatus that would span from 14 to 80 cal yr. BP (Andreev et al., 2019; 
Savelieva et al., 2019). However, while a specific customization (such as a hiatus) is possible for single core cases, 

this is not possible in the current version of LANDO for multi-core investigation. To overcome this, we reduced 
the length of the record used in our study for core Co1309 to the depth of the last available dating point (Table 4), 610 
such that the LANDO output matches the age-depth relationship reported by Gromig et al. (2019). 
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The detection of sedimentation rate change as indicator for the Holocene-Pleistocene boundary yielded contrasting 
results. While the results from hamstr were closest to the 11 700-year boundary, all other modeling systems place 

the largest change in sedimentation rate either before or after 11 700 yr BP. We hypothesize that three factors may 
have influenced all model results. (1) The age uncertainty (one-sigma range) within each individual model varied 615 
on average between 1000 and 3000 years for the period of 11 600 to 11 800 yr BP (Figure S3 in the supplementary 
material). This wide range of uncertainty does not provide confidence in pinpointing the boundary to an exact time 

slice. We expect that a higher amount of dating points close to the Holocene-Pleistocene boundary could constrain 

the models (Blaauw et al., 2018; Lacourse and Gajewski, 2020; Trachsel and Telford, 2017), which would lead to 
a better estimate of the boundary. (2) The age output for each model is not evenly distributed, which means that 620 
in the period from 11 600 to 11 800 yr BP there are different numbers of observations for each core and each 
modeling system. We took this behavior into account by using binning (Alasadi and Bhaya, 2017). Otherwise, an 

interpolation between both age and sedimentation rate values could lead to potential biases in the interpretation. 
(3) While we assumed in our first setup that the main sedimentation rate change would occur at 11 700 yr BP 

consistently for all sediment cores (Figure 6), we cannot rule out the possibility that the sedimentation rate has 625 
changed significantly at different times for different lake systems. As our data collection covers a large area both 

in latitude and longitude (Figure 1), the variability between the models indicate the local variability between the 

climate and lithological preferences of the lake catchment for the involved sediment cores (e.g., Lozhkin et al., 
2018; Finkenbinder et al., 2015; Anderson and Lozhkin, 2015; Kokorowski et al., 2008; Biskaborn et al., 2016; 

Courtin et al., 2021).  630 

4.2 Design of LANDO 

From the beginning of the development of LANDO, we decided to integrate most of the default settings for each 
modeling system as default values (Table 2). Regional studies, such as the one performed by Goring et al. (2012), 

have shown that specific prior information for the Bayesian modeling systems are needed to best fit the models to 

lakes within a geographical area. Without this regional information, changing settings within the modeling system 635 
to an arbitrary higher or lower value without considering the regional diversity could lead to under- or overfitting, 

if the constraints are too loose or too strict (Trachsel and Telford, 2017). For the special case that users have in-
depth knowledge for one lake or multiple lake system, users can easily adapt these parameters within LANDO, as 

we have made these settings accessible in the Jupyter Notebook itself.  

Part of the reason we made this decision was that we acquired external age determination datasets where we may 640 
not necessarily have all the essential information to specify each model. But we also wanted to simplify the process 
for users who do not have in-depth modeling knowledge. By using the default values, we can compare models 

based on their ability to work with the available data. On the other hand, we are sure that the developers have set 

their default values based on systematic testing. Since we did not tune the age-depth models to the existing core, 
i.e. changing the parameters within each modeling system, we generated “uninformed” models that solely work 645 
with the available age determination data. By combining these “uninformed” models into one model, we have 
created an ensemble model that we consider to be data-driven and “semi-informed”.  

The advantage of this data-driven, semi-informed model approach is that we are reducing the risk of overfitting 
by considering the uncertainty of all modeling systems. This allows us to reevaluate existing geoscientific 

interpretations with larger uncertainty by taking advantage of the ensemble outcome. Additionally, we found that 650 
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the more information is accessible to generate age-depth models, the more accurate and less uncertain these models 
become. A higher density of age determination along the depth of the sediment core is desirable for future drilling 

campaigns (cf. Blaauw et al., 2018). 

The disadvantage arises in our second case study (“Inconsistent sequence” – CS2) and the multi-core investigation 

(“Multiple cores” – CS3). For both cases we needed the optimization step to narrow down the most suitable age-655 
depth models for each sediment core, since the unoptimized uncertainty band was otherwise too wide for a clear 

interpretation. The optimization requires additional and independent proxy data, which are not available for some 

of our cores, especially for sediment cores obtained some decades ago. Our optimizing step is therefore mainly 
suitable for recently retrieved and analyzed sediment cores.  

In addition to the assessment of age-modeling quality, we also checked the time and effort to conduct dating 660 
routines. We saw that Bacon had the highest runtime overall in all three case studies of our study design, which 

we link to our adjustment of the “ssize” parameter from 2000 (per default) to 8000 within the application. We 
increased this value to ensure good MCMC mixing for problematic cores, as suggested by Blaauw et al., (2021), 

as well as to guarantee we had enough iterations for our summarizing statistics to compare with other modeling 
systems. If users decide to reduce the value of “ssize”, we implemented an iterative process, which checks whether 665 
Bacon produced enough iterations. If this is not the case, then LANDO will iteratively rerun the same sediment 

core with a higher “ssize” to produce 10 000 iterations.  

One unique feature of our application is the predominant use of parallelization within the age-depth modeling of 

multiple sediment cores. For instance, we used the “Dask” back-end for our sedimentation rate calculation. The 
advantage over popular Scala-based “Apache Spark” and its Python interface “PySpark” (Zaharia et al., 2016) is 670 
that the “Dask” back-end is Python-based and well integrated into the Python ecosystem (cf. Dask Development 
Team, 2016). Therefore, “Dask” natively works with Python packages already implemented in LANDO. The key 

difference is that “Dask” doesprovides neither provide a query optimizer, nor relyrelies on Map-Shuffle-Reduce, 

a data processing technique for distributed computing, but instead uses a generic task scheduling (cf. Dask 
Development Team, 2016). Still, parallelization libraries and back-ends provide LANDO with additional speed-675 
up that can promote future multi-core studies. 

Within the ensemble model, we faced the challenge that the combination of all age distributions from the 

underlying age-depth models per centimeter represents a multi-modal distribution, especially in cases such as the 
“Inconsistent sequence” case study (CS2). It also means that the output of the ensemble model in these cases is 

susceptible to inclusion/exclusion of any model. However, we consider using the weighted average median age to 680 
be a suitable solution for the multi-model distribution problem, as it is a good indicator on the most probable age 

within each centimeter based on all modeling systems. But we advise users to use the age confidence intervals per 

centimeter in subsequent analyses, instead of relying solely on the weighted average median age (cf. Telford et al., 
2004). By optimizing the ensemble model with the ability to include independent proxy data, users can increase 

the likelihood of a more probable mean age for their sediment core.  685 

4.3 Technical specifications of LANDO 

In the further course of development, we decided to limit the resolution of the age-depth relationships. Using a 
resolution of one-centimeter increments allows us to match most proxy measurements from each sediment core 
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with our age-depth models, apart from high-resolution measurement, such as XRF measurements. To allow a 
matching with high-resolution proxy data, we tested for a higher resolution of 0.25 cm for our application. In the 690 
single sediment core cases (CS1 and CS2), this change did not affect the workflow of LANDO. In turn, the 
“Multiple cores” case (CS3) ran into memory issues. Since the SoS notebook and our parallel back-ends store the 

resultresulting data frames in memory, expanding the resulting data frames to a 0.25 cm resolution causes a 
fourfold increase in memory use, which limits our capability to run our application on a single laptop. As an 

intermediate solution, we stored the results from each parallelization worker on disk to free the memory and 695 
performed combining operations later. Based on this experience, we recommend working with data centers or 
increasing the available main memory (RAM) of the operating computer for multi-core studies with expected high-

resolution output. 

Another advantage of parallelization is that most modeling systems only run on one CPU/thread. Nowadays, 

however, both personal computers and data centers are made up of multiple CPUs/threads. Especially for larger 700 
multi-site studies, our application has the advantage of cutting the overall computing time by running each 

modeling system on multiple CPUs/threads simultaneously, even for personal computers. In comparison to serial 
execution of multiple models on one CPU/thread, which would take several hours, our parallel execution reduced 

the computing time per modeling system by a factor up to four. When considering that our setup consisted of six 

CPUs (12 threads) and 16 GB RAM, user can even further increase this factor even further by using larger 705 
computing facilities. 

Sediment core length is the most limiting factor that determines the overall computing time in our application. 
However, we want to ensure that users can model each sediment core over its entire length to match proxy data 

with the correct age-depth relationships. Within our LANDO system, we faced this problem by using extrapolation 
to calculate ages beyond available dating points. The exception here is the modeling system Undatable, which 710 
models only between the first and last dating point, as these two dating points act as anchors for the bootstrapping 

process (Lougheed and Obrochta, 2019). As a result, we saw the sedimentation rate dropping twice to zero at the 
end of the sedimentation rate calculations. We link this behavior to the end of the individual modeling processes 

of Undatable as well as the other implemented systems.  

Extrapolating the age-depth models beyond age determination points always baresbears the risk that the 715 
extrapolated dates do not reflect the actual age. The implemented modeling systems account for this circumstance 
by increasing the uncertainty for these undated regions (Blaauw, 2010). While we are aware of this potential issue, 

we wanted to allow users to take advantage of the full age-depth coverage for their sediment core. Blaauw et al. 
(2018) pointed out in their findings that “most existing late-Quaternary studies contain fewer than one date per 

millennium” and recommended to increase the number of dating points to “a minimum of 2 dates per millennium”. 720 
This recommendation would further decrease the need of extrapolation and reduce the overall uncertainty of age-
depth models. We agree that more age control can improve the age-depth modeling results, but until the associated 

costs to analyze organic material for radiocarbon dating do not decrease more significantly (Hajdas et al., 2021; 
Zander et al., 2020), we recommend LANDO as tool to improve age-depth modeling. 

4.4 Current and future model implementation in LANDO 725 

During the development of our approach, we realized that some programs were not executable or parallelizable 

under the current circumstances. For instance, we tested OxCal 4.4 as stand-alone version on Windows with 



 

30 
 

NodeJS (version 12.13.1.0) and the R package “oxcAAR” (Martin et al., 2021) within our application. In the case 
of EN18208, execution duration was above 3 hours until the notebook lost connection to the OxCal interface. 

Furthermore, some cores never fully reached convergence within OxCal. We tried adapting our set-ups including 730 
changing the internal constraints, i.e. placement and number of boundaries, or using different depositions models, 

i.e. alternating between sequential model (“Sequence()”) and Poisson-process deposition model (“P_Sequence()”). 
According to Bronk Ramsey and Lee (2013), the long-term plan of OxCal is to make the entire source code openly 

accessible, which we fully support. An open source code would allow us to identify the current bottleneck so that 

we could implement OxCal in a future release.  735 

To determine the mostbest fitting age-depth model through the clam modeling software, we added the “best fit” 

option to LANDO by default. The “best fit” option utilizes the negative log fit results from all clam outputs and 
identifies the fit with the lowest result as best fit. We included two further exclusion criteria for clam models within 

LANDO: if a) there are too many age reversals within the models, or b) the fit reaches infinity. Under specific 
circumstances, some sediment cores will not have a fitting model, as is the case, for instance, in the “Inconsistent 740 
sequence” case study (CS2). Including models that do not fit the data would lead to erroneous estimations of the 
age-depth relationship. This comes with the cost of losing an established model in the combined model, if no fitting 

clam model is available. However, we think that the benefit of having a morebetter fitting model outweighs this 

cost.  

Although Undatable is open source and the fastest modeling system within LANDO, its original development 745 
environment (MATLAB) is not free of charge. That is why we implemented Undatable in the open source 
MATLAB-equivalent Octave. Since the Octave version of Undatable was slower than the original MATLAB 

version, we used the parallelization package “parallel” (Fujiwara et al., 2021) to provide comparable results in 
terms of computing time. To use Undatable with MATLAB within our application, users must acquire a license 

of MATLAB and link the MATLAB kernel to their license. Unfortunately, we do not have the capacity to provide 750 
individual licenses with LANDO. For users with an active MATLAB license, we provide in the repository 
mentioned in the “Code and data availability” section the appropriate code to run the MATLAB version of 

Undatable in LANDO. 

We highly appreciate all the work that went into developing the stand-alone versions of each modeling system. 

Because LANDO relies on the work of these modeling systems, we encourage users of LANDO to cite the original 755 
modeling software alongside the LANDO publication in their work. Additionally, users should try the stand-alone 

versions for each modeling system to provide feedback to both LANDO and modeling system maintainers.  

A potential expansion option of LANDO within the multi-language environment is to extent the application and 

allow future data analysis to use powerful tools, such as Python’s machine learning libraries, e.g., keras (Chollet 

and and others, 2015) and tensorflow (Abadi et al., 2016). We anticipate that other developers can use LANDO as 760 
their starting point in building larger limnological data analysis application. 

5 Conclusion 

This paper introduced our application LANDO – a linked age-depth modeling notebook approach. We presented 

an improved age-depth modeling procedure for sediment cores from high-latitude lake systems by linking five 
established systems: Bacon, Bchron, clam, hamstr, and Undatable. The added value of our application is the 765 
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reduced effort to use established modeling systems in a single Jupyter Notebook for both single and multiple dating 
series and at the same time make the results comparable. In addition, we introduced an ensemble model that uses 

the output from all models to create a more robust age-depth relationship. In the case of scattered age determination 
data, we further implemented an adapted version of the fuzzy change point approach that allow users to integrate 

independent proxy data as indicator of lithological changes. This option helps evaluate the performance of 770 
modeling systems across lithological boundaries while providing a more reliable ensemble age-depth model by 

filtering inappropriate model runs for problematic datasets. Our application also allows users to run large datasets 

with multiple sediment cores in parallel to reduce the overall computation time. In our data collection of 55 
sediment cores from northern lake systems at high latitudes, we found that the main regime changes in 

sedimentation rates do not occur synchronously for all lakes at the Pleistocene-Holocene boundary. However, we 775 
linked this behavior to the uncertainty within the modeling process as well as the local variability of the sediment 

cores within the collection. 

Code and data availability 

The LANDO code is accessible at GitHub (https://github.com/GPawi/LANDO) (Pfalz, 2022). We provide five 
example spreadsheets in the repository for users to test the application. A stand-alone version of the LANDO 780 
application will be available upon publication. The dataset with all dating points used in this study, including their 

references, will be accessible via Pangaea. 
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