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Abstract. To enable the separation between pre– and post–depositional components of the length distribution of (partially 

annealed) horizontal confined fission tracks it is corrected by deconvolution. Probabilistic least–squares inversion corrects 

natural track length histograms for observational biases considering the variance of data, modelization, and prior information. 10 

The corrected histogram is validated by its variance–covariance matrix. It is considered that horizontal track data can be with 

or without measurements of angles to the c–axis. In the last case, 3D–histograms are introduced as an alternative to histograms 

of c–axis projected track lengths. Thermal history modeling of samples is not necessary for the calculation of track age 

distributions of corrected tracks. In an example the age equations are applied to apatites with pre–depositional (inherited) 

tracks, to extract the post–depositional track length histogram. Fission tracks generated before deposition in detrital apatite 15 

crystals are mixed with post–depositional tracks. This complicates the calculation of the post–sedimentary thermal history as 

the grains have experienced different thermal histories until deposition. Thereafter the grains share a common thermal history. 

Therefore, the extracted post–depositional histogram without inherited tracks may be used for thermal history calculation.  

1 Overview of the formation of fission tracks 

Fission of U–238 in apatite, titanite, and zircon create tracks in the crystal lattice. Track density is reduced as a function of 20 

temperature and time as tracks anneal and shorten due to atom diffusivity (Li et al., 2011; Fleisher et al., 1975; Afra et al., 

2011). The ongoing track generation through time and simultaneous annealing is used to derive the thermal history of the 

sample. Bertagnolli et al. (1983) derived the differential equation describing the track length distribution within a mineral due 

to annealing through time. The surface density of tracks is also described. Forward calculation examples are given by 

Bertagnolli et al. (1983). On this basis, Keil et al. (1987) developed an inversion procedure, where the temperature history is 25 

derived from either the length distribution of tracks within the crystal or from the length distribution of projected tracks 

intersecting the surface. The calculation procedure is direct and without the use of a Monte Carlo type optimization. The time 

of track generation can be derived from the observed track length distribution independent of any annealing model (Keil et al., 

1987): 
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where 𝜆0 is the present track normalized length, 𝜀 is the fission–track production rate,  𝑛(𝜆) is the measured number of fission 

tracks of length 𝜆 produced per volume. Equation (1) is understood as follows: The annealing properties of the mineral affect 

the final apparent age as well as the expected age of the oldest randomly oriented unetched track. However, the expected age 

of this track can be determined by counting the number of all tracks in a volume and divide by the track generation rate. In the 

simplified case of no spread of track lengths, the expected age of any given track is calculated by counting the number of 35 

shorter tracks plus one. This age is determined without the use of an annealing model. The unetched tracks are not routinely 

measured. Etched confined horizontal tracks are measured instead. This manuscript explains how they can be used together 

with the surface track density to separate pre– and post–depositional components. 

 

The temperature history is derived from the distribution of projected tracks together with an annealing model. Keil et al. (1987) 40 

showed, by a synthetic example for projected tracks, that the thermal history can be calculated numerically stepwise backward 

in time starting with the present temperature. The large uncertainties of projection of tracks mean that the approach by Keil et 

al. (1987) is dubious. The selection of horizontal, confined tracks is recommended instead (Laslett et al., 1984), that is “tracks 

identified by the constancy of focus over their entire length and strong reflection in incident illumination” (Gleadow et al., 

1986b; Gleadow et al., 2019). The model by Keil et al. (1987) does not include blurring of track length histograms caused by 45 

the initial distribution of fission fragment energy (Jungerman and Wright, 1949), annealing and etching anisotropy, mineral 

composition, the uncertainty of measurement (Ketcham, 2003), and track selection biases (Jensen et al., 1992). Proportionality 

of the number of tracks in a track length histogram column and time assumed by Keil et al. (1987) is disturbed by the blurring. 

Jensen et al. (1992; 1993) extended Eq. (1) to confined horizontal tracks instead of projected tracks.  Donelick (1988) 

introduced a fission–track inversion procedure based on principles like that of Jensen et al. (1992) and the present paper. 50 

 

Three major biases appear to be important when deriving the equation for track age: 1) Surface track density bias reflecting 

the likelihood of a track to be exposed to etching on the surface. We use an exponential approximation to surface track density 

versus mean track length for induced tracks annealed in the laboratory (Green, 1988). 2) Track length bias due to the likelihood 

of a track being exposed to etching through fractures and tracks cutting the etched surface. We assume it to be proportional to 55 

the track length. 3) Selection bias due to the likelihood of an etched track being accepted as horizontal. We assume that tracks 

within a given angle from the horizontal are counted. The alternative that all tracks in focus are accepted is discussed in 

Appendix D. Besides biases, there is a range of effects contributing to large observational deviations of track lengths as has 

been documented in interlaboratory comparisons (Ketcham et al., 2009). The effects are caused by a) fluid filling track tips, 

b) poorly chosen track tips, c) analyst inexperience. Variation of the number of tracks in a given length interval is dependent 60 

on the spontaneous character of fission. The disordering of the unique relationship between track length and time caused by 

various biases and variances is essentially restored by deconvolution of natural track length histograms (Jensen et al., 1992). 

Deconvolution is performed by mathematically simulated annealing (Kirkpatrick et al., 1983) and with the use of filters based 

on annealing of induced tracks in the laboratory. Jensen et al. (1992; 1993) and Jensen and Hansen (2018) used that the 



3 

 

corrected track ages can be derived separately from the thermal history as shown by Keil et al. (1987). The columns of the 65 

deconvolved track length histogram are then converted to equivalent time intervals. The track ages are obtained by backward 

cumulation from long tracks toward short tracks. We are not assigning an age to the bins of observed fission–track length 

histograms. Ages are assigned to the bins of the deconvolved (corrected) track length histograms which can then be used to 

age date thermal events. The procedure of deconvolution described in Jensen et al. (1992) is for measurements where the c–

axis angle is not measured. When they are available it is the practice to project the tracks on the crystal c–axis following the 70 

procedure described by Donelick et al. (1999). As an alternative, the inversion method presented here uses 3D–histograms. 

Age–length relations for corrected tracks are given explicitly in contrast to the indirectly embedded relations in the computer 

programs by Green et al. (1989), Lutz and Omar (1991), Ketcham (2005), and Gallagher (2012). Our age calculations are 

performed without sample temperature history modeling. The inversion procedure presented here is based on least–squares 

probabilistic inverse theory (Tarantola, 2005). The method is computationally fast. 75 

2 Summary of age and temperature calculation 

Before entering the mathematics of age calculation, a recipe for age dating of an uplift event is given including temperature 

calculation. First, an idealized model is considered with tracks generated continuously (not spontaneously), no length spreading 

during annealing, no etching, and no errors of measurements:  

1. Construct a track length density histogram (numbers/volume) of the randomly oriented unetched tracks.  80 

2. Convert the track length histogram into a histogram of time intervals by dividing the number of tracks in each column 

by the rate of track generation. Each column of this histogram represents the time it takes to generate the tracks 

belonging to the column. 

3. Cumulate the time intervals from the youngest (longest tracks) to the oldest (shortest tracks) to obtain a histogram of 

track ages.  85 

4. If the uplift is sufficiently pronounced a statistically significant break is visible in the age histogram. The event is 

hereby age–dated.  

5. The age of the event can be used to extract the pre–event track histogram from the left part (shortest tracks) of the 

cumulated ages and the post–event histogram from the right part (longest tracks). To this point, there has been no 

need for a track annealing model. 90 

6. The post–event temperature history can now be calculated separately which is useful if the pre–event tracks are of 

mixed origins. The temperature is calculated for each column of the time interval histogram, as explained in Jensen 

et al. (1992). 
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In practice, however, confined horizontal etched track length histograms are used together with the surface track density, for 95 

age dating and calculation of the history of temperature. Tracks are produced spontaneously, their lengths are spread during 

annealing, observations are biased, and measurements are uncertain. The recipe then sounds: 

1. Construct a track length histogram of the observed confined horizontal etched tracks. 

2. Remove the spreading of track lengths by deconvolution (deblurring) of the observed histogram.  

3. Use the deconvolved histogram for age dating and calculation of the history of temperature following the recipe from 100 

point 2 for the idealized tracks. 

 

The recipes are based on the development by Bertagnolli (1983), Keil et al. (1987), and Jensen et al. (1992). See also Donelick 

(1988) for a similar development. The procedure for calculating the temperature history based on the deconvolved track length 

histogram was presented by Jensen et al. (1992). At that time, deconvolution was performed by trial and error. Mathematically 105 

simulated annealing was later applied instead (Jensen and Hansen, 2018). Age dating and identification of inherited tracks 

using Tarantola inversion are presented in the next sections. The calculations are direct with no use of Monte Carlo simulations. 

Readers unfamiliar with the technique of deconvolution may benefit from reading Appendix A before entering the Tarantola 

inversion technique. 

 110 

3 Correcting for biases of track length histograms by deconvolution 

Consider a mineral as apatite and a time interval ∆𝑡𝑖 in which randomly oriented fission tracks are generated with the initial 

track length 𝐿𝑜. The number of tracks per unit volume generated in the time interval is proportional to the fission decay 

frequency 𝜆𝑓 , the uranium U–238 concentration 𝑐, and the length of the time interval ∆𝑡𝑖: 

                                                         𝑛𝑖 = 𝜆𝑓𝑐∆𝑡𝑖  for 𝑖 = 1…𝑁.                                                                                                        (2) 115 

𝑁 is the number of time intervals. The exponential decay of U–238 nuclei is ignored, to begin with. A track is generated for 

each fission; therefore, 𝑛𝑖 is also the number of initially randomly oriented tracks per unit volume. The track length histogram 

of the randomly oriented tracks per unit volume generated in a single time interval ∆𝑡𝑖 is initially                                                                  

                                                                𝒏𝑖  = (𝑛1
𝑖  . . . 𝑛𝑗

𝑖 … 𝑛𝑀
𝑖 )𝑇.                                                                                                    (3) 

Vectors are bold and the transpose 𝑇  transforms rows into columns. 𝑀 is the number of track length bins. The tracks are 120 

gradually annealed from the initial length by temperature and time leading to shorter tracks with the mean track length 𝐿𝑖 (Fig. 

1). The tracks generated in the time interval ∆𝑡𝑖 are after partial annealing distributed into various track length columns. At 

present, after partial annealing, the track length histogram is       

                                                                 𝝂𝑖  = (𝜈1
𝑖  . . . 𝜈𝑗

𝑖 … 𝜈𝑀
𝑖 )𝑇.                                                                                                       (4) 
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For the tracks that are not annealed below the detection limit the number of tracks per unit volume 𝜈𝑖 (not bold) is equal to the 125 

number of fissions in the time interval that is 

                                                                𝜈𝑖 = ∑ 𝜈𝑗
𝑖 = 𝑛𝑖 =𝑀

𝑗=1  𝜆𝑓𝑐∆𝑡𝑖.                                                                                    (5) 

The surface track density is initially 𝜎0
𝑖 and at present 𝜎𝑖, Fig. 1.  

 

Figure 1: In the time interval ∆𝒕𝒊, several tracks are spontaneously generated with the initial mean track length 𝑳𝟎 and surface 130 

density 𝝈𝟎
𝒊 . During anisotropic annealing over time, the initial length is reduced along the curved path and spread around the present 

mean length 𝑳𝒊. Tracks from neighbouring time intervals are similarly spread and consequently mixed with tracks from the time 

interval ∆𝒕𝒊.  

 

A fraction of the randomly oriented tracks 𝝂𝑖 cut other tracks connected to the surface providing paths for etchants making 135 

them observable in the light microscope. The near–horizontal tracks are selected for length measurements. The track length 

histogram of the observed near–horizontal tracks generated in the time interval ∆𝑡𝑖 is 

                                                              𝒉𝑖 = (ℎ1
𝑖 … ℎ𝑗

𝑖 … ℎ𝑀
𝑖 )𝑇.                                                                                                             (6)         

𝒉𝑖  is expected to be linearly dependent on the randomly orientated unexposed tracks 𝝂𝑖 which means that the histogram 𝒉𝑖  is 

derived by multiplying the histogram 𝝂𝑖  by a set of constants 𝐾𝑘1
𝑖 , .., 𝐾𝑘𝑀

𝑖 : 140 

                                                             𝒉𝑖  = 𝐾(𝑘1
𝑖𝜈1

𝑖  . . . 𝑘𝑗
𝑖𝜈𝑗

𝑖 …𝑘𝑀
𝑖 𝜈𝑀

𝑖 )𝑇 ,                                                                                                (7) 

where 𝐾 is a proportionality constant. Equation (7) relates the partly annealed randomly oriented unetched tracks to the 

observed horizontal tracks. The 𝑗’th elements of 𝒉𝑖  is 

                                                               ℎ𝑗
𝑖 = 𝐾𝑘𝑗

𝑖𝜈𝑗
𝑖  .                                                                                                                 (8) 

The number of observable tracks generated in the time interval ∆𝑡𝑖 is 145 

                                                                ℎ𝑖  = ∑ ℎ𝑗
𝑖 = 𝐾𝑀

𝑗=1 ∑ 𝑘𝑗
𝑖𝜈𝑗

𝑖𝑀
𝑗=1  .                                                                                                      (9) 
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Horizontal confined tracks of large area (the product of etched length and width) are likely to be etched. This means that the 

proportionality constants are as follows: 

                                                                𝑘𝑗
𝑖 =

𝐿𝑗
𝑖

𝐿0
,                                                                                                                     (10) 

where 𝐿𝑗
𝑖  is the track length of the partially annealed track. The relation between the randomly oriented tracks to the number 150 

of observable tracks is then 

                                                                 ℎ𝑖  =
𝐾

𝐿0
∑ (𝐿𝑗

𝑖𝜈𝑗
𝑖)𝑀

𝑗=1  .                                                                                                           (11) 

Equation (8) and Eq. (10) lead to: 

                                                                 
𝐿0

𝐾𝐿𝑗
𝑖 ℎ𝑗

𝑖 =  𝜈𝑗
𝑖.                                                                                                               (12) 

Summation on both sides of the equation leads to  155 

                                                        
𝐿0

𝐾
∑

ℎ𝑗
𝑖

𝐿𝑗
𝑖

𝑀
𝑗=1 = ∑ 𝜈𝑗

𝑖𝑀
𝑗=1 = 𝜈𝑖 = 𝑛𝑖 = 𝜆𝑓𝑐∆𝑡𝑖,                                                                     (13) 

which means that 

                                                                    ∆𝑡𝑖 =
𝐿0

𝐾𝜆𝑓𝑐
∑

ℎ𝑗
𝑖

𝐿𝑗
𝑖

𝑀
𝑗=1 .                                                                                              (14) 

 

It is expected that the shape and mean track length of the histogram 𝒉𝑖  of observable tracks with origin in the time interval 160 

∆𝑡𝑖can be reproduced in a laboratory annealing experiment:  

                                                             𝒉𝑖 = 𝒽𝑖𝒈𝑖 ,                                                                                                                (15) 

where 𝒽𝑖is a proportionality constant. 𝒈𝑖 is a track length distribution histogram derived from annealing in the laboratory, or 

an interpolation thereof:  

                                                           𝒈𝑖 = (𝑔1
𝑖 , 𝑔2

𝑖 , . . . , 𝑔𝑗
𝑖 , … 𝑔𝑀

𝑖 )𝑇.                                                                                     (16) 165 

𝒈𝑖 and 𝒉𝑖  have identical number of tracks: 

                                                          ℎ𝑖 = ∑ 𝒉𝑖𝑀
𝑗=1 = ∑ 𝒽𝑖𝑔𝑗

𝑖𝑀
𝑗=1 = 𝒽𝑖 ∑ 𝑔𝑗

𝑖𝑀
𝑗=1 = 𝒽𝑖,                                                           (17) 

because 𝒈𝑖 is normalized for all 𝑖: 

                                                                          ∑ 𝑔𝑗
𝑖𝑀

𝑗=1 = 1.                                                                                                  (18) 

The natural observed histogram is the sum over all the histograms 𝒉𝑖 , each of which linked to time interval 𝑖: 170 

                                                                          𝒅 = ∑ 𝒉𝑖𝑁
𝑖=1 ,                                                                                                          (19)  

and with Eq. (15) 

                                                                          𝒅 = ∑ 𝒽𝑖𝒈𝑖𝑁
𝑖=1 .                                                                                                        (20) 

Therefore, a natural fission–track histogram 𝒅 can be approximated by a weighted sum of interpolated laboratory track length 

histograms (Fig. 2  and Fig. B1 in Appendix B). 175 
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Figure 2: All randomly oriented tracks start with the length 𝑳𝟎 and then annealed by time and temperature. At present the track 

length histogram is 𝓱̃, an idealized histogram without track length broadening effects. The most recent tracks appear in the 

rightmost column of 𝓱̃. This histogram is broadened by convolution to mimic the histogram 𝒅 resembling a measured histogram. 

The broadening is caused by the initial length range, biases, and uncertainties. The convolution itself may be regarded as a 180 

summation of the broadening of separate columns of 𝓱̃. Deconvolution removes the broadening of 𝒅. 

 𝒈𝑖is a filter transforming the weights 𝒽𝑖 into the natural histogram 𝒅:                                                        

                                                                                   𝒅 = 𝐆𝓱,                                                                                                                   (21)  

or  
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Each column of the matrix 𝐆 is a filter with increasing mean track length from column 1 to 𝑁. Solving Eq. (21) for 𝓱 (the 

model) is named deconvolution. Predictions by this equation are assumed to be error–free. Instead, the Bayesian framework 

(Bardsley, 2018) is used to include the probability density for 1) the observations 𝒅𝑜𝑏𝑠, 2) prior information 𝓱𝑝𝑟𝑖𝑜𝑟  for the 

solution, and 3) the solution 𝓱. Probability density distributions are assumed to be Gaussian. The solution is then the posterior 

𝓱 minimizing twice the misfit function 𝑆 (Tarantola, 2005):  190 

                                                   2𝑆(𝓱) = ||𝐆𝓱 − 𝒅𝑜𝑏𝑠||𝐃
𝟐 + ||𝓱 − 𝓱𝑝𝑟𝑖𝑜𝑟||𝐇

𝟐  

                                                               =  (𝐆𝓱 − 𝒅𝑜𝑏𝑠)
𝑇𝐂𝐷

−1 (𝐆𝓱 − 𝒅𝑜𝑏𝑠)  +   (𝓱 − 𝓱𝑝𝑟𝑖𝑜𝑟)
𝑇
𝐂𝐻

−1 (𝓱 − 𝓱𝑝𝑟𝑖𝑜𝑟)          (23) 

where the notation  ||𝒛||𝐗
𝟐 = 𝒛𝑇𝐗−1𝒛 is used. (𝐆𝓱 − 𝒅𝑜𝑏𝑠) expresses the misfit between observations and predictions. The 

prior 𝓱𝑝𝑟𝑖𝑜𝑟  is the regularization term for the solution 𝓱. 𝐂𝐷 and 𝐂𝐻 are  the variance–covariance matrixes of the observed 

data 𝒅𝑜𝑏𝑠  and the prior 𝓱𝑝𝑟𝑖𝑜𝑟 . The regularized least–squares solution (the maximum–likelihood estimator) to Eq. (23) is 195 

named the posterior 𝓱̃ (Tarantola, 2005):  

                                            𝓱̃  =  𝓱𝑝𝑟𝑖𝑜𝑟 + (𝐆𝑇𝐂𝐷
−1𝐆 + 𝐂𝐻

−1)−1  𝐆𝑇 𝐂𝐷
−1(𝒅𝑜𝑏𝑠 −  𝐆𝓱𝑝𝑟𝑖𝑜𝑟).                                                       (24) 

Prior information 𝓱𝑝𝑟𝑖𝑜𝑟  is derived from other independent information or, if not available, simply homogeneous with the 

elements equal to the mean value of the number of measured tracks. The measurements of a given number of track lengths are 

statistically considered as several possible outcomes of a trial greater than two. The multinomial statistical distribution is 200 

therefore used to describe variance–covariance. The diagonal elements of 𝐂𝐷 are the variances of the observed number of 

tracks for each length interval.:  

                                                          𝐂𝐷(𝑗, 𝑗) =  𝐷𝑃𝐷
𝑗
(1 − 𝑃𝐷

𝑗
)           for 𝑗 = 1… 𝑀,                                                                                25) 

where 𝑃𝐷
𝑗
= 𝑑𝑜𝑏𝑠

𝑗
/𝐷 is the probability of the observed data 𝑑𝑜𝑏𝑠

𝑗
. 𝐷 is the number of measured natural tracks. The off–diagonal 

elements are the covariances 205 

                                                          𝐂𝐷(𝑙, 𝑗) =  −𝐷𝑃𝐷
𝑙 𝑃𝐷

𝑗
        for 𝑙 ≠ 𝑗.                                                                                           (26) 

The modelization matrix 𝐆 is not an error–free physical model but based on uncertain measurements of tracks generated in the 

laboratory. This is accounted for by replacing 𝐂𝐷 with 𝐂𝐷 + 𝐂𝑇 where 𝐂𝑇 is the modelization covariance matrix (Tarantola, 

2005). The elements of 𝐂𝑇 are calculated as a diagonal matrix: 

 210 

                                                           𝐂𝑇 = 𝐈𝒅𝑣𝑎𝑟                                                                                                                  (27) 

where 𝐈 is the identity matrix, 𝒅𝑣𝑎𝑟 = 𝐆𝑣𝑎𝑟𝓱̃, and 𝐆𝑣𝑎𝑟 = 𝑉𝑎𝑟(𝐆) being the variances of the smoothed random Gaussian 

realizations of the filter matrix assuming the standard deviations to be √𝒈𝑖. Once 𝐂𝑇 is calculated it is reused with other data 

𝒅𝑜𝑏𝑠. 
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 215 

The variance–covariance matrix 𝐂𝐻 for the prior is calculated similarly to 𝐂𝐷: 

                                                          𝐂𝐻(𝑖, 𝑖) = 𝑓𝑖𝐻𝑃𝐻
𝑖 (1 − 𝑃𝐻

𝑖 )           for 𝑖 = 1… 𝑁,                                                                                (28) 

for the diagonal where 𝑃𝐻
𝑖 = ℎ𝑖/𝐻 is the probability of the priors ℎ𝑖 . 𝐻 is the number of prior tracks being equal to the number 

of measured tracks. The posteriors are assumed to be a Gaussian distribution. This allows for negative posterior values which 

are unphysical. To suppress this, we choose positive priors with restricted variance. The priors are distributed equally, ℎ𝑖 =220 

𝐻/𝑁 for all 𝑖, in case there is no other prior information available. The weights 𝑓𝑖 are experimentally determined so that they 

are as large as possible while negative posteriors are avoided. Large weights decrease the influence of the priors and vice versa. 

An alternative way of avoiding negative posteriors is given in the discussion section. The off–diagonal elements are the 

covariances 

                                                          𝐂𝐻(𝑙, 𝑖) =  −𝐻𝑃𝐻
𝑙 𝑃𝐻

𝑖         for 𝑙 ≠ 𝑖.                                                                                           (29) 225 

Stability of the inversion of the matrixes 𝐂𝐷, 𝐂𝐻, and (𝐆𝑇𝐂𝐷
−1𝐆 + 𝐂𝐻

−1) in Eq. (24) is tested by the condition numbers for the 

matrixes (Calvetti, 2007). They prove to be stable in the examples given in this paper. The subject of stability is further dealt 

with in the discussion section. 

 

The variance–covariance of the posterior is calculated following Tarantola (2005): 230 

                                                                 𝐂𝐻̃ = (𝐆𝑇𝐂𝐷
−1𝐆 + 𝐂𝐻

−1)−1.                                                                                     (30) 

An approximation to the observed data 𝒅𝑜𝑏𝑠is calculated forwardly using the posterior: 

                                                                  𝒅𝑜𝑏𝑠̃ = 𝐆𝓱̃ .                                                                                                            (31) 

The deconvolved histogram 𝓱̃ is essential for the calculation of track age as discussed below. 

4 Equations for the age distribution of corrected tracks 235 

The density 𝜎𝑖of induced tracks, generated in the time interval ∆𝑡𝑖, intersecting a polished surface plane of the mineral is 

related to the mean track length (Green et al., 1986). It is here approximated by a logarithmic expression (Appendix C):     

                                                                   
𝜎𝑖

𝜎0
𝑖 = ⌈1 + 

1

𝑏
ln (

𝐿𝑖

𝐿0
)⌉ ,                                                                                              (32) 

where 
𝜎𝑖

𝜎0
𝑖  is the reduced surface track density, 

𝐿𝑖

𝐿0
 is the reduced mean track length, and 𝑏 is a calibration constant dependent on 

the mineral composition. Natural tracks generated in the time interval ∆𝑡𝑖 and with a present mean track length 𝐿𝑖 is expected 240 

to have the same reduced surface track density as laboratory annealed tracks with the same reduced mean track length. Equation 

(32) is therefore also valid for the natural tracks. The initial surface track density 𝜎0
𝑖   generated in the time interval ∆𝑡𝑖 is 

expected to be proportional to the initial mean track length and time 

                                                                𝜎0
𝑖  = ½𝜉𝜆𝑓𝑐𝐿0 ∆𝑡𝑖,                                                                                                  (33) 
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where 𝜉 is a calibration constant. Combining Eq. (32) and Eq. (33) leads to the surface track density assigned to the time 245 

interval ∆𝑡𝑖: 

                                                                  𝜎𝑖 =  ½𝜉𝜆𝑓𝑐ℒ
𝑖∆𝑡𝑖,                                                                                                (34) 

where  

                                                                   ℒ𝑖 = [ 1 +
1

𝑏
ln (

𝐿𝑖

𝐿0
) ]𝐿0 .                                                                                           (35) 

The value of ℒ𝑖 , having the unit of length, is less than the mean track length 𝐿𝑖 and is considered as a correction to the mean 250 

track length 𝐿𝑖. The natural surface track density 𝜎𝑠 is composed of contributions from all the time intervals 

                                                                   𝜎𝑠 = ∑ 𝜎𝑖𝑁
𝑖=1  ,                                                                                                         (36) 

Inserting the right side of Eq. (34) instead of 𝜎𝑖 in Eq. (36) leads to 

                                                                   𝜎𝑠 = ½𝜉𝜆𝑓𝑐 ∑ (ℒ𝑖∆𝑡𝑖)𝑁
𝑖=1 .                                                                                               (37) 

Remembering that ℎ𝑖 = 𝒽𝑖 , Eq. (17), and that the result of the inversion 𝒽̃𝑖 approximates ℎ𝑖  we get, together with Eq. (14), 255 

                                                                    𝜎𝑠 =
𝜉𝐿0 

2𝐾
∑ (ℒ𝑖𝑁

𝑖=1 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 ))

𝑀
𝑗=1 .                                                                                        (38) 

Inserting Eq. (14) for ∆𝑡𝑖 into Eq. (34) leads to 

                                                              𝜎𝑖 = ½𝜉𝜆𝑓𝑐ℒ
𝑖∆𝑡𝑖 =

𝜉𝐿0

2𝐾
ℒ𝑖 ∑ (

𝒽̃𝑗
𝑖

𝐿𝑗
𝑖 )

𝑀
𝑗=1 .                                                                        (39)                                                                                                                      

and     

                                                              𝜎𝑖 = 𝜎𝑠

ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

 .                                                                                        (40) 260 

This equation is used to calculate the surface track density caused by tracks generated in the time interval ∆𝑡𝑖 given the surface 

track density 𝜎𝑠 and the corrected histogram 𝓱̃ . An expression for the time interval ∆𝑡𝑖 is obtained combining Eq. (34) and 

Eq. (40), and isolating the time interval on the left side:         

                                                                  ∆𝑡𝑖 =
2𝜎𝑠

𝜉𝜆𝑓𝑐

∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

.                                                                                         (41) 

 265 

The formation time (age) for the oldest corrected track 𝑡𝑝 in each column 𝑝 of the histogram 𝓱̃  is the cumulation of the time 

intervals ∆𝑡𝑖 corresponding to the column 𝑝 and younger columns.  

                                                                  𝑡𝑝 = ∑ ∆𝑡𝑖𝑁
𝑖=𝑝 .                                                                                                        (42) 

That is 
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                                                                  𝑡𝑝 =
2𝜎𝑠

𝜉𝜆𝑓𝑐
 

∑ ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1
𝑁
𝑖=𝑝

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

.                                                                                     (43) 270 

The unit of 𝒽̃𝑗
𝑖  is number/𝑚3  but since it appears both in the nominator and denominator 𝒽̃𝑗

𝑖  can as well be considered 

dimensionless. Therefore, the volume need not be measured. The decreasing uranium concentration through time is considered 

by introducing the logarithm in Eq. (43).  

                                                                𝑡𝑝 =
1

𝜆𝐷
𝑙𝑛 ( 1 + 

2𝜎𝑠𝜆𝐷

𝜉𝜆𝑓𝑐
 

∑ ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1
𝑁
𝑖=𝑝

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

 ),                                                                                (44) 

where 𝜆𝐷 is the total decay constant. The corresponding surface track density is 275 

                                                                       𝜎𝑝 = ∑ 𝜎𝑖𝑁
𝑖=𝑝 ,                                                                                                     (45) 

and using Eq. (40)                                                                                                              

                                                                       𝜎𝑝 = 𝜎𝑠

∑ ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1
𝑁
𝑖=𝑝

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

.                                                                                   (46) 

 

Equation (43) and Eq. (46) are valid for tracks selected within a given angle from the horizontal. Equations for the case when 280 

tracks are selected following the requirement that both ends are in focus at the same time are given in Appendix D.  

 

Inversion following Eq. (24) applies both for data measured in the old–fashioned way where track angle to the c–axis is not 

measured as well as for new measurements which include the angle, Appendix E.   

5 Variance of ages 285 

The oldest age 𝑡𝑝of corrected tracks in column 𝑝 given by Eq. (43) and repeated here: 

                                                                   𝑡𝑝 =
2𝜎𝑠

𝜉𝜆𝑓𝑐
 

∑ ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1
𝑁
𝑖=𝑝

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

                                                                                   (47) 

and approximately 

                                                                    𝑡𝑝 ≈
2𝜎𝑠

𝜉𝜆𝑓𝑐
 

∑ (
𝒽𝑖

𝐿𝑖)
𝑁
𝑖=𝑝

∑ (ℒ𝑖𝒽
𝑖

𝐿𝑖)
𝑁
𝑖=1

                                                                                             (48) 

The variance of 𝑡𝑝 is derived by the linear approximation 290 
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                                                                    𝑡𝑝(𝒙) ≈ 𝑡𝑝(𝒙0) + 𝐉 · 𝛥𝒙,                                                                                    (49)                    

where 𝒙0 is the vector with the elements 𝜎𝑠 , 𝜉, 𝜆𝑓 , 𝑐, ∑ (
𝒽𝑖

𝐿𝑖)
𝑁
𝑖=𝑝 , ∑ (ℒ𝑖 𝒽𝑖

𝐿𝑖)
𝑁
𝑖=1 . 𝐉 is the Jacobian calculated numerically, and 

𝛥𝒙 = 𝒙 − 𝒙0. 

The variance–covariance matrix of 𝑡𝑝 is then 

                                                                     𝐂𝑡 =  𝐉𝐂𝑥𝐉
𝑇                                                                                                           (50) 295 

where 𝐂𝑥 is the variance–covariance matrix of 𝒙. The variances of the oldest ages 𝑡𝑝 of the corrected tracks are the diagonal 

elements of 𝐂𝑡. 

 

 

6 Testing the deconvolution method 300 

Deconvolution is a mathematical tool capable of reducing noise and correct for biases in time series such as seismic signals. 

We, therefore, expect that deconvolution can reduce the length spread of confined horizontal fission tracks. This is shown in 

the following example. Assume that a sample starts generating tracks at a temperature of 63 °C, 150 Ma back in time. At 50 

Ma it is suddenly uplifted to a temperature of 20 ºC until the present. The corresponding track length histogram is calculated 

forwardly resulting in the histogram seen in Fig. 3a. The track length annealing model by Stephenson et al. (2006) is used. 305 

This synthetic histogram is like a measured histogram. The two temperature plateaus experienced by the sample are expected 

to result in a bimodal track length histogram. However, the spread of tracks blurs this impression. After deconvolution of the 

synthetic histogram the bimodality is revealed, Fig. 3b. The deconvolution succeeds because the filters used (Appendix B) are 

not completely covering each other. Each column of the deconvolved histogram (Fig. 3b) is converted to the time it takes to 

generate the tracks belonging to them, Eq. (41). The age histogram in Fig. 3c is obtained by summing up the time intervals 310 

from the most recent to the oldest. Imagine that the time of the uplift at 50 Ma is known from other sources. The expected 

post–uplift tracks of the deconvolved histogram are those with ages below the 50 Ma line, coloured dark gray in Fig. 3c. 

Convolution of the post–uplift deconvolved histogram (Fig. 3d) shows the post–uplift tracks of the synthetic histogram, Fig. 

3e. Convolution is the opposite of deconvolution having the effect of broadening the track length histogram in Fig. 3d.   

 315 

 

 

 

 

 320 
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Figure 3: (a) is the forward simulated track length histogram like a measured histogram; (b) The deconvolved histogram of the 

measured histogram;  (c) The cumulated age histogram. The dark gray columns identify the post–depositional tracks; (d) The post–

uplift columns of the deconvolved histogram; (e) Convolution (spreading out) of the deconvolved post–uplift histogram, is like the 

post–uplift part (coloured dark gray) of a measured track length histogram. 325 

 

7 Inherited tracks 

The deconvolution technique can be used to extract the post–depositional part of track length histograms with inherited tracks. 

This is illustrated in Fig. 4 by a simplified model for track annealing and observation. Grains from two source areas are 
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considered. There are more tracks in the post–depositional columns of Grain 2 than in Grain 1 because it is assumed that the 330 

uranium content of Grain 2 is twice that of Grain 1. The two post–depositional columns of Grains 1 and 2 represent the same 

two–time intervals. For both Grains 1 and 2, there is one column where pre–and post–depositional tracks are mixed. This 

column and the pre–depositional columns of both grain types do not necessarily represent the same time intervals because their 

different thermal histories create individual track length distributions (histograms). The pre–depositional tracks of Grain 1 

compared with those of Grain 2 have experienced different thermal histories and therefore different degree of annealing. Post–335 

depositional tracks are ordered with decreasing length as a function of time in contrast to the pre–depositional tracks which 

may be disordered. Fig. 4C sums Grains 1 and 2 histograms. It is observed that the post–depositional time intervals for the 

bulk histogram are identical to those for the two separate grain types. The age equation, Equation (44), is valid for post–

depositional corrected tracks but not for mixed or pre–depositional tracks. 

 340 
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Figure 4: Sketch for the accumulation of simplified tracks in histogram columns. All tracks start with the length 𝑳𝟎. Some tracks 

are generated before deposition and some after. The actual track lengths are reduced as a function of time; (A) Grain 1; (B) Grain 

2 which has experienced a different pre–depositional thermal history; (C) Histogram for the bulk of Grains 1 and 2. 

The post–depositional part of the deconvolved histogram 𝓱̃ are the columns having track ages 𝑡𝑝 less than the deposition age 345 

𝑡𝑑𝑒𝑝:  

                                                                                         𝑡𝑝 ≤ 𝑡𝑑𝑒𝑝 ,                                                                                                      (51) 

where 𝑝 is the column number. Together with Eq. (44), we obtain 

                                                                
1

𝜆𝐷
𝑙𝑛 ( 1 + 

2𝜎𝑠𝜆𝐷

𝜉𝜆𝑓𝑐
 

∑ ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1
𝑁
𝑖=𝑝

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

 ) ≤    𝑡𝑑𝑒𝑝.                                                         (52)                        

The values of 𝑝 satisfying the inequality identifies the post–sedimentary columns. The smallest number of 𝑝 identifies the 350 

oldest post–sedimentary track. This number is used to calculate the surface track density 𝜎𝑝𝑜𝑠𝑡 linked to the post–depositional 

histogram by Eq. (46):  

                                                                              𝜎𝑝𝑜𝑠𝑡 = 𝜎𝑠

∑ ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1
𝑁
𝑖=𝑝𝑜𝑠𝑡

∑ (ℒ𝑖 ∑ (
𝒽̃𝑗

𝑖

𝐿𝑗
𝑖 )𝑀

𝑗=1 )𝑁
𝑖=1

 .                                                                   (53) 

Summations are performed for all columns representing the post–sedimentary history. Together with the surface track density 

𝜎𝑝𝑜𝑠𝑡 the post–depositional histogram may be used to calculate the post–depositional thermal history applying the backward 355 

modeling procedure described by Jensen et al. (1992). Alternatively, the post–depositional de–convolved histogram can be 

convolved by forward calculation by Eq. (31) and used by random or guided–random search algorithms  (Lutz and Omar, 

1991; Willett, 1997; Ketcham, 2005; Gallagher, 1995; 2012).  

 

Identification of post–sedimentary fission–tracks is exemplified by applying apatites from the sample GGU103113 (Jameson 360 

Land, East Greenland). The Middle Jurassic sandstone sample (170 Ma) has the apparent fission–track age 245 Ma (Hansen 

et al., 2001). The measured and the deconvolved track length distributions are shown in Fig. 5a and 5b.  
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 365 

Figure 5: Extraction of the post–sedimentary part of a track length histogram from Jameson Land, East Greenland (Hansen, 1996). 

The unit of surface track density is cm-2. (a) Measured and simulated (thin line) fission–track length histogram; (b) The histogram 

after deconvolution using the filters shown in Appendix B; (c) Ages of corrected track are calculated by Eq. (44) using the 

deconvolved histogram. The columns (dark gray) with ages of corrected tracks less than the deposition age (170 Ma) are identified; 

(d) The post–sedimentary histogram is extracted from the deconvolved histogram based on the identified post–depositional columns. 370 
This histogram is the basis for direct calculation of the temperature history (Jensen et al., 1992); (e) The convolved post–sedimentary 

histogram, resembling a measured histogram, can be used by Monte Carlo type simulation models (Ketcham, 2005; Gallagher, 

1995). 

The parameter 𝜉 in the age equation, Eq. (44) is adjusted to 0.752 (with b = 0.784) to obtain simulated apparent age equal to 

the apparent age reported by Hansen et al. (2001). The apparent age is calculated using a track length distribution of an 375 

unannealed track length distribution in Eq. (44). The post–depositional columns are identified as being the rightmost columns 
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with accumulated ages of corrected tracks less than the deposition age, Fig. 5c and Fig. 5d. The deconvolved histogram Fig. 

5d can be used to calculate the post–sedimentary thermal history. The histogram in Fig. 5e is the convolution of the histogram 

in Fig. 5d. 

8 Discussion 380 

The equations for accumulated fission–tracks derived here are based on the practice of selecting horizontal tracks for length 

measurements. We follow the recommendation by Ketcham (2019) who selects all tracks within ±10° from the horizontal. 

Alternatively, Gleadow et al. (1986b) and Galbraith (2005) select tracks observed in reflected light being within ±10° from the 

horizontal and with both ends in focus in transmitted light. Fewer long tracks (> 8.5 µm) are then selected relatively to shorter 

tracks (Appendix D). An alternative set of equations are given in Appendix D for this situation.  385 

 

Standard deviations of the ages are calculated based on the variance of input data, prior model, and modelization. The 

calculated deviations are high, but they agree with deviations of histograms reported in an interlaboratory comparison 

(Ketcham et al., 2009). It is required that the laboratory annealed tracks are measured in the same way as the natural tracks. 

E.g., in the Jameson Land example, the recommendations by Gleadow et al., (1986b) and Gleadow et al., (2019) are used in 390 

both cases.  

 

The inversion procedure by Tarantola (2005) requires a prior model being independent of data. As the default, a prior model 

histogram with an equal number of tracks in the columns is chosen. In some cases, negative track length histogram columns 

appear because of inversion due to unrealistic data. An improved prior model based on other information is then necessary. 395 

The problem can also be managed by smoothing input data and/or covariance matrices. Another approach to be examined is 

the Gaussian approximation to the Poisson distribution (Calvetti and Somersalo, 2007). 

 

The stability of the inversions in Eq. (24) depends on the condition numbers for 𝐂𝐷, 𝐂𝐻, and (𝐆𝑇𝐂𝐷
−1𝐆 + 𝐂𝐻

−1) which should 

be less than 105 … 106. Application of the Octave function cond (Eaton et. al, 2020) for the 2D and 3D examples in this paper 400 

shows numbers less than 105 …106 indicating stability. Refined binning of the histograms may lead to large and possible 

unstable inversions. In those cases 𝐂𝐷 and 𝐂𝐻 in Eq. (23)-(24) and (𝐆𝑇𝐂𝐷
−1𝐆 + 𝐂𝐻

−1) in Eq. (24) should be replaced by the 

Cholesky factorized matrixes, see e.g., Cheney and Kincaid (2012). It is then required that the matrixes are symmetric and 

positive definite. It is seen from Eq. (25)-(29) that the matrixes 𝐂𝐷 and 𝐂𝐻 are symmetric. The matrix (𝐆𝑇𝐂𝐷
−1𝐆 + 𝐂𝐻

−1) in Eq. 

(24) is symmetric as well. Application of the Octave function chol (Eaton et. al, 2020) shows that the matrixes are positive 405 

definite. The three matrixes can therefore be Cholesky factorized. 
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When track angles to the c–axis is available it is common practice to calculate the histogram of the c–axis projected tracks. 

However, detailed information on track density is lost during the accumulation along the projection path. Instead, one can use 

3D–track length histograms as described in Appendix E. 3D–histograms do not involve projections and therefore retain both 410 

length and angle information. The inversion procedure presented here is valid for both 2D– and 3D–histograms (Appendix E).  

9 Conclusions 

As an example, the deconvolution method presented here is used to identify the post–depositional part of a track length 

histogram from Jameson Land, Greenland. A new procedure for deriving ages of corrected fission–tracks as a function of track 

length is suggested. The natural fission–track length histogram is considered linearly composed of histograms of induced tracks 415 

partially annealed in the laboratory. Inversion is performed by a probabilistic inverse theory. The resulting ages of corrected 

tracks are given as centers of posterior with variance. The equations are valid for old–type measurements where the track angle 

to the c–axis is not measured as well as for recent data including measurements of the angle to the c–axis. Data with both track 

lengths and angles are organized in 3D–histograms presented as images. Two types of track length measurements are discussed. 

If tracks with both ends in focus are selected there is a tendency to off–select longer tracks. If all tracks within a given angle 420 

are selected this bias disappears. The equations presented here are prepared for both cases. The calculation of the ages of 

corrected tracks does not require the calculation of the sample thermal history. Instead, they are the basis for temperature 

history calculation.  

 

Appendix A 425 

After the formation of the unetched randomly oriented tracks, the spreading of lengths increases during the process of annealing 

leading to a considerable mixing of lengths of the observed track length histogram. There is not a unique relationship between 

time and the length of individual tracks. However, the relationship is not completely blurred. There is a tendency that old tracks 

appear in the short track length part of the histogram and young tracks in the opposite part. To some extent, deconvolution can 

reduce the spread. Deconvolution is used extensively in seismic processing to improve the signal–to–noise ratio and remove 430 

biases. This requires the character of the noise to be known. The “noise” in connection with fission tracks is the spread observed 

in laboratory annealing experiments. This is used to reduce the spread of the observed track length histograms. That is, the 

observed histogram can be deblurred by deconvolution. A simplified demonstration of deconvolution of a bimodal track length 

histogram is shown in Fig. A1. The present paper applies a more advanced least–squares deconvolution technique. 

 435 
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Figure A1: Illustration of deconvolution of a track length histogram. The dark gray histogram H is the observed histogram. The 

histogram  I is an initial guess of a deconvolved histogram with 80 and 50 tracks in each column. The histograms F and C are the 

two columns of histogram H separated. The histograms B and E are normalizations of histograms observed after track annealing in 440 
the laboratory. They are named filters. Histogram A is histogram B multiplied by the number of tracks in histogram C. Histogram 

D is histogram E multiplied by the number of tracks in histogram F. Histogram G is histogram A plus histogram D. Histogram G is 

then the result of convolution of histogram I with the filters B and E. The synthetic histogram G is compared with the observed 

histogram H however, the left part is dissimilar. Therefore, the suggested deconvolved histogram I is not successful. 

  445 

A successful deconvolution is shown in Fig. A2. The spread of tracks in the bimodal histogram H is assembled in two columns 

corresponding to two thermal time periods. Note that two time periods can be separated despite the track length overlap of the 

histograms A and D. The deconvolved track length histogram I is arranged according to time. Each column can be converted 

to an equivalent time interval. The age of the oldest track of each column of deconvolved histograms is calculated by adding 

its associated time interval and younger time intervals. In this process there has been no use of a track annealing model. 450 
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Figure A2: The final step of the deconvolution procedure showing the successful deconvolution of histogram H. Histogram I is the 455 
deconvolved histogram. The degree of success is measured by comparing the convolved histograms G and histogram H. 

Appendix B 

The filters used for deconvolution are the columns of matrix 𝐆, Eq. (22). They are based on measurements of track lengths 

after annealing in the laboratory (Gleadow et al., 1986a; Green et al., 1986; Barbarand et al., 2003). The histograms of these 

track lengths are normalized by division with the number of tracks of each histogram. They represent the probability of an 460 
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induced track appearing in a certain length interval. Interpolated filters are obtained using a mesh of 0.2 𝜇𝑚 in both directions 

(bins and mean track lengths), Fig. B1.  

 

Figure B1: Interpolation of the filters used for deconvolution. It is based on track annealing in the laboratory (Gleadow et al., 1986a; 

Green et al., 1986; Barbarand et al., 2003). Three linear intersections are shown in Fig. B2. Grayscale is frequency. 465 

The filters broaden with decreasing mean track length. The columns of the modelization matrix  𝐆 are picked from the 

interpolation. The number of columns is related to the resolution. Fig. B2 shows three filters extracted from Fig. B1. 
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Figure B2: Three interpolated filters with mean track lengths 6, 12, and 15 𝛍𝐦 extracted from Fig. B1. 

Appendix C 470 

Plots of mean track length versus surface track density for tracks generated by neutron radiation and annealed in the laboratory 

are given by Green et al. (1986). A logarithmic expression approximates data, Fig. C1:  

                                                      
𝜎𝑖

𝜎0
𝑖 = ⌈1 + 

1

𝑏
ln (

𝐿𝑖

𝐿0
)⌉ ,                                                                                                                         (C1) 

where 𝜎
𝑖

𝜎0
𝑖⁄   is the surface track density of partially annealed tracks relatively that of unannealed tracks. 𝐿

𝑖

𝐿0
⁄ is the mean 

track length of partially annealed tracks relative to the unannealed mean track length. Equation (C1) is used to parameterize 475 

the measured data leading to  𝑏 = 0.748 ± 0.048  for multi–compositional apatite and b = 0.963 for mono–compositional 

apatite. 𝑏 determines the curvature of the approximating line in Fig. C1. 
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Figure C1: Parameter b characterizes the relation between normalized track length 𝑳
𝒊

𝑳𝟎
⁄  and normalized density 𝝈

𝒊

𝝈𝟎
𝒊⁄  for multi– 

compositional apatite. Data from Green et al. (1988).  480 

Appendix D 

Ketcham (2019) recommends the selection of all etched tracks being within ±10° from the horizontal. It is expected that the 

likelihood of tracks being etched is proportional to their length. This view has been adopted in the main text of this paper. 

Alternatively, to the selection criteria by Ketcham (2019), Gleadow et al (2019) select etched tracks that are within 10°–15° 

from the horizontal and with both ends in focus at the same time. The two criteria are examined in this appendix. 485 

 

The axial (vertical) resolution of a light microscope is 

                                                                            𝑟𝑎𝑥𝑖𝑎𝑙 = 1.4𝜆𝜂/𝑁𝐴2.                                                                                                           (D1) 
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With typical values for wavelength of 𝜆 = 550 nm (green light), refraction index of oil 𝜂 = 1.51, and numerical aperture 𝑁𝐴 = 

1.25, the axial resolution 𝑟𝑎𝑥𝑖𝑎𝑙  = 0.74 µm. The numerical aperture is a measure of the maximum angle for which the 490 

microscope receives light. The criteria by Gleadow et al (2019) imply that a short track, 6 µm long, is accepted for counting if 

the angle to the horizontal is less than 10°. A long track, 18 µm, must be within 2.5° to the horizontal to be accepted. The 

tendency is therefore that long tracks are off–selected from counting. The likelihood of selection is then inverse proportional 

to the track length for tracks longer than 6 µm. At the same time, the likelihood of a horizontal track being etched is expected 

to be proportional to its length. These two biases essentially cancel each other (Jensen et al., 1992). With the focus window 495 

selection criteria (Gleadow et al., 2019) the set of age equations is then: 

                                                                   𝑡𝑝 =
1

𝜆𝐷
𝑙𝑛 ( 1 + 

2𝜎𝑠𝜆𝐷

𝜉𝜆𝑓𝑐
 

∑ 𝒽̃𝑖𝑁
𝑖=𝑝

∑ (ℒ𝑖𝒽̃𝑖)𝑁
𝑖=1

 )                                                                           (D2) 

The age of the oldest track is obtained summing all the time intervals:                                                                                               

                                                                    𝑡𝑚𝑎𝑥~
2𝜎𝑠

𝜉𝜆𝑓𝑐
 

∑ 𝒽̃𝑖𝑁
𝑖=1

∑ (ℒ𝑖𝒽̃𝑖)𝑁
𝑖=1

∙                                                                                          (D3) 

Introducing the mean track length of the inverted histogram 𝓱̃ : 500 

                                                                    ℒ𝑚𝑒𝑎𝑛 = 
∑ (ℒ𝑖𝒽̃𝑖 )𝑁

𝑖=1

∑ 𝒽̃𝑖𝑁
𝑖=1

 .                                                                                                     (D4) 

The age of the oldest observable track is 

                                                                     𝑡𝑚𝑎𝑥 =
2𝜎𝑠

𝜉𝜆𝑓𝑐ℒ𝑚𝑒𝑎𝑛
 ,                                                                                                              (D5) 

equivalent to the derivation by Jensen et al. (1992) when ℒ𝑚𝑒𝑎𝑛is replaced by the mean track length. 

Appendix E 505 

The inversion principle presented in the main text is for 2D–track length histograms ignoring track angles to the c–axis. 

However, the inversion principle is also applicable to data that includes the angles. The measured data vector 𝒅𝑜𝑏𝑠 in Eq. (24) 

is then derived from a 3D–histogram (length, angle, and number). The elements of the vector 𝒅𝑜𝑏𝑠 is obtained by sequentially 

numbering each bin (Tarantola, 2005). An example is shown in Fig. E1 with a synthetic 3D–histogram as data obtained from 

two annealing experiments.  510 
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Figure E1: 3D–histogram of track lengths versus angles derived by combining two annealing experiments (Barbarand et al., 2003). 

Grayscale is the number of tracks in each bin.  515 

 

They are the result of heating to 275ºC and 320ºC respectively (Barbarand et al., 2003). Each bin of the 3D–histogram is 5º 

times 0.5 µm. The matrix 𝐆, Eq. (22) consists of twenty 3D–filters interpolated between the six annealing experiments by 

Barbarand et al. (2003). Each column of 𝐆 is a filter. Two of them are shown in Fig. E2.  

 520 
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Figure E2: Examples of 3D–filters used for deconvolution. They are based on heating to 275ºC and 320ºC respectively, Barbarand 525 
et al. (2003). Grayscale is frequency. 

 

The corrected histogram as a result of the inversion using Eq. (24) is shown in Fig. E3.  
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 530 

 

Figure E3: The corrected histogram as a result of the inversion of the 3D–histogram shown in Fig. E1. 

 

The standard deviations are the diagonal values of the posterior covariance matrix. The result of the inversion is evaluated by 

comparing forward modeling using Eq. (21) with the inverted histogram as input data (Fig. E3). Compliance is good, Fig. E4. 535 
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Figure E4: The combined 3D–histogram considered as synthetic data (Fig. E1) and the forwardly simulated approximation using 540 
the posterior model in Eq. (24). Grayscale is the number of tracks. 

Code availability  

Octave (Eaton, et al., 2020) codes for reproducing the results shown in Fig. B1, B2, and E1–E4 are available online on 

Zenodo (http://doi.org/10.5281/zenodo.5595057 ; Jensen, 2021a) and (https://doi.org/10.5281/zenodo.5595075; Jensen, 

2021b) for 2D– and 3D–histograms respectively. 545 
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