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Abstract.  15 
Age-depth correlations are the key elements in paleoenvironmental studies to place proxy measurements into a 

temporal context. However, potential influencing factors of the available radiocarbon data and the associated 

modeling process can cause serious divergences of age-depth correlations from true chronologies, which is 

particularly challenging for paleolimnological studies in Arctic regions. This paper provides geoscientists with a 

tool-assisted approach to compare outputs from age-depth modeling systems and to strengthen the robustness of 20 
age-depth correlations. We primarily focused in the development on age determination data from a data collection 

of high latitude lake systems (50° N to 90° N, 62 sediment cores, and a total of 661 dating points). Our approach 

used five age-depth modeling systems (Bacon, Bchron, clam, hamstr, Undatable) that we linked through a multi-

language Jupyter Notebook called LANDO (“Linked age and depth modeling”). Within LANDO we have 

implemented a pipeline from data integration to model comparison to allow users to investigate the outputs of the 25 
modeling systems. In this paper, we focused on highlighting three different case studies: comparing multiple 

modeling systems for one sediment core with a continuous, undisturbed succession of dating points (CS1 -

“Undisturbed sequence”), for one sediment core with scattered dating points (CS2 - “Inconsistent sequence”), and 

for multiple sediment cores (CS3 - “Multiple cores”). For the first case study (CS1), we showed how we facilitate 

the output data from all modeling systems to create an ensemble age-depth model. In the special case of scattered 30 
dating points (CS2), we introduced an adapted method that uses independent proxy data to assess the performance 

of each modeling system in representing lithological changes. Based on this evaluation, we reproduced the 

characteristics of an existing age-depth model (Lake Ilirney, EN18208) without removing age determination data. 

For the multiple sediment core (CS3) we found that when considering the Pleistocene-Holocene transition, the 

main regime changes in sedimentation rates do not occur synchronously for all lakes. We linked this behavior to 35 
the uncertainty within the modeling process as well as the local variability of the sediment cores within the 

collection. 

 

1 Introduction 

Lakes sediments are important terrestrial archives for recording climate variability within the Northern 40 
Hemisphere (Biskaborn et al., 2016; Smol, 2016; Lehnherr et al., 2018; Subetto et al., 2017; Syrykh et al., 2021). 
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The identification of age-depth relationships in those lake sediments helps us to put their measured sediment 

properties in a temporal context (Bradley, 2015; Lowe and Walker, 2014; Blaauw and Heegaard, 2012). We can 

determine these relationships by directly counting the annual laminated layers (varves) (Brauer, 2004; Zolitschka 

et al., 2015), or by using indirect age determination methods such as radiocarbon, optically stimulated 45 
luminescence (OSL), or lead-cesium (Lead-210/Cesium-137) dating (Lowe and Walker, 2014; Bradley, 2015; 

Appleby, 2008; Hajdas et al., 2021). Defining a reliable age-depth correlation for paleoenvironmental studies in 

cold regions is particularly challenging, as varves only exist in rare cases and the determination of ages mostly 

depends on radiocarbon dating (Strunk et al., 2020 and references therein). Because of primarily financial 

restrictions, however, only a few selected samples are taken from sediment core sections to determine the 50 
corresponding ages of certain depths (Blaauw et al., 2018; Ciarletta et al., 2019; Olsen et al., 2017). We therefore 

rely on model calculations to define the ages between the samples. In addition to the mathematical challenges that 

arise when establishing age-depth correlations, the selection of appropriate dating material has an impact on the 

modeling process.  

In the special case of Arctic lake systems, the amount of material for radiocarbon dating, i.e. aquatic/terrestrial 55 
macrofossils and organic remains, is extremely low (Abbott and Stafford, 1996; Colman et al., 1996; Strunk et al., 

2020). Radiocarbon dating is therefore often based on the organic carbon content in bulk sediment samples, which 

can be relatively small due to the lower bioproductivity in those lakes (Strunk et al., 2020 and references therein). 

However, the use of bulk sediments is problematic, as some portions of contributing carbon are not occurring at 

the same time as the deposition but may reveal inherited ages from reworked older materials (Rudaya et al., 2016; 60 
Biskaborn et al., 2013, 2019). Several methods are available for pre-treating bulk sediment samples to address 

sample-based dating uncertainties (Brock et al., 2010; Strunk et al., 2020; Rethemeyer et al., 2019; Bao et al., 

2019; Dee et al., 2020). Each pre-treatment method may yield a different result for the same material due to the 

influence of humic acids, fulvic acids, and humins (Brock et al., 2010; Strunk et al., 2020; Abbott and Stafford, 

1996). Similarly, older, inert material incorporated by living organism, known as “reservoir effect” or “hard-water 65 
effect”, distorts the actual radiocarbon age by up to ± 10 000 years (Ascough et al., 2005; Austin et al., 1995; 

Lougheed et al., 2016). Such a distortion creates methodological and mathematical errors in the development of 

age-depth correlations, which possibly leads to a misinterpretation of these relationships.  

There are numerous geochronological software systems (from now on simply called modeling systems) available 

to the geoscientific community, which try to solve the challenges stated above (Trachsel and Telford, 2017; Wright 70 
et al., 2017; Lacourse and Gajewski, 2020). Implemented methods for detecting outliers, accounting for varying 

sedimentation rates, or using bootstrapping processes support the construction of an age-depth model (Parnell et 

al., 2011; Lougheed and Obrochta, 2019; Bronk Ramsey, 2009, 2008).  

However, the correct usage of those systems requires a high degree of understanding of the underlying 

mathematical methods and models. Trachsel and Telford (2017) noted that, despite the users’ impact on the 75 
outcome of the model by setting priors and parameters, most users do not have any prior objective insights into 

appropriately choosing the right parameters. Wright et al. (2017), Trachsel and Telford (2017), and Lacourse and 

Gajewski (2020) even showed that the results produced by modeling systems could diverge from the true 

chronology. An in-depth comparison of the results is therefore extremely error-prone. Due to time constraints, 

usually, users only select and apply one modeling system for paleoenvironmental interpretation. 80 
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The objective of this paper is to reduce the effort to apply different methods for determining age-depth correlations 

and to make their results comparable. We provide a tool to link five selected modeling systems in a single multi-

language Jupyter Notebook. We introduce an ensemble age-depth model that uses uninformed models to create 

data-driven, semi-informed age-depth correlation. We demonstrate the power of our tool by highlighting three case 

studies in which we examine our application for individual sediment cores and a collection of multiple sediment 85 
cores. Throughout this paper, the term “LANDO” refers to our implementation, which stands for “Linked age and 

depth modeling”. 

In this paper, we use both published and unpublished age determination data from 62 sediment cores from high 

latitude lake systems (50° N to 90° N). This unique collection of age determination data allows us to thoroughly 

test LANDO by examining changes of sedimentation rates over time for various modeling and lake systems. We 90 
provide an overview on the acquired metadata in the repository mentioned in the “Code and data availability” 

section. The harmonization of the acquired data follows the conceptual framework described in Pfalz et al. (2021).  

2 Methods 

A key element in our data-science based approach for developing comparable age-depth correlations was to 

facilitate the use of modeling systems independent from their original proprietary development environment. A 95 
multi-language data analysis environment, such as the SoS notebook (Peng et al., 2018) or GraalVM (Niephaus et 

al., 2019), provides an interface that enables the comparison of modeling systems without being limited to one 

programming language or environment. Our implementation used the SoS notebook as its backbone. The SoS 

notebook is a native Python- and JavaScript-based Jupyter Notebook (Kluyver et al., 2016), which extends to other 

languages through so-called “Jupyter kernels”. We developed our implementation with the focus on four languages 100 
and their respective kernels: Python, R, Octave, and MATLAB. This selection allowed us to use the most common 

modeling systems. 

According to Lacourse and Gajewski (2020), the most commonly used modeling systems are Bacon (Blaauw and 

Christen, 2011), Bchron (Haslett and Parnell, 2008; Parnell et al., 2008), OxCal (Bronk Ramsey, 1995; Bronk 

Ramsey and Lee, 2013), and clam (Blaauw, 2010). We additionally considered the MATLAB/Octave software 105 
Undatable (Lougheed and Obrochta, 2019), as an alternative to the classical Bayesian approach, and the R package 

hamstr (Dolman, 2021). The hamstr system is an implementation of the Bacon algorithm by Blaauw and Christen 

(2011), which improves the algorithm by additionally adding hierarchical accumulation structures.  

In our study, we were able to connect five of the above-mentioned modeling systems in the SoS notebook, namely: 

Bacon, Bchron, clam, hamstr, and Undatable. The workflow of LANDO consists of five major components: Input 110 
– Preparation – Execution – Result aggregation – Evaluation of model performance. 

2.1 Input 

To work with LANDO users need to provide age determination data, e.g., data from radiocarbon or OSL dating, 

and associated metadata as listed in Table 1. We developed two import options for the users: through a single 

spreadsheet or a connection to a database. For this study, we used a connection to a PostgreSQL database, which 115 
we developed after the conceptual framework as described in Pfalz et al. (2021), via the Python package 

“SQLAlchemy” (Bayer, 2012). We divided age determination input data into two attribute categories: necessary 

and recommended. The category “necessary” focused on the prerequisites of the individual modeling systems as 
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well as project-related attributes, such as unique identifiers, i.e., “measurementid”, “labid”. However, a larger 

comprehensive set of descriptive metadata helps a better understanding of the data (Cadena-Vela et al., 2020; 120 
Thanos, 2017). We added four additional attributes from the category “recommended” to facilitate the 

interpretation of age-depth models regarding their age determination data.  

Table 1 – Necessary and recommended attributes for age determination input data, when used with LANDO. 

Attributes apply for both input methods through either a database or a spreadsheet. 

Attribute Description Data type 
Necessary/ 

Recommended 

measurementid 

Composite key composed of a unique CoreID, a 
blank space, and the depth below sediment 
surface (mid-point cm) with max. two decimal 
digits of corresponding analytical age 
measurement - example: “CoreA1 100.5”, when 
users obtained sample of CoreA1 between 100 
and 101 cm depth  

string Necessary 

thickness Thickness of the layer from which the sample 
for age determination was taken from in [cm]  

float Necessary 

labid Unique sample identifier that was provided by 
the laboratory for age determination 

string Necessary 

lab_location Name of city, where laboratory that conducted 
the analysis resides 

string Recommended 

material_category 

One of the eight categories that describes the 
material best, based on the categories from age-
depth modeling system Undatable (Lougheed 
and Obrochta, 2019) 
14C marine fossil  tiepoint 
14C terrestrial fossil paleomag 
14C sediment U/Th 
tephra other 

string Necessary 

material_description Short description of the used material string Recommended 

material_weight Weight of analyzed carbon used in radiocarbon 
dating in [µgC] 

float Recommended 

age 
Uncalibrated radiocarbon age in [uncal yr BP], 
or non-radiocarbon ages as values in [yr BP] 
(BP = Before Present (before 1950 CE)) 

float Necessary 

age_error Error of the uncalibrated radiocarbon age and 
non-radiocarbon age in [yr]  

float Necessary 

pretreatment_dating 
Concise description or abbreviation of sample 
pre-treatment - example: “ABA”, when 
radiocarbon pre-treatment comprises of an 
acid-base-acid sequence 

string Recommended 

reservoir_age 
Additional reservoir effect (also known as hard-
water effect or age offset) identified by the user 
in [yr]; if unknown, then insert 0  

float Necessary 

reservoir_error Error of reservoir age known to the user in [yr]; 
if unknown, then insert 0 

float Necessary 

 125 

If users decide to use a spreadsheet as input option, then the spreadsheet should follow the same attribution as the 

database. In addition, we implemented an input prompt for further information, such as the year of core drilling 
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and core length, to ensure comparability to our database implementation. We provide an example spreadsheet with 

all attributes in the expected format in the repository mentioned in the “Code and data availability” section of this 

paper.  130 

2.2 Preparation 

The preparation component consisted of two separate steps. First, we checked each age determination dataset, 

whether a reservoir effect was influencing the radiocarbon data. In the absence of a known reservoir age or recent 

surface sample, we used available radiocarbon data points and a fast-calculating modeling system to predict the 

age of the upper most layer within a sediment core. In our approach, we used the hamstr package with a default 135 
value of 6000 iterations. We then compared the predicted value for the upper most layer with the year of the core 

retrieval, i.e., our target age. We accounted for an uncertainty in the estimate by allowing an extra 10% error 

between predicted age and target age. If a gap between predicted and target age is observable, then we assumed a 

reservoir effect is present. We calculated the reservoir effect by subtracting the target age from the mean predicted 

age, whereas the associated error we based on the two-sigma uncertainty ranges of the prediction. LANDO allow 140 
users to add the calculated reservoir age and its uncertainty range to the corresponding attributes (“reservoir_age” 

and “reservoir_error”). Depending on the choice of the user, this addition affects either all radiocarbon samples or 

only bulk sediment samples, or users completely discard the output for the subsequent modeling process.  

As second step in the preparation component, we built a module that automatically changes the format of the 

available data to the individually desired input of each of the five modeling systems implemented in LANDO. We 145 
primarily used the Python package “pandas” (Reback et al., 2020) for the transformation within the module. We 

transferred the newly transformed age determination data to the corresponding programming language for age-

depth modeling using the built-in “%get” function of SoS notebook. 

2.3 Execution 

We developed LANDO with the specific ability of create multiple age-depth models for multiple dating series 150 
from spatially distributed lake systems. Hence, reducing overall computing time was one of our highest priorities. 

We achieved this reduction by applying existing parallelization back-ends for both R and Python, such as 

“doParallel” (Microsoft Corporation and Weston, 2020a) and “Dask” (Dask Development Team, 2016), 

respectively. For each modeling system in R, we wrote a separate script that takes advantage of the parallelization 

back-end “doParallel”. Besides the individual modeling system packages, we made use of different R libraries, 155 
such as “tidyverse” (Wickham et al., 2019), “parallel” (R Core Team, 2021), “foreach” (Microsoft Corporation 

and Weston, 2020c), “doRNG” (Gaujoux, 2020), and “doSNOW” (Microsoft Corporation and Weston, 2020b). 

We neglected the use of parallelization for the Undatable software in MATLAB, since even the sequential 

execution for several sediment cores in our test setup was on the order of a few minutes. However, we achieved 

comparable results with Undatable in Octave using the parallelization package “parallel” (Fujiwara et al., 2021). 160 

As mentioned before, the selection of model priors and parameters has an impact on the modeling outcome, if no 

objective prior knowledge exist. To lower our impact and to avoid introducing biases in the modeling process, we 

used the default values from each modeling system as our own default values (Blaauw et al., 2021; Blaauw, 2021; 

Parnell et al., 2008; Dolman, 2021; Lougheed and Obrochta, 2019). In our adaptation of clam, the parameter 

“poly_degree” controls the polynomial degree of models for type 2, while the parameter “smoothing” controls the 165 

https://doi.org/10.5194/gchron-2021-40
Preprint. Discussion started: 2 December 2021
c© Author(s) 2021. CC BY 4.0 License.



 

6 
 

degree of smoothing for type 4 and 5. In the original version of clam, users adjust both parameters with the single 

option “smooth” (Blaauw, 2021). Furthermore, the default value for “ssize” within the original version of Bacon 

is 2000. We increased this value to 8000 to ensure good MCMC mixing for problematic cores (Blaauw et al., 

2021). In case the user has in-depth knowledge about his sediment core and wants to change certain values, we 

opted for making crucial parameters accessible within the SoS notebook outside of the executing scripts. Table 2 170 
provides an overview of all values which users can access and change for the individual systems. However, we 

limited the access to some parameters for operational purposes, such as the number of iterations or the resolution 

of the output.  

Table 2 – Default values for each modeling system, which users can access and change within LANDO.  

Modeling system  Parameter Default value 

Bacon    
 acc.shape 1.5 
 acc.mean 20 
 mem.strength 10 
 mem.mean 0.5 
 ssize 8000 
Bchron 
 
clam 

not applicable  - 

 types 1 to 5 
 poly_degree 1 to 4 
 smoothing 0.1 to 1.0 
hamstr    
 K c(10,10) 
Undatable    
 xfactor 0.1 
 bootpc 30 

 175 

2.4 Result aggregation 

After every model run, we received 10000 age estimates (also known as “iterations” or “realizations”) per 

centimeter from each modeling system for every sediment core. We transferred these results back to Python using 

the built-in “%put” function of SoS notebook, where in the next module, we calculated per centimeter the median 

and mean age values as well as one-sigma and two-sigma age ranges. For the summarizing statistics, we used 180 
standard Python libraries such as “pandas” (Reback et al., 2020) and “numpy” (Harris et al., 2020). We appended 

the model name as attribute to the statistics to allocate each result to its modeling system. In addition, we 

implemented a module, which helped us to push the aggregated result to our initial database to reuse in follow-up 

research projects. In a similar approach to the input component, we established the connection to our designed 

PostgreSQL database via the package “SQLAlchemy” (Bayer, 2012). 185 

Similarly, we used the 10000 age estimates per centimeter for calculating the sedimentation rates. Our calculation 

used three different approaches to calculate sedimentation rates: “naïve”, “moving average over three depths”, and 

“moving average over five depths”. Table 3 lists the appropriate equations for each approach. The user can decide 

which one of the three approaches best applies to the individual sediment record. We summarized the output into 

the basic summarizing statistics (mean, median, one-sigma ranges, and two sigma ranges) accessible to the users, 190 
but added the model name and employed approach as additional attributes. If users use more than one sediment 
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core for sedimentation rate calculation, then LANDO will automatically execute the sedimentation rate calculation 

in parallel using the “Dask” back-end (Dask Development Team, 2016) and the “joblib” Python package (Joblib 

Development Team, 2020). 

Table 3 – Approaches to calculate sedimentation rates within LANDO. The value represents the layer of interest 195 
within a sediment core for which the calculation is necessary. Both 𝑥𝑥𝑖𝑖+1  and 𝑥𝑥𝑖𝑖+2 are the following layers, while 

𝑥𝑥𝑖𝑖−1 and 𝑥𝑥𝑖𝑖−2 are the previous layers. The unit for the resulting sedimentation rate is centimeter per year 

[cm/yr]. 

Approach  Equation 

Naïve (default) sedimentation rate (xi) =  
depth(xi) − depth (xi−1)

age(xi) − age(xi−1)
 

Moving average over three depths  sedimentation rate (xi) =  
depth(xi+1) − depth (xi−1)

age(xi+1) − age(xi−1)
 

Moving average over five depths sedimentation rate (xi) =  
depth(xi+2) − depth (xi−2)

age(xi+2) − age(xi−2)
 

 

2.5 Evaluation of model performance  200 

To evaluate the performance of each modeling system, we looked at three different case studies: 

Case Study no. 1 - Comparison of multiple modeling systems for one sediment core with a continuous, 

undisturbed sequence of dating points (“Undisturbed sequence” – CS1) 

Case Study no. 2 - Comparison of multiple modeling systems for one sediment core with a disturbed sequence 

(including inversions) of dating points (“Inconsistent sequence” – CS2) 205 

Case Study no. 3 - Comparison of sedimentation rate changes for multiple sediment cores (“Multiple cores” 

– CS3) 

We examined both sedimentation rate and age-depth modeling results in each of the three case studies. For the 

first case study, we selected the sediment core EN18218 (Vyse et al., 2021) to showcase the generated output of 

LANDO. The 6.53 m long sediment record obtained from Lake Rauchuvagytgyn, Chukotka (67.78938° N, 210 
168.73352° E, core location water depth: 29.5 m) during an expedition in 2018 consisted of 23 bulk sediment 

samples used for radiocarbon sampling. The authors determined an existing age offset of 785 ± 31 yr BP (years 

Before Present, i.e., before 1950 CE), which we used in our modeling process as well.  

As counterexample for the second case study, we have chosen the sediment core EN18208 (Vyse et al., 2020). 

During the same expedition to Russia’s Far East in 2018, scientists recovered this EN18208 core from Lake Ilirney, 215 
Chukotka (67.34030° N, 168.29567° E, core length: 10.76 m, core location water depth: 19.0 m). The authors 

based their age-depth model on four OSL dates and 17 radiocarbon dates from bulk sediment samples as well as 

an age offset of 1721 ± 28 yr BP.  However, in addition to the age offset, we included all of the seven available 

OSL and 25 radiocarbon dates for this core in our study. More details on each sediment cores are accessible in the 
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corresponding references. Both cores are also part of the “Multiple cores” case study with a total of 62 sediment 220 
cores (Figure 1). 

 

Figure 1 – Map of geographical distribution of lake sediment cores used for our study (triangles, n = 62). The 

orange triangles (n = 39) represent sediment cores for which data of age determination were available either 

through a corresponding publication or a publicly accessible database, e.g., Pangaea (Diepenbroek et al., 225 
2002). Purple triangles (n = 23) indicate unpublished or referenced datasets, such as those provided by the 

PaleoLake Database (Syrykh et al., 2021). ArcGIS Basemap: GEBCO Grid 2014 modified by AWI. The outer 

ring in the graphic corresponds to 45° N. 

2.5.1 Numerical combination of model outputs 

To introduce the ensemble model in LANDO, we combined the outputs from all five modeling systems into one 230 
composite model. We considered the outermost limits (min. and max. values) of all confidence intervals (one-

sigma or two-sigma) as our boundary for the ensemble model. By taking these outermost limits into account, we 

artificially increased the area of uncertainty covered by the ensemble model, but we made sure that we were 

representing all possible outcomes and maximizing the likelihood of including the true chronology. We also 

included a weighted averages (𝑥̅𝑥) of the age estimates and sedimentation rates, which we calculated using the 235 
following equations: 

x� =  �
nk
n

m

k=1

∗ x�k          (Eq. 1) 

n =  �nk

m

k=1

                  (Eq. 2) 
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with m being the number of participating modeling systems, n as the total number of iterations as well as 𝑥𝑥𝑘𝑘��� and 

𝑛𝑛𝑘𝑘 representing the median value (either for age estimate or sedimentation rate) and the associated number of 240 
iterations from each modeling system, respectively. In some cases, the weights from each modeling system are 

equal, as they produce the same number of iterations. Then we can simplify Eq. 1 to represent the arithmetic mean:  

x� =  
1
m
�x�k

m

k=1

          (Eq. 3) 

For our “Multiple cores” case study (CS3), we additionally had to ensure comparability of sedimentation rates 

between sediment cores, since each model assigns a different age value to its sedimentation rate value per 245 
centimeter. Therefore, we binned sedimentation rate results into 1000-year bins for each age-depth model as well 

as the ensemble model and calculated the weighted averages and their confidence intervals within these bins. 

Inside LANDO, users can change the initial bin size of 1000 years to the desired resolution.  

2.5.2 Detection and filtering of unreasonable models 

For cases in which age-depth models do not agree with each other, e.g., “Inconsistent sequence” case study (CS2), 250 
we have built in the option of importing data from measured sediment properties, also known as proxies. Because 

of compositional and density variations of deposits, changes in sedimentation rates imply changes in the deposition 

of proxies (Baud et al., 2021; Biskaborn et al., 2021; Vyse et al., 2021). By including appropriate, independent 

proxy data on lithological changes within the sediment core, we can weight each model based on its performance 

to represent these variations in sedimentation rate. Users should provide the independent sediment proxy data as 255 
file with two columns, namely “compositedepth” which should be the measurement depths (as mid-point 

centimeter below sediment surface), and “value” representing the values of the proxy. This simplification makes 

it possible to import different available proxies or statistical representations of proxy data, i.e., results from 

ordination techniques (PCA, MDS, etc.), into the optimization process and to visualize the behavior of the age-

depth models in comparison to these proxies. 260 

In order to evaluate the performance, we adapted the fuzzy change point approach by Hollaway et al. (2021) to 

work with our input data and desired outcome on a depth-dependent scale instead of a time series. Similarly to 

Hollaway et al. (2021), our approach firstly detected change points within the proxy data and each modeling system 

output by fitting an ARIMA model to the data and then extract change points by using the “changepoint” R package 

(Killick and Eckley, 2014; Killick et al., 2016) on the residuals of the ARIMA model. If we found no change points 265 
in the proxy data via this approach, we applied the “changepoint” R package on the raw independent sediment 

proxy data instead. Through the additional bootstrapping process introduced by Hollaway et al. (2021), we were 

able to set up confidence intervals for the extracted change points. Subsequently, we searched for the intersection 

between the change points plus their confidence interval for each age-depth model with the independent proxy 

data. After converting the change points for both age-depth model and independent proxy data into triangular fuzzy 270 
numbers, we obtained similarity scores using the Jaccard similarity score of the fuzzy number pairs as described 

in Hollaway et al. (2021). The similarity score can reach numbers between zero (no match) and one (perfect match). 

However, the threshold of excluding an age-depth model from the generated combined model depends on the 

imported proxy data and number of detected change points. Therefore, the user can set the threshold accordingly 
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to their proxy within LANDO, but we have implemented the default value for this threshold to 0.1, which 275 
corresponds to an overlap of 10% of the change points between model and proxy data.  

In addition to the criterion of preparing the proxy data in the format of “depth vs. value” in a separate file, we 

suggest using a proxy with a high resolution. As a high-resolution proxy, we define a proxy with more than 50 

measurements per meter of core length. For our “Inconsistent sequence” case study (CS2), we used high-

resolution elemental proxy data from XRF (X-ray fluorescence) measurement as our independent proxy data. As 280 
our evaluation element to optimize the age-depth models, we selected zircon (“Zr”), which itself is an indicator 

for minerogenic/detrital input (Vyse et al., 2020 and references therein). The zircon proxy data of EN18208 has a 

resolution of 200 measurements per meter of core length. 

To achieve a realistic comparison between sediment cores in the “Multiple cores” case study (CS3), we looked at 

the individual age-depth model outputs for each sediment core to determine whether an optimization step was 285 
required. We have only selected published sediment cores (n = 39) so that we can refer to lithological boundaries 

from the original publication. During the analysis, we saw that nine sediment cores needed to be optimized due to 

strong inconsistencies between models over the entire length of each core. In twelve cases, where models within 

the lower section of the cores did not match, we considered proxy-based optimization to improve the model 

outcome when high-resolution data was available. 290 

2.5.3 Sedimentation rate development over time 

To identify similar temporal shifts in sedimentation regimes in our case study “Multiple cores” (CS3), we 

examined our data collection of 62 sediment cores regarding a general tendency in sedimentation rate shifts. First, 

we considered the 11 700-yr BP (Before Present, i.e., before 1950 CE) boundary as our marker for the change 

between Holocene and Pleistocene to separate the datasets (Rasmussen et al., 2006; Lowe and Walker, 2014; 295 
Walker et al., 2008). We selected this marker because numerous studies suggest a general difference in 

sedimentation regimes between these periods (e.g., Brosius et al., 2021; Vyse et al., 2021; Baumer et al., 2021; 

Bjune et al., 2021; Kublitskiy et al., 2020; Müller et al., 2009; Wolfe, 1996). As some of the models were below 

the 11 700-yr BP marker, the calculation of the mean sedimentation rate for the Pleistocene featured only a subset 

of sediment cores (total number of sediment cores with measurement in Pleistocene: 20). Then, for each age model 300 
of the sediment cores in the subset, we used the two-sigma ranges around 11 700 yr BP to determine whether the 

maximum absolute change occurred exactly at 11 700 yr BP or around our set marker. For this investigation, we 

changed the bin size to 100-year bins to allow comparison between each modeling system and the combined 

models. Using maximum from the interquartile ranges of the two-sigma ranges for each model (see supplementary 

material Figure S3), we defined the observation period from 8700 to 14 700 yr BP (corresponds to a range of ± 305 
3000 years). We then checked the data within the time span to see where the maximum change in sedimentation 

rate occurred. If the calculated age for the new marker was at the edge of our time span, we iteratively increased 

the outer limit by 100 years (up to a maximum of 18 000 yr BP) to see if the calculated age still reflected the 

maximum absolute change. We then used the newly defined marker to calculate the mean sedimentation rate for 

before and after the marker. 310 

2.5.4 Display of models 
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To display the results from age-depth modeling and sedimentation rate calculation, we decided to create our own 

plots, instead of reusing the plots from each individual modeling system. Our plot header contains the unique 

CoreID; additionally, the header indicates whether the user decided to apply a reservoir correction on the 

radiocarbon data or not. Our single core plots consist of two main panels: On the left-hand side, the panel shows 315 
the results from the age-depth modeling process with the calibrated ages (in calibrated years Before Present, i.e., 

before 1950 CE) on the x-axis and the composite depth of the sediment core (in centimeter) on the inverted y-axis. 

On the right-hand side, the panel displays the result from the sedimentation rate calculation (in cm/yr, centimeter 

per year) on the x-axis plotted against the same composite depth on the inverted y-axis. For better readability of 

the strong variability of sedimentation rate, we used the log scale for the x-axis of the right panel. Generally, 320 
LANDO draws the ensemble age-depth model and sedimentation rate in grey with the weighted average as dashed 

line.  

For all models, LANDO will display the median values for age and sedimentation rate as solid lines. Both panels 

further display the corresponding one-sigma range and two-sigma range per centimeter for each model. Depending 

on the user’s selection, users can plot both sigma ranges, only one of the two sigma ranges, or just the median 325 
ages. To include age determination data within the plots, LANDO internally calibrates the radiocarbon data with 

the “BchronCalibrate” function of the Bchron package (Haslett and Parnell, 2008; Parnell et al., 2008) with either 

the IntCal20 (Reimer et al., 2020) or Marine20 (Heaton et al., 2020) calibration curve. Per default, the left panel 

contains each calibrated age determination as single point with its uncertainty as error bars.  

If users decide to filter out unreasonable age-depth models, similar to “Inconsistent sequence” case study (CS2), 330 
we added the option to plot the independent proxy data and therefrom derived lithology as an additional panel on 

the left-hand side for a better interpretability. Further, LANDO highlights the boundaries of lithological change 

and its confidence interval in both sedimentation rate and age-depth model plots. The optimized plot includes a 

goodness-of-fit for each involved modeling system to represent the change points at the bottom of the plot. 

When using LANDO for multiple sediment cores, the overall plot holds for each sediment core the results from 335 
the binned weighted average sedimentation rate calculation (as median sedimentation rate in cm/yr, centimeter per 

year) against the selected age bins (in calibrated years Before Present, i.e., before 1950 CE) for each modeling 

system. This visual illustration allows user to compare multiple sediment cores based on the time axis. 

For people with color vision deficiency, we incorporated the extra option to plot the resulting age-depth plots with 

different line styles and textures to support the visual differentiation between each model. Figure S4 in the 340 
supplementary material shows the color-blind friendly output created by LANDO. With LANDO we want to 

support inclusivity in science, but we look forward to feedback from the community on how we can improve 

LANDO in this regard. 

3 Results 

3.1. “Undisturbed sequence” – Case Study no. 1 345 

All five age-depth models were able to produce an age-depth correlation for sediment core EN18218 (“Lake 

Rauchuvagytgyn”) with only small diversions in between some of the calibrated ages. Figure 2 depicts the two 

visual outputs produced by LANDO. Panel (a) displays all models side by side, while panel (b) shows the 

combined output from all models.  
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 350 

 

Figure 2 – Generated output from LANDO for sediment core EN18218 (14C data from Vyse et al., 2021). Panel 

(a) consists of a comparison between age-depth models from all five implemented modeling systems (left plot) 

and their calculated sedimentation rate (right plot). Colored solid lines indicate both the median age and 

median sedimentation rate for all models, while shaded areas represent their respective one-sigma and two-355 
sigma ranges in the same colors with decreasing opacities. Panel (b) shows the ensemble age-depth model (left 

plot) and its sedimentation rate (right plot). The dashed line in panel (b) represents the weighted average age 

estimates (left plot) and the weighted average sedimentation rates (right plot) for the ensemble model, while the 

grey area represents the two-sigma uncertainty, i.e., the outermost limits of two-sigma ranges from all models. 

Both plots on the left of (a) and (b) show the depth below sediment surface on the inverted  y-axis as composite 360 
depth of the sediment core in centimeter (cm) and the calibrated ages on the x-axis in calibrated years Before 

Present (cal. yr BP, i.e., before 1950 CE). Black circles within (a) and (b) indicate the calibrated dating points 
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with their uncertainty as error bar, which were calibrated using the IntCal20 calibration curve (Reimer et al., 

2020). The plots on the right display the sedimentation rate in centimeter per year (cm/yr, x-axis as log-scale) 

against the depth below sediment surface as the composite depth of the sediment core in centimeter (cm, inverted  365 
y-axis). 

All models revealed highest sedimentation rates for the interval between 108 and 133 cm. Mean values ranged 

from 0.242 cm/yr (hamstr) to 0.764 cm/yr (clam), whereas the median sedimentation rate varied between 0.107 

cm/yr (Bacon) and 0.314 cm/yr (clam). In three instances, the majority of models noticeable dropped to lower 

sedimentation rate values. We found the first significant downshift between 57 cm and 65 cm, but in contrast to 370 
the following declines, hamstr immediately increased the median sedimentation rate by tenfold from 0.015 to 0.15 

cm/yr from 64 cm to 66 cm. Subsequent decreases occurred between 222 cm and 249 cm as well as between 339 

and 366 cm with median sedimentation rates from 0.013 cm/yr (hamstr) to 0.025 cm/yr (Bacon) and from 0.012 

cm/yr (hamstr) to 0.027 cm/yr (Bacon), respectively. In contrast to the upper segment, the models showed a 

stronger disagreement among each other in the lower segment of the sediment core, starting at 504 cm with larger 375 
varying mean and median values for sedimentation rate. 

In our ensemble model, we found the highest value for weighted average sedimentation rate at 128 cm with 0.4483 

cm/yr (two-sigma range: 0.032 - 2.338 cm/yr), which corresponded to weighted average age estimate of 4846 cal 

yr BP (two-sigma range: 4301 - 5384 cal yr BP). When considering the cumulative two-sigma uncertainty range 

of the ensemble model, our generated output covered sedimentation rates between 0.002 cm/yr and 2.486 cm/yr 380 
over the entire core.  

3.2. “Inconsistent sequence” – Case Study no. 2 

For the second case study, four out of five modeling systems produced an output for sediment core EN18208 

(“Lake Ilirney”). The modeling system clam was unable to produce an age-depth model for this core. Figure 3 

shows the visual outputs with all models in panel (a) and the combined model in panel (b).  Figure 4 consists of 385 
three panels showing the results from the proxy-based optimization process using zircon (Zr). Panel (a) shows the 

visual output from the optimization process, while panel (b) and (c) illustrate the optimized age-depth model with 

the highest matching score and the resulting ensemble model, respectively. 
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Figure 3 – Generated output from LANDO for sediment core EN18218 (OSL and 14C data from Vyse et al., 390 
2020). Panel (a) consists of a comparison between age-depth models from four out of five implemented modeling 

systems (left plot) and their calculated sedimentation rate (right plot). The modeling system clam was unable to 

produce an age-depth model for this core. Colored solid lines indicate both the median age and median 

sedimentation rate for all four models, while shaded areas represent their respective one-sigma and two-sigma 

ranges in the same colors with decreasing opacities. Panel (b) shows the ensemble age-depth model (left plot) 395 
and its sedimentation rate (right plot). The dashed line in panel (b) represents the weighted average age 

estimates (left plot) and the weighted average sedimentation rates (right plot) for the ensemble model, while the 

grey area represents the two-sigma uncertainty, i.e., the outermost limit of two-sigma ranges from all four 

models. Both plots on the left of (a) and (b) show the depth below sediment surface on the inverted  y-axis as 

composite depth of the sediment core in centimeter (cm) and the calibrated ages on the x-axis in calibrated years 400 
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Before Present (cal. yr BP, i.e., before 1950 CE). Black circles within (a) and (b) indicate the calibrated dating 

points with their uncertainty as error bar, which were calibrated using the IntCal20 calibration curve (Reimer et 

al., 2020). The plots on the right display the sedimentation rate in centimeter per year (cm/yr, x-axis as log-

scale) against the depth below sediment surface as the composite depth of the sediment core in centimeter (cm, 

inverted  y-axis). 405 

Starting from the sediment surface, the first divergence between the age-depth models occurred with the age 

determination point at 184 cm. Undatable started to increase sedimentation rate between 183 cm and 185 cm with 

median sedimentation rate change from 0.123 cm/yr to 0.273 cm/yr. Undatable then followed the younger OSL 

dates (375.5 cm / 475.5 cm), while the other three models continued with the radiocarbon date at 210 cm. Shortly 

after both hamstr and Bchron increased sedimentation rates and directly at 325.5 cm went along the radiocarbon 410 
date. Bchron changed the median sedimentation rate between 209 cm and 211 cm from 0.007 cm/yr to 0.033 cm/yr, 

whereas hamstr increased from 0.004 cm/yr to 0.06 cm/yr between 214 cm and 216 cm. In contrast, Bacon assumed 

no abrupt changes in sedimentation rate while following the older age determination dates until 494.5 cm, before 

keeping a rather steady accumulation without any dating points (mean sedimentation rate: 0.04 – 0.06 cm/yr). At 

the depth of 795 cm, the three modeling systems Undatable, hamstr, and Bchron again overlapped their paths, 415 
before splitting at the existing dating point at 966 cm. 
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Figure 4 – Optimized visual output for EN18208 (OSL and 14C data from Vyse et al., 2020). We used high-

resolution X-ray fluorescence (XRF) measurements of zircon (Zr) as independent proxy to evaluate model 420 
performance to represent lithological changes. Panel (a) extends the existing panel (a) of Figure 3 by adding a 

plot on the left to show the proxy-derived lithology used to filter unreasonable models. This added plot consists 

of the proxy measurements of Zr (in counts per second) along the depth below sediment surface as the composite 

depth of the sediment core in centimeter (cm) and the derived lithological boundaries (solid horizontal lines) 

plus their uncertainty range (dashed horizontal lines). Both age-depth model and sedimentation rate plot contain 425 
the same lithological boundaries as visual aid. The text box in the bottom middle lists the models with their 

matching score related to the proxy-derived lithology. Panel (b) shows the model (Bchron) with the highest 

matching score (0.0796). Panel (c) depicts our ensemble model based on this model. The age-depth models 

displayed in panel (b) and (c) show strong similarities with the age-depth model developed by Vyse et al. (2020). 

During the optimization process, our adapted algorithm located four lithological boundaries with its uncertainty 430 
range from the independent proxy data: 189.5 cm (182 – 192.5 cm), 646 cm (638 – 657 cm), 890.5 cm (874 – 912 

cm), and 1051.5 cm (1043 – 1061.5 cm). We found the highest matching score from the optimization for Bchron 

(Score: 0.0796). Table 4 shows the average sedimentation rate for each proxy-derived lithological unit (PLU) of 

the ensemble model of EN1808. 

Table 4 – Average sedimentation rate of EN18208 divided into proxy-derived lithological units. The calibrated 435 
mean model range indicates the mean age estimates of the ensemble model for the corresponding depths of the 

proxy-derived lithological unit (PLU). 

Proxy-derived 

lithological unit 

Corresponding depths below 

sediment surface [cm] 

Calibrated mean model 

range [cal yr BP] 

Average sedimentation 

rate [cm/yr] 

PLU1 0 – 190 -64 – 18295  0.0144 

PLU2 190 – 646 18295 – 29363 0.1335 

PLU3 646 – 891 29363 – 35308 0.1259 

PLU4 891 - 1052 35308 – 40300 0.0634 

 

3.3. “Multiple cores” – Case Study no. 3 

In contrast to the previous case studies, this case study focused on studying development of sedimentation rates 440 
over time, with the emphasis on the transition from the Holocene to the Pleistocene. We used age determination 

data from 39 published sediment cores to show the standard output of LANDO for multiple sediment cores, while 

using both published and unpublished age data for the analyses. Figure 5 shows the ensemble models with 

weighted average sedimentation rates binned into 1000-year bins from our multi-core investigation with 39 

published sediment cores (see Figure S1 for the individual models in the supplementary material). We set the 445 
boundaries from 0 to 21 000 cal yr BP within these figures to cover the time span from the present to the Last 

Glacial Maximum (LGM) (Clark et al., 2009). Below the number for each core in Figure 5 are the proxies used 

for their optimization. In 19 out of 62 cases within our entire collection, the ensemble model was based on four 

out of five models, as neither clam or Undatable was able to find a suitable age-depth model (for more details, 

please see Table S1 in the supplementary material). The maximum time span covered by the sediment cores varied 450 
between 2000 yr BP (CoreID: PG1972) and 320 000 yr BP (CoreID: PG1351). The average non-optimized 
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sedimentation rate ranged between 0.006 cm/yr (CoreID: 16-KP-03-L10) and 0.198 cm/yr (CoreID: PG1228). In 

total, we optimized seven sediment cores, as in most cases neither high-resolution data was available nor the 

provided proxy data represented a lithological proxy when crosschecked with the original publication. From these 

seven sediment cores, we reconstructed the proxy-based lithology twice with TOC as a low-resolution proxy 455 
(CoreID: PG1228 & PG1437).  

 

Figure 5 – Optimized combined models for 39 published sediment cores displayed as weighted average 

sedimentation rate (in centimeter per year, cm/yr – y-axis) binned into 1000-year bins (in calibrated years 

Before Present, cal. yr BP, i.e. before 1950 CE – x-axis) for the last 21 000 years. Dashed line represents the 460 
weighted average sedimentation rate, whereas the grey areas are the respective two-sigma ranges. Each grid 

cell contains the unique core identifier of each involved sediment core. In seven cases, the letters below each 

number give the name of the independent proxy used for optimization process. 

To visualize the difference in sedimentation rates between two neighboring and fundamentally different 

environmental settings, i.e. Pleistocene glacial and Holocene interglacial, we used the datasets that were split at 465 
the Holocene-Pleistocene boundary at 11 700 yr BP. Figure 6 shows the mean sedimentation rate for Holocene 

and Pleistocene for each model with its one-sigma uncertainty. Figure S3 in the supplementary material gives an 

overview over the overall uncertainty for all models. Among all models, clam models have the lowest range on 

average for both Holocene (0.0125 cm/yr) and Pleistocene (0.0066 cm/yr), while the Undatable models show the 

greatest uncertainty on average in the Holocene (0.1061 cm/yr) as well as the combined models for the Pleistocene 470 
(0.0405 cm/yr). The sediment core PG1228 (latitude: 74.473° N) showed the highest individual sedimentation rate 

for the Holocene (median sedimentation rate: 2.1929 cm/yr). We observed a significant reduction of 89 % for the 

optimized model of the same core (0.0684 cm/yr), compared to its combined model (0.6244 cm/yr).  
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Figure 6 – Average sedimentation rate in centimeter per year (cm/yr) for each sediment core in our data 475 
collection of 62 sediment cores divided into Holocene dataset (from present up to 11 700 yr BP, orange lines) 

and Pleistocene dataset (from 11 700 yr BP up to a maximum of 115 000 yr BP, blue lines). Each plot displays 

the one-sigma range of sedimentation rate within each dataset for each model and sediment core. In addition, 

filled circles represent the mean value for the optimized models. 

For our data compilation, we found the largest absolute change in sedimentation rates within the modeling systems 480 
on average between 10 500 and 13 800 yr BP (Figure 7). For our combined and optimized models, however, the 

largest change averaged between 10 800 yr BP and 10 900 yr BP. Still, all sediment cores covered the entire range 

of our initial time span from 8700 to 14 700 yr BP within the models. Using the results of the largest change in 

sedimentation rate for each sediment core and model as new markers, we again split the datasets into two separate 

datasets. One dataset contained mostly Holocene sedimentation rate values (Holocene dataset), while the other 485 
contained mostly Pleistocene values (Pleistocene dataset). Therefore, the initial display (Figure 6) changed slightly 

to Figure 8. Most notable was the increase in total number of sediment cores in Pleistocene dataset with an 

individual separation (n = 39) compared to the Pleistocene dataset with the separation at 11 700 yr BP (n = 20). 
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Figure 7 – Boxplot representing the years with the biggest absolute change in sedimentation rate for our data 490 
collection of 62 sediment cores. Sedimentation rate results from each model binned into 100-year bins to allow 

comparisons between the modeling systems. The initial observation time span covers 8700 to 14 700 yr BP. The 

orange line corresponds to the median value for each model. 

 

Figure 8 – Average sedimentation rate in centimeter per year (cm/yr) for each sediment core in our data 495 
collection of 62 sediment cores divided into Holocene dataset (orange lines) and Pleistocene dataset (blue lines). 

The exact value for the split of the datasets for each individual core and each model depends on the results of the 

maximum change in sedimentation rate within the observation period 8700 to 14 700 yr BP. Each plot displays 
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the one-sigma range of sedimentation rate within each dataset for each model and sediment core. In addition, 

filled circles represent the mean value for the optimized models. 500 

Discussion 

4.1. Assessment of different case studies  

By comparing the cases for the two single sediment cores, it becomes clear how age-depth correlations may diverge 

depending on the individual modeling system and its treatment of available dating points (cf. Wright et al., 2017; 

Trachsel and Telford, 2017; Lacourse and Gajewski, 2020). In the case of EN18218 (“Undisturbed sequence” – 505 
CS1), all five implemented modeling systems yield an agreeing and continuous chronology. However, the two 

radiocarbon dates at 81.25 cm and 114.75 cm have significant impact on the model’s interpretation for these 

depths. Vyse et al. (2021) argued that these two dates are outliers resulting from reworking and mixing effects 

within the sediment column. According to the authors, no additional proxy data from EN18218 would support the 

immediate increase in sedimentation rate for these depths and hence, they excluded both dates from the modeling 510 
process. Because we are not considering any additional proxy data to evaluate age-depth models in their 

geoscientific context, but rather include all provided age determination data into the modeling process, the 

consideration of these two radiocarbon dates on the basis of all available models leads to higher sedimentation 

rate. Nonetheless, the comprehensive application of the different modeling systems may help to identify doubtful 

dating points.  515 

We saw a strong disagreement between the modeling systems in the case of sediment record EN18208 

(“Inconsistent sequence” – CS2), which we expected prior to the execution of our application, due to the scattered 

dating points in the original data. Vyse et al. (2020) linked this scatter of age data points observed in the interval 

between 282 and 755 cm of EN18208 to the redeposition of older carbon. They implied that to produce reliable 

age-depth model they had to exclude both OSL and radiocarbon dating points for these depths. However, our 520 
optimized combined model agrees with their established age-depth model and can reproduce the characteristics of 

the existing model by Vyse et al. (2020), without removing dating points. In addition, in three out of four cases, 

our proxy-derived lithology with its uncertainty matches the lithological boundaries set by the authors of the 

EN18208 study, according to criteria based on acoustic sub-bottom profiling. Only the first original boundary (196 

cm) is outside our confidence interval from 182 cm to 192 cm. We still showed that our approach could set logical 525 
boundaries for sediment cores by solely relying on high-resolution proxy data. 

Even though LANDO can produce age-depth models for multiple sediment cores (“Multiple cores” – CS3), we 

must assume limitations in the geoscientific validity for some of the results. In a few cases, an optimization of age-

depth models with independent proxy data would have been necessary, but such independent data were 

inaccessible or did not exist. As for these cases age-depth correlations between implemented modeling systems 530 
seem to disagree (see Figure S1 in the supplementary material), the results from our combined model might over- 

or underestimate the true sedimentation rate. On the other hand, optimization using proxy data can reduce these 

biases. For instance, during the examination of the Holocene and the Pleistocene sedimentation rates (Figure 6), 

we noticed that one sediment core (PG1228) had an extremely high mean sedimentation rate for the Holocene 

dataset in Undatable. Similar to the second case study (“Inconsistent sequence” – CS2), we found scattered age 535 
data points for this sediment core, which influenced the modeling process of Undatable. Further, the result then 

affected our combined model by increasing the overall sedimentation rate for the Holocene in this core. However, 
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LANDO identified the Undatable model as an outlier based on the lithology established through independent TOC 

proxy data. The optimized model then agreed well with the original publication by Andreev et al., (2003), which 

further increased the validity of our approach. Our findings suggest that high-resolution proxy data should 540 
accompany geochronological studies to enable a more concise and realistic assessment of the development of 

sedimentation rates over time in high latitude lake systems. 

The detection of sedimentation rate change as indicator for the Holocene-Pleistocene boundary yielded contrasting 

results. While the results from hamstr were closest to the 11 700-year boundary, all other modeling systems place 

the largest change in sedimentation rate either before or after 11 700 yr BP. We hypothesize that three factors may 545 
have influenced all model results. (1) The age uncertainty (one-sigma range) within each individual model varied 

on average between 1000 and 3000 years for the period of 11 600 to 11 800 yr BP (Figure S3 in the supplementary 

material). This wide range of uncertainty does not provide confidence in pinpointing the boundary to an exact time 

slice. We expect that a higher amount of dating points close to the Holocene-Pleistocene boundary could constrain 

the models (Blaauw et al., 2018; Lacourse and Gajewski, 2020; Trachsel and Telford, 2017), which would lead to 550 
a better estimate of the boundary. (2) The age output for each model is not evenly distributed, which means that 

in the period from 11 600 to 11 800 yr BP there are different numbers of observations for each core and each 

modeling system. We took this behavior into account by using binning (Alasadi and Bhaya, 2017). Otherwise, an 

interpolation between both age and sedimentation rate values could lead to potential biases in the interpretation. 

(3) While we assumed in our first setup that the main sedimentation rate change would occur at 11 700 yr BP 555 
consistently for all sediment cores (Figure 6), we cannot rule out the possibility that the sedimentation rate has 

changed significantly at different times for different lake systems. As our data collection covers a large area both 

in latitude and longitude (Figure 1), the variability between the models indicate the local variability between the 

climate and lithological preferences of the lake catchment for the involved sediment cores (e.g., Lozhkin et al., 

2018; Finkenbinder et al., 2015; Anderson and Lozhkin, 2015; Kokorowski et al., 2008; Biskaborn et al., 2016; 560 
Courtin et al., 2021).  

4.2. Design of LANDO 

From the beginning of the development of LANDO, we decided to integrate most of the default settings for each 

modeling system as default values (Table 2). Regional studies, such as the one performed by Goring et al. (2012), 

have shown that specific prior information for the Bayesian modeling systems are needed to best fit the models to 565 
lakes within a geographical area. Without this regional information, changing settings within the modeling system 

to an arbitrary higher or lower value without considering the regional diversity could lead to under- or overfitting, 

if the constraints are too loose or too strict (Trachsel and Telford, 2017). For the special case that users have in-

depth knowledge for one lake or multiple lake system, users can easily adapt these parameters within LANDO, as 

we have made these settings accessible in the Jupyter Notebook itself.  570 

Part of the reason we made this decision was that we acquired external age determination datasets where we may 

not necessarily have all the essential information to specify each model. But we also wanted to simplify the process 

for users who do not have in-depth modeling knowledge. By using the default values, we can compare models 

based on their ability to work with the available data. On the other hand, we are sure that the developers have set 

their default values based on systematic testing. Since we did not tune the age-depth models to the existing core, 575 
i.e. changing the parameters within each modeling system, we generated “uninformed” models that solely work 
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with the available age determination data. By combining these “uninformed” models into one model, we have 

created an ensemble model that we consider to be data-driven and “semi-informed”.  

The advantage of this data-driven, semi-informed model approach is that we are reducing the risk of overfitting 

by considering the uncertainty of all modeling systems. This allows us to reevaluate existing geoscientific 580 
interpretations with larger uncertainty by taking advantage of the ensemble outcome. Additionally, we found that 

the more information is accessible to generate age-depth models, the more accurate and less uncertain these models 

become. A higher density of age determination along the depth of the sediment core is desirable for future drilling 

campaigns (cf. Blaauw et al., 2018). 

The disadvantage arises in our second case study (“Inconsistent sequence” – CS2) and the multi-core investigation 585 
(“Multiple cores” – CS3). For both cases we needed the optimization step to narrow down the most suitable age-

depth models for each sediment core, since the unoptimized uncertainty band was otherwise too wide for a clear 

interpretation. The optimization requires additional and independent proxy data, which are not available for some 

of our cores, especially for sediment cores obtained some decades ago. Our optimizing step is therefore mainly 

suitable for recently retrieved and analyzed sediment cores.  590 

In addition to the assessment of age-modeling quality, we also checked the time and effort to conduct dating 

routines. We saw that Bacon had the highest runtime overall in all three case studies of our study design, which 

we link to our adjustment of the “ssize” parameter from 2000 (per default) to 8000 within the application. We 

increased this value to ensure good MCMC mixing for problematic cores, as suggested by Blaauw et al., (2021), 

as well as to guarantee we had enough iterations for our summarizing statistics to compare with other modeling 595 
systems. If users decide to reduce the value of “ssize”, we implemented an iterative process, which checks whether 

Bacon produced enough iterations. If this is not the case, then LANDO will iteratively rerun the same sediment 

core with a higher “ssize” to produce 10 000 iterations.  

One unique feature of our application is the predominant use of parallelization within the age-depth modeling of 

multiple sediment cores. For instance, we used the “Dask” back-end for our sedimentation rate calculation. The 600 
advantage over popular Scala-based “Apache Spark” and its Python interface “PySpark” (Zaharia et al., 2016) is 

that the “Dask” back-end is Python-based and well integrated into the Python ecosystem (cf. Dask Development 

Team, 2016). Therefore, “Dask” natively works with Python packages already implemented in LANDO. The key 

difference is that “Dask” does neither provide a query optimizer nor rely on Map-Shuffle-Reduce, a data processing 

technique for distributed computing, but instead uses a generic task scheduling (cf. Dask Development Team, 605 
2016). Still, parallelization libraries and back-ends provide LANDO with additional speed-up that can promote 

future multi-core studies. 

Within the ensemble model, we faced the challenge that the combination of all age distributions from the 

underlying age-depth models per centimeter represents a multi-modal distribution, especially in cases such as the 

“Inconsistent sequence” case study (CS2). It also means that the output of the ensemble model in these cases is 610 
susceptible to inclusion/exclusion of any model. However, we consider using the weighted average median age to 

be a suitable solution for the multi-model distribution problem, as it is a good indicator on the most probable age 

within each centimeter based on all modeling systems. But we advise users to use the age confidence intervals per 

centimeter in subsequent analyses, instead of relying solely on the weighted average median age (cf. Telford et al., 
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2004). By optimizing the ensemble model with the ability to include independent proxy data, users can increase 615 
the likelihood of a more probable mean age for their sediment core.  

4.3. Technical specifications of LANDO 

In the further course of development, we decided to limit the resolution of the age-depth correlations. Using a 

resolution of one-centimeter increments allows us to match most proxy measurements from each sediment core 

with our age-depth models, apart from high-resolution measurement, such as XRF measurements. To allow a 620 
matching with high-resolution proxy data, we tested for a higher resolution of 0.25 cm for our application. In the 

single sediment core cases (CS1 and CS2), this change did not affect the workflow of LANDO. In turn, the 

“Multiple cores” case (CS3) ran into memory issues. Since the SoS notebook and our parallel back-ends store the 

result data frames in memory, expanding the resulting data frames to a 0.25 cm resolution causes a fourfold 

increase in memory use, which limits our capability to run our application on a single laptop. As an intermediate 625 
solution, we stored the results from each parallelization worker on disk to free the memory and performed 

combining operations later. Based on this experience, we recommend working with data centers or increasing the 

available main memory (RAM) of the operating computer for multi-core studies with expected high-resolution 

output. 

Another advantage of parallelization is that most modeling systems only run on one CPU/thread. Nowadays, 630 
however, both personal computers and data centers are made up of multiple CPUs/threads. Especially for larger 

multi-site studies, our application has the advantage of cutting the overall computing time by running each 

modeling system on multiple CPUs/threads simultaneously, even for personal computers. In comparison to serial 

execution of multiple models on one CPU/thread, which would take several hours, our parallel execution reduced 

the computing time per modeling system by a factor up to four. When considering that our setup consisted of six 635 
CPUs (12 threads) and 16 GB RAM, user can even further increase this factor by using larger computing facilities. 

Sediment core length is the most limiting factor that determines the overall computing time in our application. 

However, we want to ensure that users can model each sediment core over its entire length to match proxy data 

with the correct age-depth correlations. Within our LANDO system, we faced this problem by using extrapolation 

to calculate ages beyond available dating points. The exception here is the modeling system Undatable, which 640 
models only between the first and last dating point, as these two dating points act as anchors for the bootstrapping 

process (Lougheed and Obrochta, 2019). As a result, we saw the sedimentation rate dropping twice to zero at the 

end of the sedimentation rate calculations. We link this behavior to the end of the individual modeling processes 

of Undatable as well as the other implemented systems.  

Extrapolating the age-depth models beyond age determination points always bares the risk that the extrapolated 645 
dates do not reflect the actual age. The implemented modeling systems account for this circumstance by increasing 

the uncertainty for these undated regions (Blaauw, 2010). While we are aware of this potential issue, we wanted 

to allow users to take advantage of the full age-depth coverage for their sediment core. Blaauw et al. (2018) pointed 

out in their findings that “most existing late-Quaternary studies contain fewer than one date per millennium” and 

recommended to increase the number of dating points to “a minimum of 2 dates per millennium”. This 650 
recommendation would further decrease the need of extrapolation and reduce the overall uncertainty of age-depth 

models. We agree that more age control can improve the age-depth modeling results, but until the associated costs 
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to analyze organic material for radiocarbon dating do not decrease more significantly (Hajdas et al., 2021; Zander 

et al., 2020), we recommend LANDO as tool to improve age-depth modeling. 

4.4. Current and future model implementation in LANDO 655 

During the development of our approach, we realized that some programs were not executable or parallelizable 

under the current circumstances. For instance, we tested OxCal 4.4 as stand-alone version on Windows with 

NodeJS (version 12.13.1.0) and the R package “oxcAAR” (Martin et al., 2021) within our application. In the case 

of EN18208, execution duration was above 3 hours until the notebook lost connection to the OxCal interface. 

Furthermore, some cores never fully reached convergence within OxCal. We tried adapting our set-ups including 660 
changing the internal constraints, i.e. placement and number of boundaries, or using different depositions models, 

i.e. alternating between sequential model (“Sequence()”) and Poisson-process deposition model (“P_Sequence()”). 

According to Bronk Ramsey and Lee (2013), the long-term plan of OxCal is to make the entire source code openly 

accessible, which we fully support. An open source code would allow us to identify the current bottleneck so that 

we could implement OxCal in a future release.  665 

To determine the most fitting age-depth model through the clam modeling software, we added the “best fit” option 

to LANDO by default. The “best fit” option utilizes the negative log fit results from all clam outputs and identifies 

the fit with the lowest result as best fit. We included two further exclusion criteria for clam models within LANDO: 

if a) there are too many age reversals within the models, or b) the fit reaches infinity. Under specific circumstances, 

some sediment cores will not have a fitting model, as is the case, for instance, in the “Inconsistent sequence” case 670 
study (CS2). Including models that do not fit the data would lead to erroneous estimations of the age-depth 

correlation. This comes with the cost of losing an established model in the combined model, if no fitting clam 

model is available. However, we think that the benefit of having a more fitting model outweighs this cost.  

Although Undatable is open source and the fastest modeling system within LANDO, its original development 

environment (MATLAB) is not free of charge. That is why we implemented Undatable in the open source 675 
MATLAB-equivalent Octave. Since the Octave version of Undatable was slower than the original MATLAB 

version, we used the parallelization package “parallel” (Fujiwara et al., 2021) to provide comparable results in 

terms of computing time. To use Undatable with MATLAB within our application, users must acquire a license 

of MATLAB and link the MATLAB kernel to their license. Unfortunately, we do not have the capacity to provide 

individual licenses with LANDO. For users with an active MATLAB license, we provide in the repository 680 
mentioned in the “Code and data availability” section the appropriate code to run the MATLAB version of 

Undatable in LANDO. 

A potential expansion option of LANDO within the multi-language environment is to extent the application and 

allow future data analysis to use powerful tools, such as Python’s machine learning libraries, e.g., keras (Chollet 

and and others, 2015) and tensorflow (Abadi et al., 2016). We anticipate that other developers can use LANDO as 685 
their starting point in building larger limnological data analysis application. 

4 Conclusion 

This paper introduced our application LANDO – a linked age-depth modeling notebook approach. We presented 

an improved age-depth modeling procedure for sediment cores from high-latitude lake systems by linking five 

established systems: Bacon, Bchron, clam, hamstr, and Undatable. The added value of our application is the 690 
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reduced effort to use established modeling systems in a single Jupyter Notebook for both single and multiple dating 

series and at the same time make the results comparable. In addition, we introduced an ensemble model that uses 

the output from all models to create a more robust age-depth correlation. In the case of scattered age determination 

data, we further implemented an adapted version of the fuzzy change point approach that allow users to integrate 

independent proxy data as indicator of lithological changes. This option helps evaluate the performance of 695 
modeling systems across lithological boundaries while providing a more reliable ensemble age-depth model by 

filtering inappropriate model runs for problematic datasets. Our application also allows users to run large datasets 

with multiple sediment cores in parallel to reduce the overall computation time. In our data collection of 62 

sediment cores from northern lake systems at high latitudes, we found that the main regime changes in 

sedimentation rates do not occur synchronously for all lakes at the Pleistocene-Holocene boundary. However, we 700 
linked this behavior to the uncertainty within the modeling process as well as the local variability of the sediment 

cores within the collection. 

Code and data availability 

The LANDO code is accessible at GitHub (https://github.com/GPawi/LANDO) (Pfalz, 2021). We provide files 

containing accessible links to the used datasets, contact details for unpublished data, and five example 705 
spreadsheets. Contact details comprise names of research group and personal communication addresses of working 

group leaders. A stand-alone version of the LANDO application will be available for download upon publication. 
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