
Response to reviewers’ comments on gchron-2021-6  

 

All replies to comments are in italics. 

 

Reviewer #1 

General comment 
 
The authors present an open-source Python-based script for the analysis of detrital grain age 
distributions with respect to bedrock ages for tracer thermochronology. Although of potential 
interest for a readership dealing with thermochronology, the manuscript includes conceptual 
errors that should be amended before publication. 
 
We thank the reviewer very much for their time. We note that all the issues raised here deal 
with the importance of taking mineral fertility into consideration. We do appreciate these 
concerns and we will address them in the revised manuscript. Moreover, we are happy to 
see that these remarks do not highlight any conceptual error inherent to either of scope, 
method, results and conclusions of our paper. 

 
Line-by-line comments 
 
lines 8-9: “If ages increase linearly with elevation, spatially uniform erosion is expected to yield 
a detrital age distribution that mirrors the catchment’s hypsometric curve”  
 
This statement is only true if mineral fertility is the same in any parts of the catchment, see 
Malusà, M. G., & Fitzgerald, P. G. (2020).The geologic interpretation of the detrital 
thermochronology record within a stratigraphic framework, with examples from the European 
Alps, Taiwan and the Himalayas. Earth-Science Reviews, 201, 103074.  
Another important point is that ages are not always expected to increase linearly with elevation. 
Again, see Malusà and Fitzgerald 2020 - ESR about this point 
 
We thank the reviewer for this remark, we are aware of the importance of mineral fertility, 
which we have addressed in multiple occasions throughout the manuscript. We have use 
substituted the term “erosion” with “sediment production”, however, for the sake of brevity 
and simplicity of the abstract we will not get into further details here. 

 
lines 33-37: “Geomorphologists have been able to infer changes in climatic parameters (Nibourel 
et al., 2015; Riebe et al., 2015), glacial erosional processes (Clinger et al., 2020; Ehlers et al., 
2015; Enkelmann and Ehlers, 2015), sediment dynamics (Lang et al., 2018), relief evolution 
(McPhillips and Brandon, 2010), occurrence of mass wasting (Vermeesch, 2007; Whipp and 



Ehlers, 2019) and differences in rock uplift (Glotzbach et al., 2013, 2018; McPhillips and 
Brandon, 2010).”  
 
Unfortunately, in most of those cases mineral fertility was not taken into account, which makes 
the above conclusions invalid. I suggest integrating this part of the manuscript.  
 
We have added a remark along these lines to the revised manuscript. Please see lines 40-
41. 

 
line 60: “If a range of assumptions hold (Malusà et al., 2013)”  
 
Here, the authors may also quote Malusà and Fitzgerald 2020 – ESR where assumptions are 
discussed in detail  
 
We have added the suggested citation to the revised manuscript. 
 
Figure 2: What is the difference in mineral fertility between “low” and “high” in figure 2? In 
natural systems, fertility values vary within two or three orders of magnitude (see Malusa et al. 
2016 Gondwana Research; Asti et al. 2018 Basin Res; Resentini et al. 2020 EPSL; Malusà and 
Fitzgerald 2020 – ESR), whereas these differences appear to be much lower in this figure.  
 
Figure 2 is a qualitative cartoon to illustrate how the combined effect of mineral fertility and 
erosion intensity affect detrital distributions. We have better specified this in the figure 
caption. 
 
lines 341-342: “Uncertainty in the interpretation can stem from factors such as: (1) complex 
bedrock age-elevation relationship”  
 
This issue is addressed in detail by Malusà and Fitzgerald 2020 – ESR in their section 3, to 
which the reader should be referred to for the sake of clarity.  
 
We have added the suggested citation to the revised manuscript. 
 
lines 342-343: “(2) spatial variability of sediment size resulting from transport distance (e.g. 
Lukens et al., 2019)”  
 
These aspects are addressed in much greater detail in Malusa and Garzanti 2019 – Springer, to 
which the reader should be referred to for the sake of clarity. Here is the full reference: Malusà, 
M. G., & Garzanti, E. (2019). The sedimentology of detrital thermochronology. In Fission-Track 
Thermochronology and its Application to Geology (pp. 123-143). Springer, Cham.  
 
We have added the suggested citation to the revised manuscript. 
 
lines 344-345: “lithological differences (von Eynatten et al., 2012), or vegetation effects on 
weathering and erosion (Starke et al., 2020).”  



 
This is still part of the mineral fertility issue  
 
It is not clear to us what the reviewer is suggesting here. 
 
lines 360-361: “Other possible sources of bias concern the grain size of the analyzed samples. 
One issue is that downstream sediment abrasion may significantly modify detrital grain-age 
distributions, as can the weathering and erosion processes associated with a grain.”  
 
The problem is ill posed. The main issue is hydraulic sorting and selective entrainement rather 
than grain abrasion (see Malusa and Garzanti 2019 and Malusà and Fitzgerald 2020 and 
references therein for a discussion). Also, the impact of weathering is minimized by the single-
mineral approach. I suggest rearranging the entire section. 
 
We have reworded this section for clarification and included the suggested citation. We 
think that the work of both mentioned authors (Lukens as well as Malusà) equally contribute 
to understand the grain size issue. We also think that weathering in the critical zone, 
especially for the case of studies relying on apatite U-Th/He geochronology is an important 
point to account for in this discussion. Please see lines 396-407. 
 

 

 

Reviewer #2 

This is a joint review from Dr. Claire Lukens and Prof. Cliff Riebe. 

We are grateful for this very thorough and constructive review. The time the reviewers have 
taken to go through the manuscript and the code is much appreciated. 

General Comments 

In their manuscript “How many grains are needed for quantifying catchment erosion from 
tracer thermochronology,” Madella et al. seek to provide the tracer thermochronology 
community with a standardized open-access tool that 1) optimizes study design for 
efficiency in use of analytical funds and effort, and 2) quantifies limits on what can be 
interpreted from small sample sizes. 

This work builds on previous applications of thermochronology in geomorphology. The 
open access software offers the ability to generate maps of variability in bedrock age, 
mineral fertility, and erosion rate from a specified DEM in a standard way, which makes it 
broadly useful. There is a commendable level of transparency and ease of implementation 
afforded by the availability of the model in a Jupyter notebook, which is sufficiently 
commented to make it widely applicable and adaptable. The manuscript also has easy-to-



interpret and attractive conceptual figures that we could easily imagine appearing in a 
textbook chapter describing applications of tracer thermochronology. 

We are happy that the reviewers recognize the scope and potential of the paper. 

The overall approach uses bootstrapping to produce simulated (predicted) age 
distributions from simple erosion scenarios at the previously studied Inyo Creek catchment 
in California. It then compares each of these simulations to a measured dataset from the 
creek using a K-S or Kuiper test, and finally attempts to evaluate the resulting distributions 
of K-S (or Kuiper) test statistics to determine whether the predicted and observed 
distributions can be distinguished in a statistically meaningful way (we say “attempts to 
evaluate” because the hypothesis testing is flawed, as detailed below).  

Using distributions of K-S test statistics this way - in a bootstrapping approach - is 
unconventional; though it's not incorrect, it is ultimately unnecessary in the manuscript as 
written, because it produces confidence intervals that can be calculated analytically using 
one of the equations they report in the text. However, it would be reasonable, valid, and 
more justified to use the bootstrapping method to extend these analyses to calculate the 
statistical power of observing effects of a given size with a given number of measured 
ages. The authors do not take that step here, but a comprehensive statistical power 
analysis would greatly strengthen a future version of the paper. 

We agree that, when testing scenario predictions against uniform erosion, Eq.3 can be 
used to calculate the Dcrit as function of sample size and confidence level. Based on which 
the minimum number of grains can be estimated. However, we find the bootstrapping 
approach necessary to treat additional uncertainties (e.g. analytical error, see detailed 
comments farther down below). An analysis of statistical power is a welcome suggestion, 
which we have implemented in the revised version of the manuscript. 

In addition to attempting to address the question “how many grains are needed” to 
distinguish different erosion scenarios, this manuscript presents some interesting 
examples in the discussion regarding the ability to detect differences from broad vs. 
localized patterns in higher erosion rates across the catchment. While these examples are 
illustrative and interesting, they are arbitrary, and thus do not provide a comprehensive 
analysis of what sorts of erosion patterns might actually be detectable. Moreover, the 
authors incorrectly argue that they have calculated the probability of detecting these 
patterns, which throws their interpretation into disarray. 

We also acknowledge we made poor choices of terminology to describe what our software 
can and cannot do. We will correct all instances in the revised version.  

The manuscript is broadly successful in arguing that tracer thermochronology studies 
should be designed with the size of the expected effect in mind. This will help guide the 
sampling strategy, including the number of ages that need to be analyzed. To the extent 
that the tool produced by the authors can streamline and standardize this in detrital 
thermochronology, it is commendable.  



We are happy to see the reviewers recognize the scope and the potential of this work. 

However, there are some major issues that make this manuscript unacceptable for 
publication as written. The most crucial of these are several statistical misconceptions and 
errors demonstrated by the authors, including an illegitimate chain of inference in the 
hypothesis testing. Perhaps most critically, there is a sense (lines 20-25 in abstract) that 
they expect the approach to be applied by future users to find best-fit erosion scenarios 
for their study sites; such results cannot be achieved using frequentist, statistical 
hypothesis tests of the kind employed here. While many of the points raised above might 
be readily fixed in revision, the fundamental errors in the statistical approach are quite 
serious and must be fixed for this work to move forward. 

In the revised version of the manuscript, we have better defined the scope and ability of our 
software. We agree that ESD_thermotrace is not suitable to find a best-fit scenario (yet), 
because it does not iterate through all possible ones. However, among other things, it 
allows quantifying how likely a detrital sample may have been drawn from the distributions 
predicted for each of the tested scenarios, based on random sampling of the KS test 
statistic. Please see e.g. lines 156-161 

Major issues: 

Problem Statement.  

The problem statement is poorly posed in the abstract and introduction, where it says: 
“However, there is no established method to quantify the sample-size-dependent 
uncertainty inherent to detrital tracer thermochronology, and practitioners are often left 
wondering ‘how many grains is enough?’” But as the authors then later point out in 
equations 2 and 3, there actually is an established method, and it has been around for 
decades. Namely, Equation 3 can be readily applied to analytically solve for whether a 
difference between hypsometry and a measured detrital age distribution (as expressed by 
the K-S test statistic, D) would be significant at a specified alpha level for a given sample 
size. For example, given a false positive rate of 0.05 and a sample size of 100, D would 
have to be at least 0.136 for the analyst to be able to reject the null hypothesis that the age 
distribution arose from uniform erosion of the catchment. For a sample size of 50, D would 
need to be at least 0.192. The figure below shows how the least significant D (also known 
as Dcrit in some texts) varies with sample size. 



 

Fig. R1. The least significant K-S test statistic, D, for a one sample hypothesis test 
decreases as one over the square root of sample size (number of grains measured). 
Results for alpha = 0.05 are shown. This shows how big the effect has to be able to reject 
the null hypothesis that the distributions are drawn from the same population as the 
hypsometric age distribution with 95% confidence or 5% false positive rate (where “effect” 
in a K-S test is the vertical offset between the measured CAD and erosion scenario).  

Fig. R1 was created with very little effort using Equation 3, so it questions the whole 
premise of applying the much more complicated numerical approach that the authors use 
to tackle this problem. Note that a two-sample version of Equation 3 is also available, so a 
similar analysis could be employed to compare the hypothesis of uniform erosion against 
other specified erosion scenarios (or any two scenarios for that matter). Both the one 
sample and two sample problems can be found in undergraduate-level statistics 
textbooks. At minimum, the problem as posed is misleading, because its central premise is 
that no established methods are available. Perhaps more relevant to the value of the paper 
is that all the subsequent numerical effort seems unnecessary and overly complicated 
given that there actually is an established method on the books. 

We only partially agree on this point. Although Eq.3 has been well known for decades, we’d 
argue that it is not established in the detrital thermochronology community as means of 



deciding the number of grains to be dated. As far as we can tell, also the reviewers, in their 
2015 paper, have favored bootstrapping over the analytical solution of Eq.3 to treat 
uncertainties. The way we see it, is that Eq.3 does not account for additional uncertainties 
in the observed grain age distribution. What certainly is not established yet, is an open-
source tool to apply both Eq.3 and bootstrapping to any case study. 
The analytical solution yields a good approximation of the least significant dissimilarity as a 
function of sample size and confidence level (independently from the shape of the 
distribution). However, the probability of rejecting a scenario also depends on the 
distribution it is tested against (and related uncertainty). Therefore, Eq.3 may be used to 
solve one part of the problem (the least significant D for uniform erosion to be rejected), but 
random sampling of the other scenario (be it predicted or observed ages) is required to fully 
assess the confidence and the statistical power of an analysis. We have revised the 
manuscript to clarify this point and to better define the approach and novelty of our 
contribution. Please see e.g. section 5.4 of the revised manuscript 

Additionally, as one of the cited papers (Vermeesch et al., 2007) has pointed out, CADs in 
and of themselves (without the analytical uncertainties) are unbiased estimators of the 
population age distribution even when there are analytical errors on each measured age. 
This further emphasizes that there really is no need to employ bootstrapping to obtain the 
results presented here. 

To our understanding, the main reason why CADs (the sorted mean ages) are unbiased 
estimators of the population age distribution, is that the frequency of the measured age 
components is not affected by analytical uncertainties - which would increase the sampling 
of more precise ages. This does not imply that the probability of rejecting a scenario should 
not account for analytical uncertainties. In the revised version of the paper, to avoid 
introducing bias, we apply the mean relative uncertainty of the observed ages. We have 
updated the code accordingly. 

Arbitrary (and therefore not generalizable) examples. 

The results of this work are not easy to generalize, because much of the paper focuses on 
evaluation of just three erosion scenarios: one with uniform erosion rates across the 
catchment; one with erosion rate doubling at 3000 m elevation; and one with erosion rate 
halving at 3000 m elevation. To a certain extent this is by design: the paper is definitely 
less about understanding erosion patterns and more of a vehicle for software that others 
could use as a tool to evaluate many additional cases (and thus strive for more generalized 
results). But therein lies perhaps the single biggest flaw in the paper: It encourages readers 
to use the code to go out, evaluate every scenario, and find the best fit. Unfortunately, that 
is not something that the frequentist statistical hypothesis testing methods employed here 
are capable of doing, as elaborated next. 

As the reviewers mentioned in this comment, this manuscript is not designed to discuss the 
erosional pattern of the Inyo Creek catchment, which is merely used as a testing ground for 
the proposed software. The arbitrary erosion scenarios were chosen for the sake of 
simplicity and for the sole purpose of illustrating how the software works. To improve this 



aspect, we have rewritten the function that calculates the default test scenarios. Two 
erosional step functions of elevation are calculated, one with F-times higher erosion 
efficiency above Z and one with F-times higher erosion below the same Z. Here, Z equals 
the median elevation of the catchment. The factor F equals twice the prominence of the 
hypsometric peak. Please see related comment farther below and lines 238-245 for more 
details. 
We acknowledge inaccurately stating that our code finds the “best-fit” scenario. The 
confusion here stems from the fact that we employ the KS test for “goodness-of-fit”. We 
have revised the manuscript, stating that ESD_thermotrace finds the least dissimilar (i.e. 
most plausible) among the tested scenarios, using the KS test statistic as a metric for 
dissimilarity. Please see section 5.5. 

Illegitimate chain of inference in statistical hypothesis testing. 

This problem starts on line 95, where the authors define the main aim of tracer 
thermochronology as finding “the best-fit pattern of erosion by minimizing the mismatch 
between observed and predicted distribution.”  Firstly, this is a very narrow assessment of 
the aim of tracer thermochronology. For example, the approach also has the potential to 
shed light on spatial variations in sediment size distributions, and many papers cited 
elsewhere in this text use tracer thermochronology to inform understanding of tectonics. 
The scope of this statement should be expanded. In addition, it needs to be restructured to 
be more in line with what the methods in the paper are able to accomplish. If the aim is as 
stated, “to find the best-fit pattern of erosion by minimizing the misfit between the 
observed and predicted distribution,” then the frequentist statistical approaches outlined 
here are not appropriate.  

We have changed the contested statement, which, as the reviewers point out, is limited 
and not in line with the capabilities of our software. 

There is an excellent summary of what classical hypothesis testing can and cannot do at 
this site: https://www.envidat.ch/dataset/data-analysis-toolkits/resource/8c6c7021-0811-
480f-ab52-00fbe3886591 (Toolkit 07). There are many things that this manuscript says it 
does that it cannot do based on these guidelines. The hypothesis testing in this manuscript 
is essentially set up backwards, in that it attempts to assess the “fit” of different scenarios 
to a measured distribution (something statistical hypothesis testing cannot do), rather than 
to reject the null hypothesis that the two distributions are drawn from the same distribution 
(which is what they are designed to do).  

We thank the reviewers for the excellent resource cited here. We acknowledge we used 
incorrect/confusing terminology. We have corrected the text not to falsely claim we assess 
the fit. Our software allows (i) quantifying the confidence level allowed by the sample size 
and the minimum number of grains to reject the uniform erosion hypothesis at a specified 
confidence level, (ii) given a number of grains, quantifying the statistical power of discerning 
erosion scenarios from uniform erosion, (iii) finding the erosion scenario that is most 
plausible (i.e. least dissimilar) to the observed distribution (among the tested scenarios). 
Please see section 5.4 



An example of the misconception of hypothesis testing occurs on line 147, with the phrase 
“rejecting or confirming a study’s hypothesis”. A statistical hypothesis cannot be 
confirmed; it can either be rejected with a specified false positive rate or it can be said that 
the data are consistent with the hypothesis. We call out many more examples of these 
illegitimate inferences in the numbered line-by-line comments below. 

We acknowledge the incorrect use of technical terminology. We have corrected these in 
the revised manuscript. 

To their credit, the authors are careful with interpreting their results, and do not claim that 
their findings require a reinterpretation of previous work in terms of erosion patterns or 
geomorphic processes. However, in their restraint, they also fall into another common 
pitfall with hypothesis testing -- the incorrect inference that an effect that cannot be 
rejected with 95% confidence is not meaningful at all. And perhaps the biggest concern is 
what happens when readers incorrectly use the code widely, as outlined in section 5.5, in 
an attempt to identify the “best fit” erosion rate relationship for catchments where detrital 
thermochronology can be applied. 

We regret giving the impression that inferences with confidence lower than 95% are 
meaningless. This is far from the message we aimed to convey. We are very much aware 
that in geology high confidence levels are often unlikely to be reached because of several 
reasons other than the study design. What we envision, is our contribution to be useful for 
all readers to quantify the confidence of their inferences easily and consistently. 

Imprecise and/or incorrect language regarding statistics. 

The language throughout the manuscript is imprecise and in some cases incorrect or 
misleading regarding statistics. For example, in the abstract, the word “population” is used 
to refer to what, in the parlance of statistics, is a “sample.”  Tests that have a sufficiently 
large K-S statistic to reject the null hypothesis that the two samples came from the same 
population are incorrectly referred to by the authors as “successful,” and the fraction of 
simulations where the null hypothesis is rejected are incorrectly termed by the authors a 
“success rate,” especially in the documentation for the model code. In both cases, this is 
unconventional at best and will therefore probably also be misleading to many readers. 
While it is common to see phrases such as “we fail to reject the null hypothesis,” in the 
literature, rejecting the null hypothesis is not, strictly speaking, a “success.” It’s just an 
indication that there’s a sufficiently low likelihood of the observed effect arising by chance 
from conditions expressed in the null hypothesis. And crucially, the threshold for what 
counts as a sufficiently low likelihood is something the analyst decides on in advance (e.g., 
alpha = 0.05 in many studies) 

We have corrected the use of the term “success rate” and “population” accordingly. 

There is a particularly problematic issue on line 146. As written, it conflates the well known 
problem of post-hoc hypothesis testing, in which a set of measurements is compared 
against a hypothesis that was identified after the data were collected and analyzed (aka p-
hacking), with what these studies actually did. To wit, they identified the null hypothesis — 



of spatially uniform erosion rates —  even before they went into the field. In addition to 
being an inaccurate statement of how these studies were conducted, the authors’ text here 
has the possible effect of suggesting that the previous studies engaged in scientific 
misconduct, which we trust was not the intent. 

We regret giving the impression of suggesting that the cited previous studies engaged in 
scientific misconduct. It was not our intent. We maintain that due to the commonly low 
sample sizes and rare sample replication, geologic studies could often do better at 
quantifying uncertainties. With our work we propose a tool to do so in tracer 
thermochronology. 

This problem, and others like it, need to be fixed. We identified as many as we could find in 
the line-by-line comments below. These may seem like quibbles, but they illustrate the 
general pattern of confusing language that is inconsistent with established norms and will 
make it difficult for many readers to follow. It also undermines the credibility of the authors 
on the statistics, which is probably not a desired outcome in a manuscript that seeks to 
establish a widely used tool for statistical analyses of detrital age distributions. 

We acknowledge the incorrect use of technical terminology. What we hoped to convey as a 
more accessible language (avoiding statistical jargon on purpose) came across as 
misleading and incorrect terminology. We have corrected this issue throughout the text in 
the revised manuscript. 

Linear Regression for age-elevation relationship 

The procedure for obtaining regression parameters and their uncertainties, by resampling 
the bedrock ages according to their errors and thus creating fits to 1000 different sets of 
bedrock ages, is non-standard and effectively presumes that all error in the regression is 
due to analytical uncertainties in ages. There is good evidence from the age elevation plot 
that this is not a valid assumption: Specifically, the error bars on the data points do not 
overlap the fitted line, indicating that, if there really is a linear relationship between age and 
elevation at the site, then there is variability in ages that is not accounted for by the 
analytical errors. Standard linear regression procedures in introductory texts (e.g. Helsel et 
al., 2020) outline more conventional approaches to quantifying uncertainty in regression 
parameters arising from scatter in x-y data, and free software is available to calculate these 
values. Slightly more complicated algorithms, also readily available (including in python), 
include procedures that invoke inverse variance-weighting in linear regression that could 
be used to account for differences in analytical error among measured ages. We 
recommend the authors use such a method in revision for more realistic estimates of 
regression uncertainty. 

Thank you for this useful suggestion, we have updated the code so that it performs inverse 
variance-weighting in the case of the linear regression interpolation method and related 
standard deviation. Please see section 5.1 

Figures 



Figures 1 and 2 are both beautiful and helpful. 

Thank you. 

Figure 3. This is a useful figure. But since it is physically impossible to get a CAD to ever 
have a cumulative frequency <0 or >1, the vertical axes should only run between that 
range. 

We have limited the y axis to the 0-1 range in the revised version of this figure. 

Figure 4. There is a 10 m DEM for the region. Why not use that instead of the 30 m 
resolution? 

We use the 30-m-resolution because these figures are output from our software, therefore 
they employ the user-defined cell size. Running interpolations with a 10 m cell size would 
certainly yield better-looking models, but it would unnecessarily increase computational 
time. 

Figure 5. This is confusing. Why is percentage error shown here as opposed to absolute 
error? Also, see comment above about regression approach. 

We have changed this to absolute error, although we do not see why it should be 
confusing. 

Figure 6. Not sure why the thin purple lines do not match the expected step functions 
expected for individual simulated CADs based on Figure 3. Does this mean the authors are 
smoothing the CADs? If so, then, contrary to their goal, they have introduced the bias, 
despite their efforts, that Vermeesch (2007) warned about. As he points out, the CAD is an 
unbiased estimator of the true age distribution, without need for any smoothing. In fact, the 
smoothing is what introduces the bias, not the use of PDFs as the authors seem to 
suggest in line 237. 

Thank you for pointing this out, the thin lines are line plots that connect the mean ages. 
These are indeed treated as step functions in the code but appear smoothed in the plot. 
We have corrected the plots of the revised version for consistency. 

Figure 7 is unsatisfying, because it doesn’t actually show the required number of 
measurements needed to detect the proposed erosion scenario. There should be a clear 
answer to the question posed in the title of the paper (How many grains…) here -- with a 
known number of measurements and a simple testable erosion hypothesis. Otherwise, 
readers are left wondering how many grains would be needed to get to 95% confidence. 
Why not run the same scenarios for more grains, until that threshold is reached? The 
erosion scenarios - doubling or halving erosion rates at 3000 m - are arbitrary and post-
hoc anyway; why not choose one where we get an answer to the “how many grains” 
question? The authors do acknowledge on line 254 that these doubling and halving 
scenarios are not very different from uniform erosion, so the finding that 140 grains is not 



sufficient should not be surprising. It leaves the reader wondering, how big of a departure 
from uniform erosion is needed to detect an effect with say 52 grains (as in Stock et al.) or 
73 (in Riebe et al.)? 

We have changed the test scenarios to non-arbitrary ones (see related comment further 
up). The new erosion scenarios are step functions of elevation, with a F-times increase 
(decrease) in erosional weight at the median elevation of the catchment. The factor F 
equals twice the ratio between the most frequent and the least frequent elevation bin. For 
this calculation, the hypsometric histogram is constructed with a number of bins equal to 
the maximum difference in bedrock cooling ages, divided by their mean uncertainty, 
rounded up to the next integer. 
In other words, these modified step-function scenarios, allow testing for two simple 
erosional patterns that are twice as pronounced as the hypsometric peak. Please see lines 
238-245. 

Figure 8. The violin plots are not sufficiently explained in the text, and even after digging 
through the function code and commented scripts we are still not sure exactly how this 
plot is generated and what it means. Our take is this essentially yields a statistical power 
analysis. It is not recognized as such, and, moreover, the figure is incorrectly used to 
identify “fit,” which this kind of hypothesis testing cannot do. Using a bootstrapping 
approach to determine the confidence on the K-S test statistics resulting from random 
sampling of the true age distribution is reasonable, but this spread in K-S could also be 
determined analytically using Eq. 3. A comparison of the analytical and bootstrapped 
findings in this case would support the overall approach. 

As already stated in this reply, we can’t fully agree on this point. Although Eq.3 has been 
well known for decades, we’d argue that it is not established in the detrital 
thermochronology community as means of deciding the number of grains to be dated. As 
far as we can tell, also the reviewers, in their 2015 paper, have favored bootstrapping over 
the analytical solution of Eq.3 to treat uncertainties. The way we see it, is that Eq.3 does not 
account for additional uncertainties in the observed grain age distribution. The analytical 
solution yields a good approximation of the least significant dissimilarity as a function of 
sample size and confidence level (independently from the shape of the distribution). 
However, the confidence of rejecting a scenario also depends on the distribution it is tested 
against (and related uncertainty). Therefore, Eq.3 may be used to solve one part of the 
problem (e.g. the least significant D for a null hypothesis to be rejected), but random 
sampling of the other CAD (be it predicted or observed) is required to fully assess the 
confidence of the analysis. We have revised the manuscript to clarify this point. 
Furthermore (see also reply to comment referring to line 271), the percentages in Fig.8 
inform the false negative rate: how often one would be unable to reject the H0 that two 
samples are taken from the same distribution (the respective erosion scenario), even if they 
actually weren’t. 
While we agree that it is incorrect to label these as “degree of fit”, they do characterize the 
plausibility of each tested scenario, so we’d rather maintain this term for simplicity. 

Figure 9 is useful, and provides a nice visual representation of the comparison between the 
observed Inyo Creek data and the two proposed erosion scenarios. However, the MDS 



approach isn’t well explained; including a bit more information for those unfamiliar with the 
approach would be useful. For example, what goes into each of the MDS parameters on 
the axes? 

The cited work by Vermeesch (2013) is an exhaustive resource to understand how this 
model works, we have better introduced the principles of MDS in the revised version but 
will not expand on the details of this method. 

Figures 10 and 11 both incorrectly state that the color shade refers to the “probability to 
discern scenarios from ‘Euni.’” The probability of detecting an effect of a given size when it 
is actually present (and thus correctly rejecting the null hypothesis) is known as the 
statistical power (aka true positive rate), equal to one minus the false negative rate. 
However, what the authors have been calculating thus far, e.g., in Figure 7, is the 
confidence level on K-S values, which is a statement about the least detectable K-S 
statistic, D. The minimum detectable difference, which yields insight about statistical 
power, is not something the authors have characterized here. So these are not 
probabilities, but confidence levels. The distinction is really important. In a t test, for 
example, which is in a lot of ways similar to the K-S test (at least in how it is applied), if the 
true mean is right at the threshold of detection with 95% confidence (i.e., with a 5% false 
positive rate), the chance you will correctly reject the null hypothesis is only 50%, because 
the mean is right at the threshold and half of the t distribution is on the rejection side of the 
threshold. This seeming paradox is actually just a demonstration of the fact that power and 
confidence are two very different things. Hence, the authors cannot call the color bar the 
probability of detection. 

We have merged Figures 10 and 11 and corrected the terminology in the revised version. 
The color shades in Figure 10 inform the probability that a Gaussian peak of erosion 
produces a detrital distribution whose dissimilarity (the KS statistic compared to Euni) is 
greater than the least significant dissimilarity allowed by the sample size. 
To our understanding, this does represent the statistical power of detecting a hypothetical 
Gaussian peak of erosion whose effect size is pre-assigned. 
Please see section 6 and Fig.10. 

Line item and specific comments (note: some of these are quick fixes but some are 
very substantial): 

Line 8. If bedrock ages increase… 

We have corrected this in the revised version. 

L9. “Mirror” suggests mirror symmetry, which is not what you mean. Use “matches” 
instead? Or “closely follows?” 

We have corrected this in the revised version. 



L10. Another thing this may indicate is that sediment size distributions vary across the 
catchment and the collected sample is not representative. This issue, which is at least as 
important as the mineral fertility issue which is included explicitly in the code (and 
demonstrably more important in Inyo Creek), is not addressed until the discussion and 
then in a way that does not clearly state the potential for bias. 

We have better specified all sources of potential signal modification throughout the text, 
while here in the abstract, we have substituted “erosion” with the more general “sediment 
production”. Please see e.g. lines 10-11 

L11. In the parlance of statistics, “population” refers to the group from which “samples” 
can be drawn. So a set of measured ages from grains collected from a stream is a sample 
of the population, not a population. 

Thank you, we are aware of this. The use of the term “population” was intended to 
distinguish between the material collected in the field (sample) and the statistical sample. 
However, we have corrected this throughout the text to improve the statistical rigor of this 
work. 

L11. Also, “measured grain-age populations” is a noun train that is hard to understand. 
What is a “grain-age population?” Also, strictly speaking it’s not the age of a grain, it’s the 
cooling age of the grain. 

We have changed “measured grain-age populations” to “detrital samples” . Considering 
that we have introduced the thermochronologic context of this paper, we find it reasonable 
to use age instead of thermochronometric age, for simplicity. 

L12-13. Yes, discerning differences can be difficult. But this statement misses an 
important qualifier about how	different the scenarios are. If the two erosion rate patterns 
under consideration are not very different, then small sample sizes can be a problem. If, on 
the other hand, the differences are substantial, then discerning between two different 
patterns may not be problematic at all, even for small sample sizes. Equation 3 in the text 
shows this: The size of the “least significant” K-S statistic D (also known as Dcrit in some 
texts) scales as sqrt(ln(2/alpha)/(2*k)) or 1.36/sqrt(k) for alpha = 0.05 where k, in statistical 
parlance, is the “least significant number.” So, if the effect is big, even a small sample size 
can detect it. 

We have added the effect size to this statement in line 12 

L13-15. This is not true. In fact, Equation 3, presented later on line 131, which is so well 
established one can read about it in Wikipedia, can be readily applied to analytically solve 
for whether a measured difference in two detrital age distributions would be significant at a 
specified alpha level for a given sample size. 

As already stated above, we partly disagree on this point. Although Eq.3 has been well 
known for decades, we’d argue that it is not established in the detrital thermochronology 



community as means of deciding the number of grains to be dated. The way we see it, is 
that Eq.3 does not account for additional uncertainties in the observed grain age 
distribution. What certainly is not established yet, is an open-source tool to apply both Eq.3 
and bootstrapping to any case study. 
The analytical solution yields a good approximation of the least significant dissimilarity as a 
function of sample size and confidence level (independently from the shape of the 
distribution). However, the confidence of rejecting a scenario also depends on the 
distribution it is tested against (and related uncertainty). Therefore, Eq.3 may be used to 
solve one part of the problem (the least significant D for uniform erosion to be rejected), but 
random sampling of the other scenario (be it predicted or actual observed ages) is required 
to assess the confidence of the analysis. We have revised the manuscript to clarify this 
point and to better define the approach and novelty of our contribution. Please see section 
5.4. 

L15. What is meant here by “enough?” Enough to do what? To detect an effect of a given 
size? 

We have better clarified this point in lines 15-16. 

L94. In addition to this list, the authors need to add something about variability in sizes of 
sediment produced on slopes and whether the size class sampled in the stream is 
representative of erosion from the catchment. There are now multiple papers that show 
this is at least as important as the mineral fertility issue (listed here as item III). E.g., see 
Vermeesch 2007; Riebe et al., 2015; Lukens et al., 2020. 

We have addressed this point in the mentioned list too and referred to the suggested 
literature. Please see lines 102-104. 

L95. This is a very narrow assessment of the aim of tracer thermochronology.  As we have 
proposed in several papers now, it has the potential to shed light on not just spatial 
variations in erosion rates but also spatial variations in sediment size distributions. In 
addition, as laid out in the Ruhl and Hodges and Vermeesch papers cited elsewhere in the 
text, tracer thermochronology has been used to inform understanding of tectonics as well. 
So the scope of this needs to be greatly expanded. In addition, it needs to be restructured 
to be more in line with what the methods in the paper are able to accomplish. If the aim is 
as stated, “to find the best-fit pattern of erosion by minimizing the misfit between the 
observed and predicted distribution,” then the frequentist statistical approaches outlined 
here are not appropriate.  

We have expanded the statement and rephrased to avoid suggesting our software is able 
to find a best-fit scenario. Please see lines 107-109. 

L136. While “quantiles” is strictly ok, “percentiles” would be the more conventional and 
easier to understand term to describe the 2.5th and 97.5th cut points of the distribution. 

Corrected  



L144. This is incorrect. The past studies represent tests of a specific null hypothesis — i.e., 
that erosion rates are spatially uniform. That does not make them semi-quantitative much 
less qualitative. They are quantitative in their evaluation of a specific null hypothesis. 

We agree that rejecting H0 (uniform erosion scenario) as population of the detrital sample is 
a quantified result. However, we maintain that testing multiple erosion scenarios would 
yield a further quantification of how likely specific erosion patterns can be discerned from it. 

L145. There is nothing wrong with assessing results with respect to a null hypothesis as 
long as the null hypothesis is established in advance. It does not “undermine the statistical 
rigor” of the studies, as the next sentence falsely states. 

We have corrected this statement. There certainly is nothing wrong with it. Please see lines 
150-152. 

L146. Correct this, or strike it. As written, it conflates the well known problem of post-hoc 
hypothesis testing, in which a set of measurements is compared against a hypothesis that 
was identified after the data were collected and analyzed, with what these studies actually 
did. To wit, they identified the null hypothesis — of spatially uniform erosion rates — even 
before they went into the field. 

We have corrected this in the revised version of the manuscript. Please see lines 150-154. 

L147. “...rejecting or confirming a study’s hypothesis...”  This is one example of how the 
manuscript currently turns legitimate inference on its head. A hypothesis cannot be 
confirmed using the kind of frequentist statistical hypothesis tests employed here. The 
observed data can be consistent with a particular hypothesis, but that doesn’t make it 
“true.” To get a handle on the probability of whether a hypothesis is true or not, it is 
necessary to take a Bayesian approach, which is well outside the scope here. 

We agree with this comment, what we meant to say is “reject or accept at the significance 
level…”. We have corrected the inappropriate wording. Please see line 154. 

L180. This doesn’t make sense. Again, there is a problem here with the chain of inference. 
It is not that you are trying to “detect” different erosion scenarios. You can’t do this with 
frequentist approaches like a K-S test. You can identify differences that are unlikely to 
arise by chance from a proposed null hypothesis. But you cannot detect a specific 
scenario by finding a best fit, contrary to what the authors repeatedly state throughout the 
paper. 

We agree with the reviewers here. To us, “detecting” a scenario is the short version of what 
they suggest in their comment: “identify a dissimilarity that is unlikely to arise by chance”. 
Our software is designed to quantify both of them (dissimilarity and likelihood). We have 
avoided using implicit and confusing terminology in the revised manuscript. Please see line 
154-161. 



L187. It is not clear how 6 is different from 5. Try rephrasing either or both? 

We have rephrased these items to better clarify. Please see lines 189-208. 

L204. Inferred (past tense) 

Corrected 

L211. Usually reserve upper case R^2 for coefficient of multiple determination (in multiple 
regression) and lower case r^2 for coefficient of determination (in simple linear regression, 
as is the case here). 

Corrected 

L224. The attribution to Riebe et al. is incorrect. The bulk geochemical work that supports 
this observation was done by and reported in Hirt (2007). 

Corrected 

L249. “the inherent noise (i.e. dissimilarity)” is nonstandard terminology. In what sense is it 
actually “noise.” And how does that then equate to “dissimilarity?” We suggest sticking to 
more traditional terminology to aid understanding for the broadest possible audience. In 
this case, the thing being referred to is the 95% confidence interval on the K-S statistic D. 
It’s not the inherent noise. 

We have corrected the inappropriate terminology 

L264. This entire section is deeply flawed in that it suggests that users of the code can 
employ it to find a “best fit” erosion model to their data. As repeated multiple times in this 
review, that’s not what statistical hypothesis testing can do. 

As stated above, we have modified the text according to the reviewers’ comments on this 
issue. 

L269. As pointed out by Vermeesch (2007) this kind of analysis results in “double 
smoothing” of CADs (his term). He shows that this introduces the very bias that the authors 
say they are trying to avoid according to them in line 237.  

We thank the reviewers for pointing out this possible issue. In order to account for 
analytical uncertainty, we iteratively calculate the dissimilarity based on n=52 CADs 
obtained through random sampling of ages from their analytically measured distribution. To 
avoid the bias arising from applying variable 1sigma to the ages, in the revised version of 
the manuscript we apply the same average 1sigma to all of them. 

L271. The next two sentences and associated analyses are especially flawed. This so-
called “plausibility” actually has a technical name in statistical hypothesis testing. It’s the 



false negative rate (beta), which describes how often you would fail to reject the null 
hypothesis that the two distributions are drawn from the same population when they 
actually are not from the same population. The “reliability” or “statistical power” of the test 
in detecting effects of a given size is equal to one minus beta. It’s the complement to the 
false positive rate. So this reporting of 62.9% and 87.6% and 3.3% as a degree of “fit,” 
rather than as the false negative rate, is completely at odds with the terminology, usage, 
and proper chain of inference in frequentist statistical hypothesis testing. 

We have corrected the inappropriate terminology here. The percentages in Fig.8 inform the 
likelihood that a random n=52 sample of each erosion scenario is as or less dissimilar to the 
observed CAD than the 95% confidence dissimilarity arising from the CAD’s analytical 
uncertainty. Therefore, as the reviewers correctly understood, these percentages inform a 
false negative rate: how often one would be unable to reject the H0 that the two samples 
are taken from the same distribution (the respective erosion scenario), when they actually 
are not. 
Yes, it is incorrect to label these as “degree of fit”, but in fact they characterize the 
plausibility of each tested scenario. It remains clear, however, that several scenarios may be 
equally plausible and the data may not suffice to further discriminate. We have better 
explained what these numbers and the violin plot show, but we will maintain the term 
“plausibility” because it is a more accessible term, as opposed to “false negative rate, 
beta”. Please see section 5.5 and Fig.8. 

L284. Again, identifying a satisfactory fit is not something this kind of statistical hypothesis 
testing can do. A Bayesian approach could do it, but not a frequentist one like this 
application of K-S tests. 

We agree on this point, see comment just above. 

L292. “uniquely detect any of the tested scenarios at with confidence (Fig.7)” Typo aside 
(strike the “at”), this is not something that frequentist hypothesis testing can do. To 
appreciate this, it may help to realize there are only two tested scenarios, while there are 
infinite possible scenarios. “Uniquely detecting” a scenario would require testing all of the 
possible scenarios (which is of course impossible), not just two that have been arbitrarily 
chosen. The choice of an alpha of 0.05 is arbitrary, too - it’s what is often settled on as an 
acceptable false positive rate (and even this is a subject of heated debate in the stats 
community). In any case, when you are unable to reject the null hypothesis at that 0.05 (i.e. 
threshold) false-positive rate it does not mean that you have 95% confidence that the 
scenario matches the observations. That would be akin to turning the logical inferences 
that can be made from these kinds of tests on their heads. 

We agree on this point too, we have corrected this. 

L297. As we suggested in Riebe et al., 2015, sediment size changes across this 
catchment. In addition, in Sklar et al., 2020 we also documented downvalley fining in 
sediment size on slopes in Inyo Creek. That work should definitely be cited here. Changes 
in sediment size are certainly beyond the scope of the manuscript presented here, but may 
provide an alternate explanation for deviations from non-uniform sediment production (not 



just erosion, but also variations in sediment size). In fact, this is precisely what Riebe et al 
suggested: it was the greater-than-expected contribution from low elevations and lesser-
than-expected contribution from higher elevations shown in Stock et al’s fine sediment  -- 
coupled with the opposite pattern in the coarse gravel -- that showed this. So the same 
pattern that the authors point to here (where the evidence from Stock et al.’s sample 
seems to point to greater contributions from the lower part of the catchment) is part of the 
basis for the conclusions of Riebe et al. 

Thank you for this comment, we have better discussed the potential grain size bias in the 
revised manuscript. Please see line 324-330. 

L319. If the authors are explicitly including age uncertainties in their analysis without 
adjusting for the resulting double smoothing described by Vermeesch (2007), then they are 
introducing the bias he discusses and that they earlier said they would avoid. 

As stated further up, we thank the reviewers for pointing out this possible issue. In order to 
account for the uncertainty of predicted age distributions, we follow the procedure to 
construct a “CSPDFt*m” (same as CAD) as described by Vermeesch (2007) in his Table 1. 

L344 (and elsewhere): the Lukens et al. paper is officially 2020, not 2019.  

We have corrected this 

L365: More suggested citations for slopes producing different size distributions: Sklar et al. 
2020 (ESPL) (at Inyo Creek); 2017 (Geomorphology) (generally); Roda-Boluda et al. (2018, 
ESPL) (related to lithology); Attal and Lave (2015) (related to erosion rate); Marshall and 
Sklar (2012) (related to climate) 

Thanks for the suggestions, we have included most of them in the revised manuscript. 

 


