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Abstract. Detrital tracer thermochronology utilizes the relationship between bedrock thermochronometric age-elevation 

profiles and a distribution of detrital grain-ages collected from river, glacial, or other sediment to study spatial variations in 

the distribution of catchment erosion. If bedrock ages increase linearly with elevation, spatially uniform erosion is expected to 

yield a detrital age distribution that mimics the shape of a catchment’s hypsometric curve. Alternatively, a mismatch between 

detrital and hypsometric distributions may indicate spatial variability of sediment production within the source area. For studies 10 

seeking to identify the pattern of sediment production, detrital samples rarely exceed 100 grains due to the time and costs 

related to individual measurements. With sample sizes of this order, detecting the dissimilarity between two detrital age 

distributions produced by different catchment erosion scenarios can be difficult at a high statistical confidence level. However, 

there are no established software tools to quantify the uncertainty inherent to detrital tracer thermochronology as a function of 

sample size and spatial pattern of sediment production. As a result, practitioners are often left wondering ‘how many grains is 15 

enough to detect a certain signal?’. Here, we investigate how sample size affects the uncertainty of detrital age distributions 

and how such uncertainty affects the ability to infer a pattern of sediment production of the upstream area. We do this using 

the Kolmogorov-Smirnov statistic as a metric of dissimilarity among distributions. From this, we perform statistical hypothesis 

testing by means of Monte Carlo sampling. These techniques are implemented in a new tool (ESD_thermotrace) to: (i) 

consistently report the confidence level allowed by the sample size, as a function of application-specific variables, and given 20 

a set of user-defined hypothetical erosion scenarios; (ii) analyse the statistical power to discern each scenario from the uniform 

erosion hypothesis; and (iii) identify the erosion scenario that is least dissimilar to the observed detrital sample (if available). 

ESD_thermotrace is made available as a new open-source Python-based script along with test data. Testing between different 

hypothesized erosion scenarios with this tool provides thermochronologists with the minimum sample size (i.e. number of 

bedrock and detrital grain-ages) required to answer their specific scientific question, at their desired level of statistical 25 

confidence. 

1 Introduction 

Tracer thermochronology uses the distribution of single-grain thermochronometric ages from detritus to infer the spatial pattern 

of erosion in the source area (e.g. Stock et al., 2006; Vermeesch, 2007). This approach is typically applied where bedrock 
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thermochronometric age data exhibit a clear age-elevation relationship, allowing inference of the relative contribution of source 30 

elevations from the detrital grain-age distribution. A detrital grain-age distribution that closely follows the catchment’s 

hypsometric curve (i.e., the cumulative distribution function of elevation area), is generally interpreted as indicative for 

spatially uniform erosion. Conversely, a detrital age distribution skewed towards younger (or older) ages may be the 

consequence of focused erosion at lower (or higher) elevations (Brewer et al., 2003). Tracer thermochronology has been shown 

to be a powerful tool to investigate the sub-catchment-scale variability of denudation. Geomorphologists have been able to 35 

infer changes in climatic parameters (Nibourel et al., 2015; Riebe et al., 2015), glacial erosional processes (Ehlers et al., 2015; 

Enkelmann and Ehlers, 2015; Clinger et al., 2020), sediment dynamics (Lang et al., 2018), relief evolution (McPhillips and 

Brandon, 2010; Whipp et al., 2009), occurrence of mass-wasting (Vermeesch, 2007; Whipp and Ehlers, 2019) and differences 

in rock uplift (McPhillips and Brandon, 2010; Glotzbach et al., 2013, 2018; Brewer et al., 2003; Ruhl and Hodges, 2005). 

Other work has noted that neglecting mineral fertility variations with catchment lithologies may challenge the conclusions of 40 

some of these studies (Malusà et al., 2016). Unfortunately, the number of measured detrital ages for tracer thermochronology 

is often dictated by inherent limitations of the sampled material and/or by available finances, rather than a science-based 

choice. Detrital sample sizes often range between 40-120 grains (e.g. Stock et al., 2006; Vermeesch, 2007; McPhillips and 

Brandon, 2010; Ehlers et al., 2015; Riebe et al., 2015; Glotzbach et al., 2018; Lang et al., 2018; Clinger et al., 2020), and are 

considered to yield high-confidence results when surpassing ~100 grains based on previous work on sediment provenance 45 

analysis (Vermeesch, 2004). However, in unfortunate cases, two measured distributions generated from different erosional 

patterns cannot be statistically discerned at a high confidence level even with more than 100 grains. Although this issue is 

well-known to the community (e.g. Avdeev et al., 2011) since the early days of such detrital studies (Brewer et al., 2003), there 

is no established tool to quantify the uncertainty inherent to detrital tracer thermochronology as a function of sample size and 

upstream pattern of sediment production. Moreover, the number of measured grains may often be based on convenience and/or 50 

habit.  

 

Here, we complement previous work by investigating how sample size affects the uncertainty of detrital cooling age 

distributions and the related confidence in addressing the pattern of sediment production in the upstream area. We discuss the 

approaches used in previous case studies, upon which we develop a tool (Earth System Dynamics - ESD_thermotrace) to 55 

consistently report confidence levels as a function of sample size and case-specific variables. We illustrate our approach using 

a published dataset from the Sierra Nevada Mountains, California (Stock et al., 2006). The proposed tool is made available as 

a new open-source Python-based script along with test data. We demonstrate how ESD_thermotrace can assist future tracer 

thermochronology studies in defining the necessary sample size to answer their specific scientific question. In cases where 

larger sample sizes are impossible to achieve, the statistical power of a tracer thermochronology analysis can be studied using 60 

our script. 
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2 Background information 

Single grain detrital age distributions are extensively applied in classical detrital geochronology studies (Hurford and Carter, 

1991), where U/Pb crystallization ages of zircon constitute by far the most used tool (Spiegel et al., 2004; Andersen, 2005; 

Malusà et al., 2013). In this type of application, the aim is to obtain the spectrum of all age components (i.e. age peaks) that 65 

characterize a siliciclastic sediment. If a range of assumptions hold (Malusà et al., 2013; Malusà and Fitzgerald, 2020), the 

provenance of a sediment sample’s source area can be inferred by matching the detrital age components to those of known 

upstream geological units and/or events. For that purpose, the number of measured detrital grains determines the confidence 

of detecting minor/small age components. An exhaustive probabilistic method to report such confidence exists (Vermeesch, 

2004) and is not the focus of this study. The absolute age components of the source area are in fact unimportant in detrital 70 
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Figure 1: Sketch of the difference between classical detrital geochronology (a) and tracer thermochronology (b). (a) Discrete 
age components are found in the detritus and refer to different upstream geological units. (b) A continuous detrital age 
distribution informs the relative abundance of material sourced from different elevations, based on a known age-elevation 
relationship. 
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tracer thermochronology (Avdeev et al., 2011), for which monolithologic 

catchments are best suited, in order to minimize mineral fertility issues in 

the source rock (Fig. 1). The focus here is the dissimilarity between the 

distribution of ages found in the source area and in the 

fluvial/glacial/hillslope sediment derived therefrom, regardless of their 75 

absolute age components. For this purpose, the uncertainty caused by a 

small sample size strongly limits the least significant dissimilarity that can 

be resolved between two distributions. This minimum resolution directly 

affects the power of our inferences.  

 80 

In the following we summarize the conceptual model concerning this 

matter and the approaches that have been used to address it thus far. Let 

us consider a monolithologic catchment and a set of detrital grain-ages 

measured at its outlet. The observed grain-age distribution should match 

a predicted distribution that is forward-modelled stacking the following 85 

layers of geologic information about the upstream area (Fig. 2): 

I. The catchment hypsometry, or the distribution of the 

catchment’s cumulative area as a function of elevation, 

which is derived from the digital elevation model (DEM) of 

the study area, and it has a negligible uncertainty. 90 

II. The bedrock age-elevation data. In the simplest case, a linear 

function based on a dataset of ages with associated 

uncertainty, measured at known elevations. 

III. The mineral fertility, which informs the original abundance 

of the target mineral in the different elevation ranges and is 95 

mostly a function of lithologic variability. This is a critical 

parameter that can lead to gross misinterpretations if ignored 

(Malusà et al., 2016). 

IV. Information on how the sediment-size distribution varies 

between the headwaters and the detritus. This is to make sure 100 

that grains in the detritus are representative of erosion in the 

catchment (e.g. Vermeesch, 2007; Riebe et al., 2015; Lukens 

et al., 2020). 
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Figure 2: Qualitative sketch to illustrate the effect of 
mineral fertility and erosion on the detrital 
distribution. (a) The catchment of Fig. 1b with 
known bedrock age (shades of green) is subject to 3 
scenarios of spatially varying fertility and erosion. 
The box outlines refer to the curves below. (b) 
Detrital distributions obtained from the different 
scenarios in above. The green curve refers to 
spatially uniform erosion and fertility. 
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V. A pattern of erosion across the catchment, which is the dependent variable of the system. This is any map of 

erosion probability, a scenario to be tested against uniform erosion (or other reference scenarios). 105 

Depending on the scope of the application, tracer thermochronology ultimately aims to quantify the mismatch between 

observed and predicted distributions, where the predicted distributions vary depending on assumed models for catchment 

erosion, sediment dynamics and tectonics. 

3 Comparing predicted and observed distributions 

Predicted distributions should be constructed accounting for all above information and related uncertainties, such that the 110 

confidence of the fit to the observed distribution also accounts for them. Brewer et al. (2003), and later Ruhl and Hodges 

(2005), were the first to compare the distribution of detrital thermochronometers to that of age-elevation data. Although the 

scope of their work differed from more recent tracer thermochronology, the evaluation of the dissimilarity between 

predicted/observed distributions remains the main object of their studies. These authors constructed synoptic probability 

density functions (SPDF) of the observed data by “stacking” the gaussian distributions of all measured grain-ages, each with 115 

their analytical error (this is equivalent to the SPDFt in Table 1 of Vermeesch (2007)). In addition to the observed distribution, 

a predicted SPDF was also constructed with the same method, where the predicted grain-ages are a random subsample of the 

hypsometric curve and are each given an arbitrary average uncertainty. Brewer et al. (2003) define the mismatch Pdiff between 

observed and predicted SPDF with equation (1): 

𝑃!"## =	
∑ |&!(()*&"(()|#$%
#$&

+
× 100,          (1) 120 

where (P1 and P2) are the probabilities of the two distributions calculated at each age step (t). Pdiff relates to the area comprised 

between two SPDF in the age-frequency space. Brewer et al. (2003) calculate the 95% confidence mismatch between observed 

and predicted SPDF through a Monte Carlo simulation. 

 

Vermeesch (2007) has shown that, for the purpose of comparison, observed and predicted distributions are best expressed as 125 

a cumulative age distribution (CAD) rather than SPDF. A CAD is a step-function with the sorted mean ages on the x axis and 

the related quantiles on the y axis (Vermeesch, 2007). This method is preferred because it avoids the possible sources of bias 

introduced by: (i) choice of the smoothing parameter in the kernel density estimations (KDE); (ii) binning in histograms; and 

(iii) uncertainty-based weighting in the SPDF curves (Vermeesch, 2012). To evaluate the goodness of fit between observed 

and predicted CADs, Vermeesch (2007) uses the Kolmogorov-Smirnov (KS) statistic, which informs the maximum distance 130 

dKS between two cumulative distribution functions as follows (Massey, 1951 and references therein): 

𝑑,- = 	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	-𝐶𝐴𝐷./01231!(𝑡) −	𝐶𝐴𝐷421!"5(1!(𝑡)-	.       (2) 

Given an observed CAD with k observations (i.e., ages), dKS is calculated for several n=k sub-samples of the predicted CAD. 

The 95th percentile of all sorted dKS (dKS_95) is used as the least significant dissimilarity to reject the null hypothesis that the 

observations are drawn from the predicted CAD. In other words, an observed CAD that plots entirely within the range 135 



 

6 
 

𝐶𝐴𝐷421!"5(1! ± 𝑑,-_78 (Fig. 3) cannot be discerned from the predicted age population at the 95% confidence level. As an 

alternative to this iterative method, the confidence region for a predicted CAD can be calculated with the analytical solution 

of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality as follows: 

𝑑,-_78 ≈ 	e	 = 	7
9:"'
+;

,           (3) 

where the DKW distance e approximates well the dKS_95 as a function of the confidence level	(1 − 𝛼) and the sample size k 140 

(Fig. 3) (Massart, 1990; Massey, 1951). 

Riebe et al. (2015) further developed the bootstrapping approach described above to age distributions (in SPDF form). Instead 

of basing their analysis on the KS statistic, the 95% confidence envelope of the prediction is iteratively estimated at each age 

step ti. For each ti, the distribution of 10,000 predicted age frequencies SPDFpredicted(ti) is used to draw 2.5th and 97.5th 

percentiles at each age step. Because the age steps ti relate to the elevation steps in the catchment through the bedrock 145 

thermochronometric data, those elevation steps exhibiting excess (>97.5th) or deficit (<2.5th) frequency are interpreted to 

produce sediment in excess or deficit with respect to the reference scenario of uniform erosion, at the 95% confidence level. 

 

The approaches summarized above are well-suited to test observed detrital age distributions against the null hypothesis of 

spatially uniform erosion. However, even if the uniform erosion hypothesis is rejected, such a test does not yield further 150 
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Figure 3: Example of metrics to compare two cumulative distributions drawn from different sample sizes. Here, an observed 
Cumulative Age Distribution (CAD) for n=k (orange stepwise dashed line) is compared to a predicted CAD drawn for n>>k 
(solid black line). The Kolmogorov-Smirnov statistic dKS equals the maximum absolute vertical distance between 
distributions in the observations-frequency space. The Kuiper statistic dKui equals the sum of both positive and negative 
maxima. For α=0.05 (i.e. 95% confidence) and n=k, a Dvoretzky-Kiefer-Wolfowitz confidence region can be calculated 
(gray shading). In this example, observed and predicted distributions are drawn from two statistically different populations 
at the 95% confidence level, because the orange curve exceeds the gray region. 
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information about the spatial variability of sediment production. One way to gain additional information would be to test the 

observed distribution against predicted age distributions from erosion scenarios other than spatially uniform, thereby 

quantifying the likelihood that the measured grain-ages could be produced by the tested scenarios. This approach would help 

practitioners in deciding the sampling strategy, calculating the appropriate number of measurements and the resources to be 

allocated for them. In the next paragraphs we introduce the new ESD_thermotrace software, an open-source tool built on the 155 

cited previous work to consistently perform the following: (i) determine the confidence level allowed by the detrital sample 

size in rejecting the uniform erosion hypothesis; (ii) analyze the statistical power of detecting the effect size caused by 

alternative erosion hypotheses, as a function of the number of grains; and (iii) test observed detrital distributions against all 

input erosion hypotheses (both uniform and alternative scenarios) and calculate the likelihood that the detrital sample may 

have been drawn from either of them. The software is introduced in the paragraphs below. 160 

4 ESD_thermotrace: A tool to study the uncertainty of tracer thermochronology datasets 

The software ESD_thermotrace (Madella et al., 2022) performs the steps briefly outlined here below. For additional details, 

the reader is referred to the illustrative case study farther below and the well-commented code itself 

(https://doi.org/10.5880/fidgeo.2021.003): 

1. Bedrock age map interpolation. 165 

o Input: bedrock age-elevation dataset and digital elevation model. 

o Output: Bedrock age map. 

o Method: users can choose among 1D linear regression, 3D linear interpolation, 3D radial basis function. 

Alternatively, an externally produced age map can be imported. 

2. Bedrock age uncertainty map interpolation. 170 

o Input: bedrock age-elevation dataset with uncertainties (point data) and bedrock age map (grid data). 

o Output: Bedrock age uncertainty map. 

o Method: The uncertainty of the age map is estimated through bootstrapping. An externally produced 

uncertainty map is required if the age map was imported. 

3. Extract catchment bedrock age, coordinates, mineral fertility and erosion data. 175 

o Input: catchment outline, bedrock age and age uncertainty maps, mineral fertility map, one or more erosion 

maps. 

o Output: a table of all the listed catchment properties necessary to predict detrital age distributions 

o Method: for each cell of the age map contained in the catchment outline, the local coordinates, age, fertility 

and erosional weight(s) are extracted. 180 

4. Predict detrital grain age distributions for each erosion scenario. 

o Input: table of catchment data. 

o Output: a predicted detrital age population for each erosion scenario and related cumulative age distribution. 
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o Method: An amount of ages proportional to erosional weight and fertility is drawn from each cell, for each 

scenario. The ages from all catchment cells collectively represent a predicted population, from which 185 

cumulative age distributions are constructed. 

5. Calculate (i) the likelihood of rejecting the uniform erosion hypothesis with the observed sample size, and (ii) the 

statistical power of discerning predicted erosion scenarios (i.e. alternative hypotheses) as a function of sample size. 

o Input: one or more sets of observed grain-ages and uncertainties, the predicted detrital populations and 

distributions. 190 

o Output: A graph displaying: (i) the confidence of rejecting uniform erosion with the observed sample size; 

and (ii) the statistical power curve of discerning the scenarios from uniform erosion varying sample size. 

o Method: first, the dks_95 for the available sample size k is calculated with Equation 3; then, the likelihood that 

the n=k observed CAD is more dissimilar than the dks_95 is calculated through bootstrapping. The same 

operation is also repeated for a range of sample sizes (20<k<130), in order to estimate the rise in confidence 195 

level caused by the increasing sample size (if the observed distribution and associated uncertainty remained 

identical despite the changing sample size). To calculate the statistical power of discerning the tested erosion 

hypotheses, the same approach is applied. In this case, however, the software draws a number of distributions 

from each erosion scenario, instead of the observed grain-ages. 

6. Given a set of observed detrital grain-ages and uncertainties, calculate the plausibility of each erosion scenario (i.e. 200 

the likelihood that alternative hypotheses cannot be rejected with high confidence). 

o Input: same as point 5). 

o Output: two plots to visualize how plausibly the observed grain-ages have been drawn from the predictions. 

o Method: in the first plot, dissimilarities calculated between predictions and observations are sorted and their 

distribution is plotted in the form of a violin plot. Second, a two-dimensional Multi-Dimensional Scaling 205 

(MDS) model is fitted to the dissimilarities among the predicted and observed distributions and plotted 

following Vermeesch (2013). 

All the above operations are embedded in an open-source Jupyter Notebook (jupyter.org), a software that allows integrating 

text, Python code, and visualizations within the same document for maximum editability and transparency. All plots are 

produced with Matplotlib (Hunter, 2007) and Seaborn (Waskom et al., 2020) Python libraries and are colored using the color 210 

blind-friendly and perceptually uniform ScientificColourMaps6 (Crameri et al., 2020). In the following paragraph, for 

illustrative purpose only, we show how the program helps analyzing an already published detrital AHe age dataset (Stock et 

al., 2006). 

5 Application of ESD_thermotrace to the Inyo Creek case study 

We apply ESD_thermotrace to the bedrock and detrital apatite (U-Th(-Sm)/He (AHe thereafter) age datasets of Stock et al. 215 

(2006). In that study, 9 bedrock AHe ages from the Inyo Creek and adjacent Lone Pine Creek catchments (eastern Sierra 
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Nevada, California, USA) are used to constrain the age-elevation relationship of the source area. The authors compared these 

bedrock data to the AHe age distribution of river sand samples from both catchment outlets. For the sake of simplicity, here 

we only consider the fine sand sample (k=52) from the Inyo Creek catchment. Based on their analysis Stock et al. (2006) 

inferred no significant variability of sediment production (erosion) across all elevations within the catchment. 220 
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Figure 4: Input bedrock data from Stock et al. (2006). (a) Raster images of the study area’s digital elevation model, 
resampled to the user-specific cell size, and (b) bedrock surface AHe age interpolated based on the linear regression of age-
elevation data. In both plots, point data inform bedrock sample locations and related AHe ages. Polygons show the location 
of the Inyo Creek catchment. 
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5.1 Data import and bedrock age interpolation 

The first few steps of ESD_thermotrace allow importing: (i) the digital elevation model of the study area; (ii) the polygon of 

the catchment of interest; (iii) a table of bedrock age, age uncertainties, and elevation data; (iv) the (optional) erosion scenarios 

to be tested; and (v) a (optional) fertility map. Next, the surface bedrock ages are calculated with the preferred method (see 

above and README file in Madella et al., 2022). The bedrock AHe ages of Stock et al. (2016), recalculated after Riebe et al. 225 

(2015), exhibit a ~60 My age increase from ca. 2 to 4.5 km of elevation range that is well-described by an inverse variance-

weighted linear regression (r2 = 0.93). The input data are plotted in Figure 4a. In Figure 4b, every cell is assigned an AHe age 

as a linear function of elevation (Fig. 5b), to map the bedrock cooling age on the topographic surface. The interpolation error 

is also mapped in Figure 5a, and it displays the 1σ uncertainty of the prediction from the linear regression (Fig. 5b).  

5.2 Extraction of catchment data 230 

Next, ESD_thermotrace extracts the x,y,z coordinates, the bedrock cooling age and the related error for all the cells bound by 

the catchment outline. These data are written in a table, to which a column informing erosional weights is added for each 

desired erosion scenario and for mineral fertility. In addition to the user-defined erosion maps, by default the software considers 

the uniform erosion scenario ‘Euni’ (spatially constant erosional weight). Two further example scenarios can be toggled to test 

for an exponential increase of erosion with elevation or an exponential decrease of erosion with elevation (not considered 235 

here). We note that any other spatial variation in erosion can be defined by a user such that ‘erosion maps’ for the catchment 
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Figure 5: The raster image (a) displays the bedrock age interpolation error mapped to the topographic surface of 
the study area. The inset (b) shows the inverse variance-weighed linear regression employed as age-elevation 
function, as well as the associated prediction interval with 1σ confidence level. 
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following stream power, slope dependent, glacial slide velocity, or other approaches from geomorphic transport laws can be 

input.  

For this case study, bulk geochemistry and point-counting analyses of Hirt (2007) indicate that apatite fertility does not 

significantly vary within the three lithologies found in the Inyo Creek catchment (Lone Pine granodiorite, Paradise 240 

granodiorite, Whitney granodiorites). For illustrative purpose, we test uniform erosion against two opposite step functions of 

elevation: a scenario with F-times higher erosion efficiency above the median catchment elevation and one with F-times higher 
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Figure 6: Kernel Density Estimation curves of all predicted detrital distributions as well as of the observed detrital sample 
(a). Cumulative form (b) of the same distributions, plus the 95% confidence envelope (DKW-bounds) of ‘Euni’ for n=k=52. 
Euni: uniform erosion; E<Zmed: tenfold erosion below median elevation; E>Zmed: tenfold erosion above median elevation. 
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erosion below the median elevation. The factor F equals twice the ratio between the most frequent and the least frequent 

elevation. For this calculation, the hypsometric histogram is constructed with a number of bins equal to the maximum 

difference in bedrock cooling ages, divided by the mean age uncertainty (rounded up to the next integer). Here, the Inyo Creek 245 

catchment is binned in 7 elevation ranges, of which the most frequent is 5-times the least frequent one, resulting in F = 10. In 

other words, we test for an increase in erosion twice as prominent as the hypsometric peak (10-fold), once below (‘E<Zmed’) 

and once above (‘E>Zmed’) the median catchment elevation.  

5.3 Prediction of age populations and detrital age distributions 

The erosional weights are used to forward model sediment production at each position in the catchment. To do so, an amount 250 

of grain-ages proportional to the erosional weight and to the local mineral fertility are randomly chosen for each cell. These 

grain-ages are randomly drawn from a normal distribution constructed using the local interpolated bedrock age and the related 

uncertainties. The randomly picked grain-ages of all cells are stored in one suite of grain-ages, which represents the predicted 

detrital grain-age population of a well-mixed fluvial sediment at the catchment outlet. Such a detrital population is predicted 

for each erosion scenario, and related predicted CADs are constructed by sorting the age populations and plotted as a step 255 

function (Fig. 6b). For the sake of quick visual comparisons, ESD_thermotrace plots a kernel density estimation with arbitrary 

smoothing (Fig. 6a). However, the dissimilarity among distributions will be evaluated exclusively based on the cumulative 

form, in order to minimize bias (Vermeesch, 2007). In Figure 6b, all predicted and observed cumulative age distributions are 

plotted. For a first order impression of the uncertainty due to sample size, the 95% confidence envelope of the reference 

scenario is also calculated with Eq.3 and plotted in the background. Here, the user can specify for which reference scenario 260 

(“Euni” as default) the confidence envelope should be plotted. 

5.4 Confidence level and statistical power as a function of sample size 

After predicting the distributions, to answer the question “how many grain-ages are necessary to discern a hypothetical erosion 

pattern from uniform erosion?” the software analyzes the statistical confidence and the statistical power as a function of sample 

size. The confidence informs the likelihood of rejecting a null hypothesis H0 (the uniform erosion scenario) based on the 265 

observations (the dated grains). The statistical power informs the likelihood that, if an alternative hypothesis H1 was true (one 

of the tested erosion scenarios), H0 would be rejected based on a sample drawn from H1. Here, the software calculates: (i) the 

maximum confidence in rejecting the uniform erosion hypothesis allowed by the observed sample size; and (ii) the statistical 

power of discerning the scenarios from uniform erosion as a function of sample size. Let us consider the observed CAD 

constructed with the sorted mean grain-ages. The mean standard deviation of the observed grain-ages is used to generate 270 

10’000 Monte Carlo samples of this observed CAD, which account for age dispersion due to analytical error and/or 

reproducibility. Then the confidence in rejecting uniform erosion equals the fraction of sampled CADs that is more dissimilar 

to ‘Euni’ than the least significant dissimilarity (dKS_95) allowed by the sample size k (see Eq.3). The so-calculated statistical 

confidence can be read in the scatterplot of Figure 7 (light blue circle), and it equals 55% for the Stock et al. (2006) data. 
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Figure 7 also shows that the 95% level of significance could be achieved with more than 128 grain-ages. Here, we clarify that 275 

the latter estimate assumes that the observed distribution would not change in shape while varying the sample size, and as such 

it can only be treated as an indicative number. 

 

If the confidence allowed by the actual sample size is lower than the previously chosen level of significance, the analysis of 

statistical power can help identifying how likely the available number of grain-ages could detect a known effect size (i.e. the 280 

dissimilarity caused by a known erosion scenario). This analysis of statistical power is based on the iterative comparison 

between the reference scenario and all other erosion scenario predictions. This is achieved through random subsampling of the 

predicted distributions for a range of possible sample sizes (20≤n≤130 in this case). For each ni, the least significant 

dissimilarity dKS_95(ni)* of the reference scenario is calculated for α=0.05 and n=ni using Equation 3. In the observations-
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Figure 7: Confidence level at which the observed CAD (n=52) can be discerned from the uniform erosion prediction (cyan 
circle). The dashed cyan line shows how the allowed confidence level would vary, if the same observed CAD relied on 20-
130 grain-ages. Statistical power of discerning the tested erosion scenarios from ‘Euni’ as function of sample size (solid 
lines). In this case study, the observed CAD of the Inyo Creek detrital sample allows rejecting the uniform erosion 
hypothesis with 55% confidence at best. An analysis to detect the scenarios ‘E<Zmed’ and ‘E>Zmed’ would have a 
statistical power greater than 95% in rejecting ‘Euni’ with more than 37 grain-ages. Euni: uniform erosion; E<Zmed: 
tenfold erosion below median elevation; E>Zmed: tenfold erosion above median elevation. 
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cumulative frequency space (Fig. 6b), dKS_95(ni)* represents the vertical distance that any n=ni distribution needs to exceed to 285 

be discerned from a n=ni subsample of the reference scenario, with 95% confidence (purple shading in Fig. 6b). Next, 1,000 

dKS_95(ni) are calculated between n=ni subsamples of each erosion scenario and the reference scenario. The probability of 

dKS_95(ni) exceeding dKS_95(ni)* for each ni can be read from the curves in Figure 7. For the Inyo Creek case study (Stock et al., 

2006) both tested erosion scenarios (‘E<Zmed’, ‘E>Zmed’) yield predicted CADs that are very dissimilar from uniform 

erosion. Consequently, the statistical power to discern these alternative erosion hypotheses would exceed 95% even with only 290 

40 grains. 

 

Figure 7 shows the use of ESD_thermotrace as a tool to explore the feasibility of a tracer thermochronology study. Based on 

their research question, users can apply a few possible erosion maps and test the likelihood with which the respective detrital 

distributions could be discerned from uniform erosion through detrital tracer thermochronology, as a function of sample size. 295 

Such analysis of feasibility is not only beneficial in terms of better quantifying uncertainties, but it can also assist investigators 

in defining the budget for measurements at an early stage of proposal writing. Alternatively, in cases where the number of 

datable grains is limited by material properties, budget, or other logistic reasons, Figure 7 informs the maximum confidence 

level of the results. 

5.5 Evaluating the plausibility of test scenarios. 300 

The final steps of ESD_thermotrace assist users in finding the erosion scenario that is most likely to generate a predicted CAD 

that resembles the observed CAD. For each erosion scenario, dKS and dKui (Fig. 3) are calculated between 10,000 n=k 

subsamples of the respective predicted CAD and the observed CAD. The distribution of these dKS and dKui values is shown in 

the form of a split violin plot in Figure 8a and it is to be compared to the range of values shown by the violin in Figure 8b. The 

latter shows the distribution of dKS and dKui calculated between random subsamples of the observed CAD that account for the 305 

mean analytical error and the observed CAD itself (constructed only with the mean ages). In other words, Fig. 8b displays how 

the dispersion of a predicted CAD (accounting for analytical error and sample size) is distributed. The “plausibility” of each 

scenario is plotted beneath each violin and it equals the probability that the values plotted in Figure 8a fall within the one-sided 

lower 95th percentile of those shown in Figure 8b. For the sake of clarity, we note that the term “plausibility” used here is 

equivalent to the false negative rate (β) in statistical jargon. Accordingly, there is 51.6% probability that the observed CAD 310 

could be drawn from the uniform erosion scenario, and 13.7% and 0.0% probability that scenarios ‘E<Zmed’ and ‘E>Zmed’ 

generate predicted CADs that fall within the spread of the observed CAD, respectively.  

 

Lastly, as suggested by Vermeesch (2013), the ESD_thermotrace program applies a two-component Multi-Dimensional 

Scaling model (MDS) to all predicted and observed distributions. This algorithm fits a 2-dimensional coordinate system to the 315 

measured dissimilarities dKS among all considered distributions (both predicted and observed). In a well-fitted MDS model, 

distances among points in the modelled 2D-space are a good approximation of the actual dissimilarities among the input 
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elements (Fig. 9a). To reach a satisfactory fit, modelled dissimilarities are plotted against input dissimilarities (Fig. 9b) and 

the sum of all distances to the 1:1 line is minimized (a procedure commonly referred to as stress minimization). The MDS plot 

renders an immediate visualization of the dissimilarity among distributions, where more similar distributions plot closer to 320 

each other. Moreover, with the addition of the 68% and 95% confidence ellipses, the degree of overlap among distributions is 

also easily visually assessed (Fig. 9a). 

 

The application of the ESD_thermotrace software to Stock et al.’s (2006) Inyo Creek data shows the following: 

- A sample size of 52 grain-ages allows a maximum confidence level of ~55% in rejecting the uniform erosion 325 

hypothesis ‘Euni’ (cyan circle in Fig. 7). If the observed CAD had been drawn from ~130 grain-ages, this confidence 

level would exceed 95% (dashed cyan curve in Fig. 7). 

- 52 grain-ages would suffice to detect the effect size caused by ‘E<Zmed’ and ‘E>Zmed’ (green and brown curves in 

Fig. 7). However, the observed detrital sample is extremely unlikely to have been drawn from either of these scenarios. 
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Figure 8: Violin plot showing the KS (and Kuiper) statistics between the predicted CAD of each erosion scenario and 
observed CAD, calculated for 1000 n=k=52 subsamples (a). KS (and Kuiper) statistics between the observed CAD and 1000 
random n=k=52 distributions, drawn from the same detrital age population but including uncertainty (b). Every violin is 
split in two halves with equal area, each representing the probability distribution function of 10,000 KS (or Kuiper) 
statistics. The widest point of each semi-violin informs the median KS (or Kuiper) statistic; The closer to zero, the more 
similar is a scenario to the observed detrital age distribution. The most unlikely scenario is ‘E>Zmed’. Both other scenarios 
are plausible, because their dissimilarity to the observed CAD largely overlaps the range of dissimilarity due to analytical 
error of the detrital ages. 
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- Among the tested scenarios, the uniform erosion hypothesis ‘Euni’ is the least dissimilar (51.6% likelihood) (Fig.8 330 

and Fig.9). 

Here, while we have shown the functioning of ESD_thermotrace using the Inyo Creek data from Stock et al. (2006), we refrain 

from proposing a revised interpretation of the catchment’s erosion dynamics. We do note that, in addition to the data from 

Stock et al. (2006), Riebe et al. (2015) have accounted for 10Be-derived denudation rates and 73 additional AHe ages from 

coarse sand-sized sediment. These authors have shown that erosion in the Inyo Creek catchment is best explained by an 335 

exponential increase of sediment production with elevation. Thereby, they demonstrate that understanding the pattern of 

erosion in this catchment requires taking multiple sediment sizes into account (Riebe et al., 2015; Lukens et al., 2020; Sklar et 

al., 2020; see also discussion below). 

6 How many grains do we need for tracer thermochronology? 

The analysis with ESD_thermotrace shows that the appropriate sample size for a tracer thermochronology study cannot be 340 

determined a-priori without knowing: (i) the case-specific scientific question (i.e. the spatial pattern of erosion to be tested); 

(ii) the source area hypsometry; (iii) the desired minimum confidence level; and (iv) the surface bedrock ages and uncertainties. 

On this note, if possible, it is advisable to explore the feasibility of a study with the already available bedrock ages before 
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Figure 9: Multi-Dimensional Scaling (MDS) plot. The 2-components MDS model fits a coordinate system to the measured 
dissimilarities (i.e. KS statistics) among all distributions. If the MDS model has a good fit, distances calculated in the new 
2D-space (a) are a good approximation of the input dissimilarities among the elements. The goodness of fit is shown in (b), 
where modelled dissimilarities are plotted against input dissimilarities. For each distribution in (A) 68% and 95% 
confidence ellipses are also plotted. 
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sampling. In absence of available published ages, bedrock samples are best processed first to avoid wasting resources on 

potentially inconclusive analyses of detrital grains. To better illustrate the importance of the initial knowledge of the 345 

catchment’s geology, we conducted a set of simulations with the same inputs as the Inyo Creek case study (Stock et al., 2006). 

In these simulations we vary the location (in terms of elevation range) of maximal erosion and observe the impact on the 

statistical power in detecting the imposed pattern. A broad and a narrow gaussian curve of erosion (1s = 500 m and 100 m, 

respectively) are applied to the catchment’s range of elevations, shifting the position of the peak in 100-m-steps at each 

simulation. We test two sets of gaussian functions of elevation (2x and 5x), computed in such a way that the prominence of 350 

peak erosion equals two and five times the prominence of the catchment’s hypsometric peak, respectively. Therefore, because 

the most frequent elevation range is ca. five times the least frequent bin (Fig. 10c,f), the “2x” and “5x” curves define an erosion 

efficiency where peak sediment production is ten times and twentyfive times higher than the minimum in the catchment, 

respectively. Results from this parameter study, example erosional functions, and the hypsometric histogram are illustrated in 

Figure 10. 355 

 

Figure 10 shows how the statistical power in detecting these gaussian-peak-scenarios is affected by: (i) the elevation of the 

erosional peak; (ii) its amplitude; (iii) its width; and (iv) the detrital sample size. An increase in sample size and/or an increase 

in amplitude of the erosional peak always correspond to higher statistical power. The elevation of the erosional peak affects 

the statistical power depending on the position of the erosional peak relative to the peak of hypsometry (Fig. 10). In the case 360 

of a broad gaussian function of erosion (1s = 500 m), minima (blue areas) are observed where the erosional peak is located at 

elevations straddling 2,800 m (Fig. 10a,b). These minima in statistical power at ~2,800 m coincide with the broad frequency 

peak of catchment elevations (Fig. 10c). In this elevation range, the diffused increase in erosion efficiency does accentuate the 

peak of the hypsometric curve, but it results in a limited effect size (i.e. a small dKS dissimilarity to “Euni”). With this 

configuration, all erosion scenarios peaking within ca. 2,700-2,900 m produce detrital distributions whose effect size is 365 

detected in only <60% of the simulations, regardless of sample size and peak amplitude. This implies that certain combinations 

of erosional pattern and distribution of bedrock ages are poorly suited to be investigated by means of tracer thermochronology. 

 

In the case of a narrow gaussian function of erosion (1s = 100 m) (Fig. 10d,e,f), minima of statistical power are additionally 

found at peak elevations higher than 3,600 m and lower than 2,200 m (Fig. 10d,e). These occur because peak erosion is applied 370 

to a narrow elevation range that is not frequent enough to produce a statistically relevant number of grains. However, in the 

case of narrow erosional peaks, an increase in sample size substantially increases the statistical power to detect erosion 

scenarios, even if centered at the critical elevation of ca. 2,700-2,900 m described just above (Fig. 10d,e). This parameter study 

demonstrates the importance of analyzing the catchment hypsometry and testing erosion scenarios even before collecting data, 

in order to make an informed choice on the appropriate sample sizes and to identify possible scenarios that are unlikely to be 375 

detected with high confidence through detrital tracer thermochronology.  
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7 Other sources of uncertainty 

The approach presented here for predicting and interpreting grain-age distributions enables quantifying the confidence level 

in rejecting the uniform erosion hypothesis as well as the statistical power in discerning a prescribed erosion scenario from 380 
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Figure 10: Analysis of statistical power in discerning between the uniform erosion scenario ‘Euni’ and scenarios with a 
broad (a,b) or narrow  (d,e) gaussian peak of erosion, as a function of sample size and elevation of the gaussian peak. The 
color scale informs the statistical power as a function of the number of grains (x axis) and the elevation at which the gaussian 
peak is centered (y axis). The catchment hypsometry (c,f) and age-elevation-relationship used here are the same as the Inyo 
Creek data (Stock et al., 2006). (a) Gaussian erosional function with 1σ = 500 m and two times the peak prominence of the 
hypsometric histogram. (b) Gaussian erosional function with 1σ = 500 m and five times the peak prominence of the 
hypsometric histogram. (d) Gaussian erosional function with 1σ = 100 m and two times the peak prominence of the 
hypsometric histogram. (e) Gaussian erosional function with 1σ = 100 m five times the peak prominence of the hypsometric 
histogram. (c,f) Example erosional functions for peaks centered at 2800 m elevation. The reader is referred to the text for 
more details. 
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uniform erosion, through detrital tracer thermochronology. Confidence level and statistical power are computed as a function 

of the sample size, the catchment properties and input erosion scenario. Nevertheless, even if the plausibility of a scenario is 

inferred to be high, our software, by design, does not suggest a unique solution and interpretations are also subject to additional 

sources of uncertainty. These include: (1) complex bedrock age-elevation relationship (Malusà and Fitzgerald, 2020); and (2) 

spatial variability of sediment size resulting from either of transport distance (e.g. Lukens et al., 2020; Malusà and Garzanti, 385 

2019), geomorphic process (e.g. Riebe et al., 2015; van Dongen et al., 2019), lithological differences (von Eynatten et al., 

2012), or vegetation effects on weathering and erosion (Starke et al., 2020). Both factors should be considered as discussed 

here below. 

 

In some cases, elevation alone cannot explain the entire variance of bedrock thermochronometric ages. For example, spatial 390 

variability of bedrock ages may reflect the proximity to tectonic structures or sub-catchment thermal events (e.g., magmatism, 

spatial changes in thermal gradients in proximity of major faults, etc). In such cases, an improved sampling of the spatial 

distribution of bedrock ages is needed, and may require more complex interpolation functions (e.g. Glotzbach et al., 2013). To 

accommodate these complexities, ESD_thermotrace allows for 1D and 3D-linear interpolation as well as radial basis function 

interpolation. In all these cases, the interpolated age uncertainty is calculated through bootstrapping. In addition, users can opt 395 

to import an independently interpolated surface bedrock map such as from a thermokinematic model (e.g. Whipp and Ehlers, 

2019). For additional information on bedrock thermochronometric age mapping the reader is referred to the “README” file 

included with the software (Madella et al., 2022). Regardless of which method is used, users should be aware that depending 

on the quality of the bedrock data, different interpolation methods may yield different predicted distributions. Accordingly, 

resulting interpolated surfaces should be carefully evaluated, and a preference should be motivated by field observations and/or 400 

independent constraints. Here, the map of interpolated age uncertainty can also inform the locations where additional bedrock 

sampling would help reduce the uncertainty. Lastly, we note that an increase in age uncertainty always determines a decrease 

in the statistical power of the analysis. 

 

Other possible sources of bias concern the grain size of the analyzed samples. Several issues may modify the original 405 

fingerprint of river sand (Malusà and Garzanti, 2019), such as downstream grain abrasion and fracturing, hydraulic sorting and 

weathering on the hillslope associated with a grain (Attal and Lavé, 2009). For example, grains sourced the farthest from the 

sampling spot may be underrepresented in the analyzed grain size fraction (Lukens et al., 2020), as has also been shown for 

the Inyo Creek catchment (Sklar et al., 2020). Furthermore, in addition to the mineral fertility inherent to the exposed bedrock, 

the grain size distribution of the material found on the hillslopes (i.e. the material ready for transport) should be taken into 410 

account. Depending on the lithology (von Eynatten et al., 2012; Roda-Boluda et al., 2018) and on the locally dominant 

denudational process (van Dongen et al., 2019), different hillslopes of the same catchment may produce substantially different 

sediment size distributions (e.g. Riebe et al., 2015; Attal et al., 2015). Consequently, the mixed detrital sample may exhibit a 

bias in the relative abundance of the different age components. Both these issues can be mitigated through analysis of multiple 
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grain size fractions (Lukens et al., 2020), multiple measures of hillslope sediment size distributions, composite analyses of 415 

trunk stream and tributary stream sediment samples, and analyses of thermochronometers from different minerals. 

8 Conclusion 

This study reviewed previous approaches used to compare predicted and observed detrital grain-age distributions in the 

framework of tracer thermochronology. We have built upon these to develop a new tool (ESD_thermotrace) to investigate the 

upstream pattern of catchment erosion and the confidence level in uniquely inferring this as a function of sample size and 420 

study-site-specific variables. To demonstrate the utility of this approach, we presented an analysis of previously published data 

from the Inyo Creek Catchment in California. The example highlighted the utility of measuring a large number of grains, and 

how multiple erosion scenarios are plausible for this catchment with the considered number of grains. The degree of statistical 

confidence permitted by this case study has also been quantified. We showed how the use of ESD_thermotrace can increase 

the statistical rigor of tracer thermochronology studies and how it can also assist investigators in budgeting analytical costs of 425 

a future project. In cases where the number of datable grains is limited, the confidence level of the results can be quantified, 

and the statistical power of the analysis can be estimated.  
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Sketch of the difference between classical detrital geochronology (a) and tracer thermochronology (b). (a) Discrete age 

components are found in the detritus and refer to different upstream geological units. (b) A continuous detrital age distribution 

informs the relative abundance of material sourced from different elevations, based on a known age-elevation relationship. 545 

 

Figure 2 

Qualitative sketch to illustrate the effect of mineral fertility and erosion on the detrital distribution. (a) The catchment of Fig. 

1b with known bedrock age (shades of green) is subject to 3 scenarios of spatially varying fertility and erosion. The box 

outlines refer to the curves below. (b) Detrital distributions obtained from the different scenarios in above. The green curve 550 

refers to spatially uniform erosion and fertility. 

 

Figure 3 

Example of metrics to compare two cumulative distributions drawn from different sample sizes. Here, an observed Cumulative 

Age Distribution (CAD) for n=k (orange stepwise dashed line) is compared to a predicted CAD drawn for n>>k (solid black 555 

line). The Kolmogorov-Smirnov statistic dKS equals the maximum absolute vertical distance between distributions in the 

observations-frequency space. The Kuiper statistic dKui equals the sum of both positive and negative maxima. For α=0.05 (i.e. 

95% confidence) and n=k, a Dvoretzky-Kiefer-Wolfowitz confidence region can be calculated (gray shading). In this example, 

observed and predicted distributions are drawn from two statistically different populations at the 95% confidence level, because 

the orange curve exceeds the gray region. 560 

 

Figure 4  

Input bedrock data from Stock et al. (2006). (a) Raster images of the study area’s digital elevation model, resampled to the 

user-specific cell size, and (b) bedrock surface AHe age interpolated based on the linear regression of age-elevation data. In 

both plots, point data inform bedrock sample locations and related AHe ages. Polygons show the location of the Inyo Creek 565 

catchment. 

 

Figure 5 

The raster image (a) displays the bedrock age interpolation error mapped to the topographic surface of the study area. The inset 

(b) shows the inverse variance-weighed linear regression employed as age-elevation function, as well as the associated 570 

prediction interval with 1σ confidence level. 

 

Figure 6 

Kernel Density Estimation curves of all predicted detrital distributions as well as of the observed detrital sample (a). 

Cumulative form (b) of the same distributions, plus the 95% confidence envelope (DKW-bounds) of ‘Euni’ for n=k=52. Euni: 575 

uniform erosion; E<Zmed: tenfold erosion below median elevation; E>Zmed: tenfold erosion above median elevation. 
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Figure 7 

Confidence level at which the observed CAD (n=52) can be discerned from the uniform erosion prediction (cyan circle). The 

dashed cyan line shows how the allowed confidence level would vary, if the same observed CAD relied on 20-130 grain-ages. 580 

Statistical power of discerning the tested erosion scenarios from ‘Euni’ as function of sample size (solid lines). In this case 

study, the observed CAD of the Inyo Creek detrital sample allows rejecting the uniform erosion hypothesis with 55% 

confidence at best. An analysis to detect the scenarios ‘E<Zmed’ and ‘E>Zmed’ would have a statistical power greater than 

95% in rejecting ‘Euni’ with more than 37 grain-ages. Euni: uniform erosion; E<Zmed: tenfold erosion below median 

elevation; E>Zmed: tenfold erosion above median elevation. 585 

 

Figure 8 

Violin plot showing the KS (and Kuiper) statistics between the predicted CAD of each erosion scenario and observed CAD, 

calculated for 1000 n=k=52 subsamples (a). KS (and Kuiper) statistics between the observed CAD and 1000 random n=k=52 

distributions, drawn from the same detrital age population but including uncertainty (b). Every violin is split in two halves 590 

with equal area, each representing the probability distribution function of 10,000 KS (or Kuiper) statistics. The widest point 

of each semi-violin informs the median KS (or Kuiper) statistic; The closer to zero, the more similar is a scenario to the 

observed detrital age distribution. The most unlikely scenario is ‘E>Zmed’. Both other scenarios are plausible, because their 

dissimilarity to the observed CAD largely overlaps the range of dissimilarity due to analytical error of the detrital ages. 

 595 

Figure 9 

Multi-Dimensional Scaling (MDS) plot. The 2-components MDS model fits a coordinate system to the measured dissimilarities 

(i.e. KS statistics) among all distributions. If the MDS model has a good fit, distances calculated in the new 2D-space (a) are 

a good approximation of the input dissimilarities among the elements. The goodness of fit is shown in (b), where modelled 

dissimilarities are plotted against input dissimilarities. For each distribution in (A) 68% and 95% confidence ellipses are also 600 

plotted. 

 

Figure 10 

Analysis of statistical power in discerning between the uniform erosion scenario ‘Euni’ and scenarios with a broad (a,b) or 

narrow  (d,e) gaussian peak of erosion, as a function of sample size and elevation of the gaussian peak. The color scale informs 605 

the statistical power as a function of the number of grains (x axis) and the elevation at which the gaussian peak is centered (y 

axis). The catchment hypsometry (c,f) and age-elevation-relationship used here are the same as the Inyo Creek data (Stock et 

al., 2006). (a) Gaussian erosional function with 1σ = 500 m and two times the peak prominence of the hypsometric histogram. 

(b) Gaussian erosional function with 1σ = 500 m and five times the peak prominence of the hypsometric histogram. (d) 

Gaussian erosional function with 1σ = 100 m and two times the peak prominence of the hypsometric histogram. (e) Gaussian 610 



 

26 
 

erosional function with 1σ = 100 m five times the peak prominence of the hypsometric histogram. (c,f) Example erosional 

functions for peaks centered at 2800 m elevation. The reader is referred to the text for more details. 


