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Abstract. Detrital tracer thermochronology utilizes the relationship between bedrock thermochronometric age-elevation 

profiles and a distribution of detrital grain-ages collected from river, glacial, or other sediment to study spatial variations in 

the distribution of catchment erosion. If bedrock ages increase linearly with elevation, spatially uniform erosion is expected to 

yield a detrital age distribution that mimics the shape of a catchment’s hypsometric curve. Alternatively, a mismatch between 

detrital and hypsometric distributions may indicate spatial variability of sediment production within the source area. For studies 10 

seeking to identify the pattern of sediment production, detrital samples rarely exceed 100 grains due to the time and costs 

related to individual measurements. With sample sizes of this order, detecting the effect size between two detrital age 

distributions produced by different catchment erosion scenarios can be difficult at a high statistical confidence level. However, 

there is no established tool to quantify the uncertainty inherent to detrital tracer thermochronology as a function of sample size 

and spatial pattern of sediment production. As a result, practitioners are often left wondering ‘how many grains is enough to 15 

detect a certain signal?’. Here, we investigate how sample size affects the uncertainty of detrital age distributions and how 

such uncertainty affects the ability to infer a pattern of sediment production of the upstream area. We do this using the 

Kolmogorov-Smirnov statistic as a metric of dissimilarity among distributions. From this, we perform statistical hypothesis 

testing by means of Monte Carlo sampling. These techniques are implemented in a new tool (ESD_thermotrace) to: (i) 

consistently report the confidence level allowed by the sample size, as a function of application-specific variables, and given 20 

a set of user-defined hypothetical erosion scenarios; (ii) analyse the statistical power to discern each scenario from the uniform 

erosion hypothesis; and (iii) identify the erosion scenario that is least dissimilar to the observed detrital sample (if available). 

ESD_thermotrace is made available as a new open-source Python-based script along with test data. Testing between different 

hypothesized erosion scenarios with this tool provides thermochronologists with the minimum sample size (i.e. number of 

bedrock and detrital grain-ages) required to answer their specific scientific question, at their desired level of statistical 25 

confidence. 

1 Introduction 

Tracer thermochronology uses the distribution of single-grain thermochronometric ages from detritus to infer the spatial pattern 

of erosion in the source area (e.g. Stock et al., 2006; Vermeesch, 2007). This approach is typically applied where bedrock 
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thermochronometric age data exhibit a clear age-elevation relationship, allowing inference of the relative contribution of source 

elevations from the detrital grain-age distribution. A detrital grain-age distribution that closely follows the catchment’s 

hypsometric curve (i.e., the cumulative distribution function of elevation area), is generally interpreted as indicative for 85 

spatially uniform erosion. Conversely, a detrital age distribution skewed towards younger (or older) ages may be the 

consequence of focused erosion at lower (or higher) elevations (Brewer et al., 2003). Tracer thermochronology has been shown 

to be a powerful tool to investigate the sub-catchment-scale variability of denudation. Geomorphologists have been able to 

infer changes in climatic parameters (Nibourel et al., 2015; Riebe et al., 2015), glacial erosional processes (Ehlers et al., 2015; 

Enkelmann and Ehlers, 2015; Clinger et al., 2020), sediment dynamics (Lang et al., 2018), relief evolution (McPhillips and 90 

Brandon, 2010; Whipp et al., 2009), occurrence of mass-wasting (Vermeesch, 2007; Whipp and Ehlers, 2019) and differences 

in rock uplift (McPhillips and Brandon, 2010; Glotzbach et al., 2013, 2018; Brewer et al., 2003; Ruhl and Hodges, 2005). 

Other work has noted that neglecting mineral fertility variations with catchment lithologies may challenge the conclusions of 

some of these studies (Malusà et al., 2016). Unfortunately, the number of measured detrital ages for tracer thermochronology 

is often dictated by inherent limitations of the sampled material and/or by available finances, rather than a science-based 95 

choice. Detrital sample sizes often range between 40-120 grains (e.g. Stock et al., 2006; Vermeesch, 2007; McPhillips and 

Brandon, 2010; Ehlers et al., 2015; Riebe et al., 2015; Glotzbach et al., 2018; Lang et al., 2018; Clinger et al., 2020), and are 

considered to yield high-confidence results when surpassing ~100 grains based on previous work on sediment provenance 

analysis (Vermeesch, 2004). However, in unfortunate cases, two measured distributions generated from different erosional 

patterns cannot be statistically discerned at a high confidence level even with more than 100 grains. Although this issue is 100 

well-known to the community (e.g. Avdeev et al., 2011) since the early days of such detrital studies (Brewer et al., 2003), there 

is no established tool to quantify the uncertainty inherent to detrital tracer thermochronology as a function of sample size and 

upstream pattern of sediment production. Moreover, the number of measured grains may often be based on convenience and/or 

habit.  

 105 

Here, we complement previous work by investigating how sample size affects the uncertainty of detrital cooling age 

distributions and the related confidence in addressing the pattern of sediment production in the upstream area. We discuss the 

approaches used in previous case studies, upon which we develop a tool (Earth System Dynamics - ESD_thermotrace) to 

consistently report confidence levels as a function of sample size and case-specific variables. We illustrate our approach using 

a published dataset from the Sierra Nevada Mountains, California (Stock et al., 2006). The proposed tool is made available as 110 

a new open-source Python-based script along with test data. We demonstrate how ESD_thermotrace can assist future tracer 

thermochronology studies in defining the necessary sample size to answer their specific scientific question. In cases where 

larger sample sizes are impossible to achieve, the statistical power of a tracer thermochronology analysis can be studied using 

our script. 
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2 Background information 

Single grain detrital age distributions are extensively applied in classical detrital geochronology studies (Hurford and Carter, 

1991), where U/Pb crystallization ages of zircon constitute by far the most used tool (Spiegel et al., 2004; Andersen, 2005; 140 

Malusà et al., 2013). In this type of application, the aim is to obtain the spectrum of all age components (i.e. age peaks) that 

characterize a siliciclastic sediment. If a range of assumptions hold (Malusà et al., 2013; Malusà and Fitzgerald, 2020), the 

provenance of a sediment sample’s source area can be inferred by matching the detrital age components to those of known 

Figure 1 - Sketch of the difference between classical detrital geochronology (A) and tracer thermochronology (B). A: 
discrete age components are found in the detritus and refer to different upstream geological units. B: a continuous detrital 
age distribution informs the relative abundance of material sourced from different elevations, based on a known age-
elevation relationship. 
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upstream geological units and/or events. For that purpose, the number of 

measured detrital grains determines the confidence of detecting 

minor/small age components. An exhaustive probabilistic method to 

report such confidence exists (Vermeesch, 2004) and is not the focus of 150 

this study. The absolute age components of the source area are in fact 

unimportant in detrital tracer thermochronology (Avdeev et al., 2011), 

for which monolithological catchments are best suited, in order to 

minimize mineral fertility issues in the source rock (Fig.1). The focus 

here is the dissimilarity between the distribution of ages found in the 155 

source area and in the fluvial/glacial/hillslope sediment derived 

therefrom, regardless of their absolute age components. For this purpose, 

the uncertainty caused by a small sample size strongly limits the least 

significant dissimilarity that can be resolved between two distributions. 

This minimum resolution directly affects the power of our inferences. 160 

 

In the following we summarize the conceptual model concerning this 

matter and the approaches that have been used to address it thus far. Let 

us consider a monolithological catchment and a set of detrital grain-ages 

measured at its outlet. The observed grain-age distribution should match 165 

a predicted distribution that is forward-modelled stacking the following 

layers of geologic information about the upstream area (Fig.2): 

I. The catchment hypsometry, or the distribution of the 

catchment’s cumulative area as a function of elevation. The 

hypsometric curve is constructed based on the digital 170 

elevation model (DEM) of the study area, and it has a 

negligible uncertainty. 

II. The bedrock age-elevation data. In the simplest case, a 

linear function based on a dataset of ages with associated 

uncertainty, measured at known elevations. 175 

III. The mineral fertility, which informs the original abundance 

of the target mineral in the different elevation ranges and is 

mostly a function of lithologic variability. This is a critical 

parameter that can lead to gross misinterpretations if 

ignored (Malusà et al., 2016). 180 

Figure 2 – Qualitative sketch to illustrate the effect 
of mineral fertility and erosion on the detrital 
distribution. A: The catchment of Fig.1B with 
known bedrock age (shades of green) is subject to 3 
scenarios of spatially varying fertility and erosion. 
The box outlines refer to the curves below. B: 
detrital distributions obtained from the different 
scenarios in above. The green curve refers to 
spatially uniform erosion and fertility. 
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IV. Information on how the sediment-size distribution varies between the headwaters and the detritus. This is to make 

sure that grains in the detritus are representative of erosion in the catchment (e.g. Vermeesch, 2007; Riebe et al., 

2015; Lukens et al., 2020). 

V. A pattern of erosion across the catchment, which is the dependent variable of the system. This is any map of 

erosion probability, a scenario to be tested against uniform erosion (or other reference scenarios). 195 

Depending on the scope of the application, tracer thermochronology ultimately aims to quantify the mismatch between 

observed and predicted distributions, where the predicted distributions vary depending on assumed models for catchment 

erosion, sediment dynamics and tectonics. 

3 Comparing predicted and observed distributions 

Predicted distributions should be constructed accounting for all above information and related uncertainties, such that the 200 

confidence of the fit to the observed distribution also accounts for them. Brewer et al. (2003), and successively Ruhl and 

Hodges (2005), were the first to compare the distribution of detrital thermochronometers to that of age-elevation data. Although 

the scope of their work differed from more recent tracer thermochronology, the evaluation of the dissimilarity between 

predicted/observed distributions remains the main object of their studies. These authors constructed synoptic probability 

density functions (SPDF) of the observed data by “stacking” the gaussian distributions of all measured grain-ages, each with 205 

their analytical error (this is equivalent to the SPDFt in Table 1 of Vermeesch (2007)). In addition to the observed distribution, 

a predicted SPDF was also constructed with the same method, where the predicted grain-ages are a random subsample of the 

hypsometric curve and are each given an arbitrary average uncertainty. Brewer et al. (2003) define the mismatch Pdiff between 

observed and predicted SPDF with equation (1): 

𝑃!"## =	∑ |&!(()*&"(()|
#$%
#$&

+
× 100,          (1) 210 

where (P1 and P2) are the probabilities of the two distributions calculated at each age step (t). Pdiff relates to the area comprised 

between two SPDF in the age-frequency space. Brewer et al. (2003) calculate the 95% confidence mismatch between observed 

and predicted SPDF through a Monte Carlo simulation. 

 

Vermeesch (2007) has shown that, for the purpose of comparison, observed and predicted distributions are best expressed as 215 

a cumulative age distribution (CAD) rather than SPDF. A CAD is a step-function with the sorted mean ages on the x axis and 

the related quantiles on the y axis (Vermeesch, 2007). This method is preferred because it avoids the possible sources of bias 

introduced by: (i) choice of the smoothing parameter in the kernel density estimations (KDE); (ii) binning in histograms; and 

(iii) uncertainty-based weighting in the SPDF curves (Vermeesch, 2012). To evaluate the goodness of fit between observed 

and predicted CADs, Vermeesch (2007) uses the Kolmogorov-Smirnov (KS) statistic, which informs the maximum distance 220 

dKS between two cumulative distribution functions as follows (Massey, 1951 and references therein): 

𝑑,- = 	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	-𝐶𝐴𝐷./01231!(𝑡) −	𝐶𝐴𝐷421!"5(1!(𝑡)-	.       (2) 
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Given an observed CAD with k observations (i.e., ages), dKS is calculated for several n=k sub-samples of the predicted CAD. 

The 95th percentile of all sorted dKS (dKS_95) is used as the least significant dissimilarity to reject the null hypothesis that the 

observations are drawn from the predicted CAD. In other words, an observed CAD that plots entirely within the range 245 

𝐶𝐴𝐷421!"5(1! ± 𝑑,-_78 (Fig.3) cannot be discerned from the predicted age population at the 95% confidence level. As an 

alternative to this iterative method, the confidence region for a predicted CAD can be calculated with the analytical solution 

of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality as follows: 

𝑑,-_78 ≈ 	e	 = 	7
9:"'
+;

,           (3) 

where the DKW distance e approximates well the dKS_95 as a function of the confidence level	(1 − 𝛼) and the sample size k 250 

(Fig.3) (Massart, 1990; Massey, 1951). 

Riebe et al. (2015) further developed the bootstrapping approach described above to age distributions (in SPDF form). Instead 

of basing their analysis on the KS statistic, the 95% confidence envelope of the prediction is iteratively estimated at each age 

step ti. For each ti, the distribution of 10,000 predicted age frequencies SPDFpredicted(ti) is used to draw 2.5th and 97.5th 

percentiles at each age step. Because the age steps ti relate to the elevation steps in the catchment through the bedrock 255 

Figure 3 - Example of metrics to compare two cumulative distributions drawn from different sample sizes. Here, an 
observed Cumulative Age Distribution (CAD) for n=k (orange stepwise dashed line) is compared to a predicted CAD drawn 
for n>>k (solid black line). The Kolmogorov-Smirnov statistic d_KS equals the maximum absolute vertical distance between 
distributions in the observations-frequency space. The Kuiper statistic d_Kui equals the sum of both positive and negative 
maxima. For a=0.05 (i.e. 95% confidence) and n=k, a Dvoretzky-Kiefer-Wolfowitz confidence region can be calculated 
(gray shading). In this example, observed and predicted distributions are drawn from two statistically different populations 
at the 95% confidence level, because the orange curve exceeds the gray region. 
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thermochronometric data, those elevation steps exhibiting excess (>97.5th) or deficit (<2.5th) frequency are interpreted to 

produce sediment in excess or deficit with respect to the reference scenario of uniform erosion, at the 95% confidence level. 

 

The approaches summarized above are well-suited to test observed detrital age distributions against the null hypothesis of 

spatially uniform erosion. However, even if the uniform erosion hypothesis is rejected, such a test does not yield further 275 

information about the spatial variability of sediment production. One way to gain additional information would be to test the 

observed distribution against predicted age distributions from erosion scenarios other than spatially uniform, thereby 

quantifying the likelihood that the measured grain-ages could be produced by the tested scenarios. This approach would help 

practitioners in deciding the sampling strategy, calculating the appropriate number of measurements and the resources to be 

allocated for them. In the next paragraphs we introduce the new ESD_thermotrace software, an open-source tool built on the 280 

cited previous work to consistently perform the following: (i) determine the confidence level allowed by the detrital sample 

size in rejecting the uniform erosion hypothesis; (ii) analyze the statistical power of detecting the effect size caused by 

alternative erosion hypotheses, as a function of the number of grains; and (iii) test observed detrital distributions against all 

input erosion hypotheses (both uniform and alternative scenarios) and calculate the likelihood that the detrital sample may 

have been drawn from either of them. The software is introduced in the paragraphs below. 285 

4 ESD_thermotrace: A tool to study the uncertainty of tracer thermochronology datasets 

The software ESD_thermotrace performs the steps briefly outlined here below. For additional details, the reader is referred to 

the illustrative case study farther below and the well-commented code itself (Madella et al., 2021)[ Please note that a temporal 

preview access to the cited future DOI landing page is available: https://dataservices.gfz-

potsdam.de/panmetaworks/review/c375e8eb059bb94ace622f2075b99baf6c513d3b560989a6b307bbe5d5a20217/ ]: 290 

1. Bedrock age map interpolation. 

o Input: bedrock age-elevation dataset and digital elevation model. 

o Output: Bedrock age map. 

o Method: users can choose among 1D linear regression, 3D linear interpolation, 3D radial basis function. 

Alternatively, an externally produced age map can be imported. 295 

2. Bedrock age uncertainty map interpolation. 

o Input: bedrock age-elevation dataset (point data) and bedrock age map (grid data). 

o Output: Bedrock age uncertainty map. 

o Method: The uncertainty of the age map is estimated through bootstrapping. An externally produced 

uncertainty map is required if the age map was imported. 300 

3. Extract catchment bedrock age, coordinates, mineral fertility and erosion data. 

o Input: catchment outline, bedrock age and age uncertainty maps, mineral fertility map, one or more erosion 

maps. 
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o Output: a table of all the listed catchment properties necessary to predict detrital age distributions 

o Method: for each cell of the age map contained in the catchment outline, the local coordinates, age, fertility 

and erosional weight(s) are extracted. 340 

4. Predict detrital grain age distributions for each erosion scenario. 

o Input: table of catchment data. 

o Output: a predicted detrital age population for each erosion scenario and related cumulative age distribution. 

o Method: A number of ages proportional to erosional weight and fertility is drawn from each cell, for each 

scenario. The ages from all catchment cells collectively represent a predicted population, from which 345 

cumulative age distributions are constructed. 

5. Calculate: (i) the likelihood of rejecting the uniform erosion hypothesis with the observed sample size; and (ii) the 

statistical power of discerning (predicted) erosion scenarios as a function of sample size. 

o Input: one or more sets of observed grain-ages, the predicted detrital populations and distributions. 

o Output: A graph displaying: (i) the confidence of rejecting uniform erosion with the observed sample size; 350 

and (ii) the statistical power curve of discerning the scenarios from uniform erosion varying sample size. 

o Method: first, the dks_95 for the available sample size k is calculated with Equation 3; then, the likelihood that 

the n=k observed CAD is more dissimilar than the dks_95 is calculated through bootstrapping. The same 

operation is also repeated for a range of sample sizes (20<k<130), in order to estimate the rise in confidence 

level caused by the increasing sample size (if the observed distribution and associated uncertainty remained 355 

identical despite the changing sample size). To calculate the statistical power of discerning the tested erosion 

hypotheses, the same approach is applied. In this case, however, the software draws a number of distributions 

from each erosion scenario, instead of the observed grain-ages. 

6. Given a set of observed detrital grain-ages, calculate the plausibility of each erosion scenario (i.e. the likelihood that 

hypotheses cannot be rejected with high confidence). 360 

o Input: same as point 5). 

o Output: two plots to visualize how plausibly the observed grain-ages have been drawn from the predictions. 

o Method: in the first plot, dissimilarities calculated between predictions and observations are sorted and their 

distribution is plotted in the form of a violin plot. Second, a two-dimensional Multi-Dimensional Scaling 

(MDS) model is fitted to the dissimilarities among the predicted and observed distributions and plotted 365 

following Vermeesch (2013). 

All of the above operations are embedded in an open-source Jupyter Notebook (jupyter.org), a software that allows integrating 

text, Python code, and visualizations within the same document for maximum editability and transparency. All plots are 

produced with Matplotlib (Hunter, 2007) and Seaborn (Waskom et al., 2020) Python libraries and are colored using the color 

blind-friendly and perceptually uniform ScientificColourMaps6 (Crameri et al., 2020). In the following paragraph, for 370 
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illustrative purpose only, we show how the program helps analyzing an already published detrital AHe age dataset (Stock et 

al., 2006). 390 

Figure 4 – Input bedrock data from Stock et al. (2006). (A) Raster images of the study area’s digital elevation model, 
resampled to the user-specific cell size, and (B) bedrock surface AHe age interpolated based on the linear regression of age-
elevation data. In both plots, point data inform bedrock sample locations and related AHe ages. Polygons shows the location 
of the Inyo Creek catchment. 
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5 Application of ESD_thermotrace to the Inyo Creek case study 

We apply ESD_thermotrace to the bedrock and detrital apatite (U-Th(-Sm)/He (AHe thereafter) age datasets of Stock et al. 

(2006). In that study, 9 bedrock AHe ages from the Inyo Creek and adjacent Lone Pine Creek catchments (eastern Sierra 

Nevada, California, USA) are used to constrain the age-elevation relationship of the source area. The authors compared these 

bedrock data to the AHe age distribution of river sand samples from both catchment outlets. For the sake of simplicity, here 395 

we only consider the fine sand sample (k=52) from the Inyo Creek catchment. Based on their analysis Stock et al. (2006) 

inferred no significant variability of sediment production (erosion) across all elevations within the catchment. 

5.1 Data import and bedrock age interpolation 

The first few steps of ESD_thermotrace allow importing: (i) the digital elevation model of the study area; (ii) the polygon of 

the catchment of interest; (iii) a table of bedrock age and elevation data; (iv) the (optional) erosion scenarios to be tested; and 400 

(v) a (optional) fertility map. Next, the surface bedrock ages are calculated with the preferred method (see above and README 

file in Madella et al., 2021). The bedrock AHe ages of Stock et al. (2016), recalculated after Riebe et al. (2015), exhibit a ~60 

My age increase from ca. 2 to 4.5 km of elevation range that is well-described by an inverse variance-weighted linear regression 

(r2 = 0.93). The input data are plotted in Figure 4a. In Figure 4b, every cell is assigned an AHe age as a linear function of 

elevation (Fig.5 inset), so as to map the bedrock cooling age on the topographic surface. The error of this interpolation is also 405 

mapped through bootstrapping as a function of elevation (Fig.5).  

Figure 5 – The raster image displays the bedrock age interpolation error mapped to the topographic surface of the 
study area. The inset shows the inverse variance-weighed linear regression employed as age-elevation function, as 
well as the associated 1s uncertainty. 
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5.2 Extraction of catchment data 420 

Next, ESD_thermotrace extracts the x,y,z coordinates, the bedrock cooling age and the related error for all the cells bound by 

the catchment outline. These data are written in a table, to which a column informing erosional weights is added for each 

desired erosion scenario and for mineral fertility. In addition to the user-defined erosion maps, by default the software considers 

the uniform erosion scenario ‘Euni’ (spatially constant erosional weight). Two further example scenarios can be toggled to test 

for an exponential increase of erosion with elevation ot an exponential decrease of erosion with elevation (not considered 425 

here). We note that any other spatial variation in erosion can be defined by a user such that ‘erosion maps’ for the catchment 

following stream power, slope dependent, glacial slide velocity, or other approaches from geomorphic transport laws can be 

input. For this case study, bulk geochemistry and point-counting analyses of Hirt (2007) indicate that apatite fertility does not 

significantly vary within the three lithologies found in the Inyo Creek catchment (Lone Pine granodiorite, Paradise 

granodiorite, Whitney granodiorites). For illustrative purpose, we test uniform erosion against two opposite step functions of 430 

elevation: a scenario with F-times higher erosion efficiency above the median catchment elevation and one with F-times higher 

erosion below the median elevation. The factor F equals twice the ratio between the most frequent and the least frequent 

elevation. For this calculation, the hypsometric histogram is constructed with a number of bins equal to the maximum 

difference in bedrock cooling ages, divided by the mean age uncertainty (rounded up to the next integer). Here, the Inyo Creek 

catchment is binned in 7 elevation ranges, of which the most frequent is 5-times the least frequent one, resulting in F = 10. In 435 

other words, we test for an increase in erosion twice as prominent as the hypsometric peak (10-fold), once below (‘E<Zmed’) 

and once above (‘E>Zmed’) the median catchment elevation.  

5.3 Prediction of age populations and detrital age distributions 

The erosional weights are used to forward model sediment production at each position in the catchment. To do so, a number 

of grain-ages proportional to the erosional weight and to the local mineral fertility are randomly chosen for each cell. These 440 

grain-ages are randomly drawn from a normal distribution constructed using the local interpolated bedrock age and the related 

error. The randomly picked grain-ages of all cells are stored in one suite of grain-ages, which represents the predicted detrital 

grain-age population of a well-mixed fluvial sediment at the catchment outlet. Such a detrital population is predicted for each 

erosion scenario, and related predicted CADs are constructed by sorting the age populations and plotted as a step function 

(Fig.6b). For the sake of quick visual comparisons, ESD_thermotrace plots a kernel density estimation with arbitrary 445 

smoothing (Fig.6a). However, the dissimilarity among distributions will be evaluated exclusively based on the cumulative 

form, in order to minimize bias (Vermeesch, 2007). In Figure 6b, all predicted and observed cumulative age distributions are 

plotted. For a first order impression of the uncertainty due to sample size, the 95% confidence envelope of the reference 
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scenario is also calculated with Eq.3 and plotted in the background. Here, the user can specify for which reference scenario 

(“Euni” as default) the confidence envelope should be plotted. 

5.4 Confidence level and statistical power as a function of sample size 465 

After predicting the distributions, the software calculates: (i) the maximum confidence in rejecting the uniform erosion 

hypothesis allowed by the observed sample size; and (ii) the statistical power of discerning the scenarios from uniform erosion 

Figure 6 – Kernel Density Estimation curves of all predicted detrital distributions as well as of the observed detrital sample 
(A). Cumulative form of the same distribution, plus the 95% confidence envelope (DKW-bounds) of ‘Euni’ for n=k=52. 
Euni: uniform erosion; E<Zmed: 10-fold erosion below median elevation; E>Zmed: 10-fold erosion above median elevation. 
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as a function of sample size. This is the main step to define how many grain-ages are necessary to detect a hypothetical erosion 

pattern. Let us consider the observed CAD constructed with the sorted mean grain-ages. The mean standard deviation of the 

observed grain-ages is used to generate 10’000 Monte Carlo samples of this observed CAD, which account for age dispersion 475 

due to analytical error and/or reproducibility. Then the confidence in rejecting uniform erosion equals the fraction of sampled 

CADs that is more dissimilar to ‘Euni’ than the least significant dissimilarity (dKS_95) allowed by the sample size k (see Eq.3). 

The so-calculated confidence can be read in the scatterplot of Figure 7 (light blue circle), and it equals 55% for the Stock et al. 

(2006) data. Figure 7 also shows that the 95% level of significance could be achieved with more than 128 grain-ages. Here, 

we clarify that the latter estimate assumes that the observed distribution would not change in shape while varying the sample 480 

size, and as such it can only be treated as an indicative number. If the confidence allowed by the actual sample size is lower 

than the previously chosen level of significance, an analysis of statistical power can help identifying how likely the available 

number of grain-ages could detect a known effect size (i.e. the dissimilarity caused by a known erosion scenario). This analysis 

of statistical power is based on the iterative comparison between the reference scenario and all other erosion scenario 

Figure 7 – Confidence level at which the observed CAD (n=52) can be discerned from the uniform erosion prediction (cyan 
circle). The dashed cyan line shows how the allowed confidence level would vary, if the same observed CAD relied on 20-
130 grain-ages. Statistical power of discerning the tested erosion scenarios from ‘Euni’ as function of sample size (solid 
lines). In this case study, the observed CAD of the Inyo Creek detrital sample allows rejecting the uniform erosion 
hypothesis with 55% confidence at best. An analysis to detect the scenarios ‘E<Zmed’ and ‘E>Zmed’ would have a 
statistical power greater than 95% in rejecting ‘Euni’ with more than 37 grain-ages. Euni: uniform erosion; E<Zmed: 10-
fold erosion below median elevation; E>Zmed: 10-fold erosion above median elevation. 
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predictions. This is achieved through random subsampling of the predicted distributions for a range of possible sample sizes 

(20≤n≤130 in this case). For each ni, the least significant dissimilarity dKS_95(ni)* of the reference scenario is calculated for 

α=0.05 and n=ni using Equation 3. In the observations-cumulative frequency space (Fig.6b), dKS_95(ni)* represents the vertical 

distance that any n=ni distribution needs to exceed to be discerned from a n=ni subsample of the reference scenario, with 95% 490 

confidence (purple shading in Fig.6b). Next, 1,000 dKS_95(ni) are calculated between n=ni subsamples of each erosion scenario 

and the reference scenario. The probability of dKS_95(ni) exceeding dKS_95(ni)* for each ni can be read from the curves in Figure 

7. For the Inyo Creek case study (Stock et al., 2006) both tested erosion scenarios yield predicted CADs that are very dissimilar 

from uniform erosion. Consequently, the probability to detect such scenarios would exceed 95% even with only 40 grains. 

 495 

Figure 7 shows the use of ESD_thermotrace as a tool to explore the feasibility of a tracer thermochronology study. Based on 

their research question, users can apply a number of possible erosion maps and test the likelihood with which the respective 

detrital distributions could be discerned from uniform erosion through detrital tracer thermochronology, as a function of sample 

size. Such analysis of feasibility is not only beneficial in terms of better quantifying uncertainties, but it can also assist 

investigators in defining the budget for measurements at an early stage of proposal writing. Alternatively, in cases where the 500 

number of datable grains is limited by material properties, budget, or other logistic reasons, Figure 7 informs the maximum 

confidence level of the results. 

5.5 Evaluating the plausibility of each scenario. 

The final steps of ESD_thermotrace assist users in finding the erosion scenario that is most likely to generate a predicted CAD 

that resembles the observed CAD. For each erosion scenario, dKS and dKui (Fig.3) are calculated between 10,000 n=k 505 

subsamples of the respective predicted CAD and the observed CAD. The distribution of these dKS and dKui values is shown in 

the form of a split violin plot in Figure 8a and it is to be compared to the range of values shown by the violin in Figure 8b. The 

latter shows the distribution of dKS and dKui calculated between random subsamples of the observed CAD that account for the 

mean analytical error and the observed CAD itself (constructed only with the mean ages). In other words, Fig. 8b displays how 

the dispersion of a predicted CAD (accounting for analytical error and sample size) is distributed. The “plausibility” of each 510 

scenario is plotted beneath each violin and it equals the probability that the values plotted in Figure 8a fall within the one-sided 

lower 95th percentile of those shown in Figure 8b. More specifically, there is 51.6% probability that the observed CAD could 

be drawn from the uniform erosion scenario, and 13.7% and 0.0% probability that scenarios ‘E<Zmed’ and ‘E>Zmed’ generate 

predicted CADs that fall within the spread of the observed CAD, respectively.  

 515 
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Lastly, as suggested by Vermeesch (2013), the ESD_thermotrace program applies a two-component Multi-Dimensional 

Scaling model (MDS) to all predicted and observed distributions. This algorithm fits a 2-dimensional coordinate system to the 

measured dissimilarities dKS among all considered distributions (both predicted and observed). In a well-fit MDS model, 

distances among points in the modelled 2D-space are a good approximation of the actual dissimilarities among the input 705 

elements (Fig.9a). To reach a satisfactory fit, modelled dissimilarities are plotted against input dissimilarities (Fig.9b) and the 

sum of all distances to the 1:1 line is minimized (a procedure commonly referred to as stress minimization). The MDS plot 

renders an immediate visualization of the dissimilarity among distributions, where more similar distributions plot closer to 

each other. Moreover, with the addition of the 68% and 95% confidence ellipses, the degree of overlap among distributions is 

also easily visually assessed (Fig.9a). 710 

 

The application of the ESD_thermotrace software to Stock et al.’s (2006) Inyo Creek data shows the following: 

Figure 8 – Violin plot showing the KS (and Kuiper) statistics between the predicted CAD of each erosion scenario and 
observed CAD, calculated for 1000 n=k=52 subsamples (A). KS (and Kuiper) statistics between the observed CAD and 1000 
random n=k=52 distributions, drawn from the same detrital age population but including uncertainty (B). Every violin is 
split in two halves with equal area, each representing the probability distribution function of 10000 KS (or Kuiper) statistics. 
The widest point of each semi-violin informs the median KS (or Kuiper) statistic; The closer to zero, the more similar is a 
scenario to the observed detrital age distribution. The most unlikely scenario is ‘E>Zmed’. Both other scenarios are 
plausible, because their dissimilarity to CADobserved largely overlaps the range of dissimilarity due to analytical error of the 
detrital ages. 
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- A sample size of 52 grain-ages allows a maximum confidence level of ~54% in rejecting the uniform erosion 

hypothesis ‘Euni’ (cyan circle in Fig.7). If the observed CAD had been drawn from ~130 grain-ages, this confidence 

level would exceed 95% (dashed cyan curve in Fig.7). 740 

- 52 grain-ages would suffice to detect the effect size caused by ‘E<Zmed’ and ‘E>Zmed’ (green and brown curves in 

Fig. 7). However, the observed detrital sample is extremely unlikely to have been drawn from either of these scenarios. 

- Among the tested scenarios, the uniform erosion hypothesis ‘Euni’ is the least dissimilar (51.6% likelihood) (Fig.8 

and Fig.9). 

Here, while we have shown the functioning of ESD_thermotrace using the Inyo Creek data from Stock et al. (2006), we refrain 745 

from proposing a revised interpretation of the catchment’s erosion dynamics. We do note that, in addition to the data from 

Stock et al. (2006), Riebe et al. (2015) have accounted for 10Be-derived denudation rates and 73 additional AHe ages from 

coarse sand-sized sediment. These authors have shown that erosion in the Inyo Creek catchment is best explained by an 

exponential increase of sediment production with elevation. Thereby, they demonstrate that understanding the pattern of 

erosion in this catchment requires taking multiple sediment sizes into account (Riebe et al., 2015; Lukens et al., 2020; Sklar et 750 

al., 2020; see also discussion below). 

Figure 9 – Multi-Dimensional Scaling (MDS) plot. The 2-components MDS model fits a coordinate system to the measured 
dissimilarities (i.e. KS statistics) among all distributions. If the MDS model has a good fit, distances calculated in the new 
2D-space (A) are a good approximation of the input dissimilarities among the elements. The goodness of fit is shown in (B), 
where modelled dissimilarities are plotted against input dissimilarities. For each distribution in (A) 68% and 95% 
confidence ellipses are also plotted. 
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6 How many grains do we need for tracer thermochronology? 

The analysis with ESD_thermotrace shows that the appropriate sample size for a tracer thermochronology study cannot be 

determined a-priori without knowing: (i) the case-specific scientific question (i.e. the spatial pattern of erosion to be tested); 

(ii) the source area hypsometry; (iii) the desired minimum confidence level; and (iv) the surface bedrock ages. On this note, if 755 

possible, it is advisable to explore the feasibility of a study with the already available bedrock ages before sampling. In absence 

of available published ages, bedrock samples are best processed first to avoid wasting resources on potentially inconclusive 

analyses of detrital grains. To better illustrate the importance of the initial knowledge of the catchment’s geology, we conducted 

a set of simulations with the same inputs as the Inyo Creek case study (Stock et al., 2006). In these simulations we vary the 

location (in terms of elevation range) of maximal erosion and observe the impact on the statistical power in detecting the 760 

imposed pattern. A broad and a narrow gaussian curve of erosion (1s = 500 m and 100 m, respectively) are applied to the 

catchment’s range of elevations, shifting the position of the peak in 100-m-steps at each simulation. We test two sets of 

gaussian functions of elevation (2x and 5x), computed in such a way that the prominence of peak erosion equals 2- and 5-times 

the prominence of the catchment’s hypsometric peak, respectively. Therefore, because the most frequent elevation range is ca. 

5-times the least frequent bin (Fig. 10C,F), the “2x” and “5x” curves define an erosion efficiency where peak sediment 765 

production is 10-times and 25-times higher than the minimum in the catchment, respectively. Results from this parameter 

study, example erosional functions and the hypsometric histogram are illustrated in Figure 10. 

 

Figure 10 shows how the statistical power in detecting these gaussian-peak-scenarios is affected by: (i) the elevation of the 

erosional peak; (ii) its amplitude; (iii) its width; and (iv) the detrital sample size. An increase in sample size and/or an increase 770 

in amplitude of the erosional peak always correspond to higher statistical power. The elevation of the erosional peak affects 

the statistical power depending on the position of the erosional peak relative to the peak of hypsometry (Fig.10). In the case of 

a broad gaussian function of erosion (1s = 500 m), minima (blue areas) are observed where the erosional peak is located at 

elevations straddling 2,800 m (Fig. 10A,B). These minima in statistical power at ~2,800 m coincide with the broad frequency 

peak of catchment elevations (Fig. 10C). In this elevation range, the diffused increase in erosion efficiency does accentuate 775 

the peak of the hypsometric curve, but it results in a limited effect size (i.e. a small dKS dissimilarity to “Euni”). With this 

configuration, all erosion scenarios peaking within ca. 2,700-2,900 m produce detrital distributions whose effect size is 

detected in only <60% of the simulations, regardless of sample size and peak amplitude. This implies that certain combinations 

of erosional pattern and distribution of bedrock ages are poorly suited to be investigated by means of tracer thermochronology. 

 780 

In the case of a narrow gaussian function of erosion (1s = 100 m) (Fig. 10D,E,F), minima of statistical power are additionally 

found at peak elevations higher than 3,600 m and lower than 2,200 m (Fig. 10D,E). These occur because peak erosion is 

applied to a narrow elevation range that is not frequent enough to produce a statistically relevant number of grains. However, 

in the case of narrow erosional peaks, an increase in sample size substantially increases the statistical power to detect erosion 
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scenarios, even if centered at the critical elevation of ca. 2,700-2,900 m described just above (Fig.10D,E). This parameter study 1110 

demonstrates the importance of analyzing the catchment hypsometry and testing erosion scenarios even before collecting data, 

Figure 10 – Analysis of statistical power in discerning between the uniform erosion scenario ‘Euni’ and scenarios with a 
broad (A,B) or narrow  (D,E) gaussian peak of erosion, as a function of sample size and elevation of the gaussian peak. The 
color scale informs the statistical power as a function of the number of grains (x axis) and the elevation at which the gaussian 
peak is centered (y axis). The catchment hypsometry (C,F) and age-elevation-relationship used here are the same as the 
Inyo Creek data (Stock et al., 2006). (A) Gaussian erosional function with 1σ = 500 m and 2 times the peak prominence of 
the hypsometric histogram. (B) Gaussian erosional function with 1σ = 500 m and 5 times the peak prominence of the 
hypsometric histogram. (D) Gaussian erosional function with 1σ = 100 m and 2 times the peak prominence of the 
hypsometric histogram. (E) Gaussian erosional function with 1σ = 100 m 5 times the peak prominence of the hypsometric 
histogram.. (C,F)Example erosional functions for peaks centered at 2800 m elevation. The reader is referred to the text for 
more details. 
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in order to make an informed choice on the appropriate sample sizes and to identify possible scenarios that are unlikely to be 

detected with high confidence through detrital tracer thermochronology.  

 

7 Other sources of uncertainty 1120 

The approach presented here for predicting and interpreting grain-age distributions enables quantifying the confidence level 

in rejecting the uniform erosion hypothesis as well as the statistical power in discerning a prescribed erosion scenario from 

uniform erosion, through detrital tracer thermochronology. Confidence level and statical power are computed as a function of 

the samples size, the catchment properties and input erosion scenario. Nevertheless, even if the plausibility of a scenario is 

inferred to be high, our software, by design, does not suggest a unique solution and interpretations are also subject to additional 1125 

sources of uncertainty. These include: (1) complex bedrock age-elevation relationship (Malusà and Fitzgerald, 2020); and (2) 

spatial variability of sediment size resulting from either of transport distance (e.g. Lukens et al., 2020; Malusà and Garzanti, 

2019), geomorphic process (e.g. Riebe et al., 2015; van Dongen et al., 2019), lithological differences (von Eynatten et al., 

2012), or vegetation effects on weathering and erosion (Starke et al., 2020). Both factors should be taken into account as 

discussed here below. 1130 

 

In some cases, elevation alone cannot explain the entire variance of bedrock thermochronometric ages. For example, spatial 

variability of bedrock ages may reflect the proximity to tectonic structures or sub-catchment thermal events (e.g., magmatism, 

spatial changes in thermal gradients in proximity of major faults, etc). In such cases, an improved sampling of the spatial 

distribution of bedrock ages is needed, and may require more complex interpolation functions (e.g. Glotzbach et al., 2013). To 1135 

accommodate these complexities, ESD_thermotrace allows for 1D and 3D-linear interpolation as well as radial basis function 

interpolation. In all these cases, the interpolated age uncertainty is calculated through bootstrapping. In addition, users can opt 

to import an independently interpolated surface bedrock map such as from a thermokinematic model (e.g. Whipp and Ehlers, 

2019). For additional information on bedrock thermochronometric age mapping the reader is referred to the “README” file 

included with the software (Madella et al., 2021). Regardless of which method is used, users should be aware that depending 1140 

on the quality of the bedrock data, different interpolation methods may yield different predicted distributions. Accordingly, 

resulting interpolated surfaces should be carefully evaluated, and a preference should be motivated by field observations and/or 

independent constraints. Here, the map of interpolated age uncertainty can also inform the locations where additional bedrock 

sampling would help reduce the uncertainty. Lastly, we note that an increase in age uncertainty always determines a decrease 

in the statistical power of the analysis. 1145 

 

Other possible sources of bias concern the grain size of the analyzed samples. Several issues may modify the original 

fingerprint of river sand (Malusà and Garzanti, 2019), such as downstream grain abrasion and fracturing, hydraulic sorting and 

weathering on the hillslope associated with a grain (Attal and Lavé, 2009). For example, grains sourced the farthest from the 
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sampling spot may be underrepresented in the analyzed grain size fraction (Lukens et al., 2020), as has also been shown for 

the Inyo Creek catchment (Sklar et al., 2020). Furthermore, in addition to the mineral fertility inherent to the exposed bedrock, 

the grain size distribution of the material found on the hillslopes (i.e. the material ready for transport) should be taken into 

account. Depending on the lithology (von Eynatten et al., 2012; Roda-Boluda et al., 2018) and on the locally dominant 1195 

denudational process (van Dongen et al., 2019), different hillslopes of the same catchment may produce substantially different 

sediment size distributions (e.g. Riebe et al., 2015; Attal et al., 2015). Consequently, the mixed detrital sample may exhibit a 

bias in the relative abundance of the different age components. Both these issues can be mitigated through analysis of multiple 

grain size fractions (Lukens et al., 2020), multiple measures of hillslope sediment size distributions, composite analyses of 

trunk stream and tributary stream sediment samples, and analyses of thermochronometers from different minerals. 1200 

8 Conclusion 

This study reviewed previous approaches used to compare predicted and observed detrital grain-age distributions in the 

framework of tracer thermochronology. We have built upon these to develop a new tool (ESD_thermotrace) to investigate the 

upstream pattern of catchment erosion and the confidence level in uniquely inferring this as a function of sample size and 

study-site-specific variables. To demonstrate the utility of this approach, we presented an analysis of previously published data 1205 

from the Inyo Creek Catchment in California. The example highlighted the utility of measuring a large number of grains, and 

how multiple erosion scenarios are plausible for this catchment with the considered number of grains. The degree of statistical 

confidence permitted by this case study has also been quantified. We showed how the use of ESD_thermotrace can increase 

the statistical rigor of tracer thermochronology studies and how it can also assist investigators in budgeting analytical costs of 

a future project. In cases where the number of datable grains is limited by any reason, the confidence level of the results can 1210 

be quantified and the statistical power of the analysis can be estimated.  
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