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Abstract 

Collecting grain measurements for large detrital zircon age datasets is time-consuming, but a growing number of studies 10 

suggest such data are essential to understanding complex roles of grain size and morphology in grain transport and as indicators 

for grain provenance. We developed the colab_zirc_dims Python package to automate deep-learning-based segmentation and 

measurement of mineral grains from scaled images captured during laser ablation at facilities that use Chromium targeting 

software. The colab_zirc_dims package is implemented in a collection of highly interactive Jupyter notebooks that can be run 

either on a local computer or installation-free via Google Colab. These notebooks also provide additional functionalities for 15 

dataset preparation and for semi-automated grain segmentation and measurement using a simple graphical user interface. Our 

automated grain measurement algorithm approaches human measurement accuracy when applied to a manually measured n = 

5,004 detrital zircon dataset. Errors and uncertainty related to variable grain exposure necessitate semi-automated measurement 

for production of publication-quality measurements, but we estimate that our semi-automated grain segmentation workflow 

will enable users to collect grain measurement datasets for large (n ≥ 5,000), applicable image datasets in under a day of work. 20 

We hope that the colab_zirc_dims toolset allows more researchers to augment their detrital geochronology datasets with grain 

measurements. 

1 Introduction 

Despite an increasing number of studies on the subject, the degree to which detrital geochronology datasets are affected by 

sample and mineral grain size remains unresolved. Several detrital zircon studies have documented substantial grain size-25 

dependent mineral fractionation leading to biased detrital age spectra and erroneous provenance interpretations (e.g., Lawrence 

et al., 2011; Ibañez-Mejia et al., 2018; Augustsson et al., 2018; Cantine et al., 2021). Conversely, several other studies have 

identified provenance-dependent grain size relationships in detrital samples with little evidence of age spectra biasing by 

selective transport processes (e.g., Muhlbauer et al., 2017; Leary et al., 2020a, 2022). Because the number of studies 
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characterizing grain size of detrital zircon datasets remains relatively small, especially compared to the number of studies 30 

employing detrital zircon geochronology, we likely lack the necessary volume and diversity of datasets to understand under 

which specific circumstances zircon transport processes will bias age spectra and interpreted provenance (Leary et al., 2022). 

A principal challenge in collecting such data has been that few automated approaches have been published (e.g. Scharf et al., 

2022), and the time required to manually collect grain dimensions from large detrital datasets is a substantial barrier to 

widespread application of these methods (e.g. Leary et al., 2020a). 35 

Zircon grains can be measured manually using analogue methods prior to LA-ICP-MS, but doing so is prohibitively 

time consuming. Grains may also be imaged, characterized, and measured via scanning electron microscope before or after 

analysis, but this too incurs time and instrumentation costs that increase with sample size, and such analyses are not standard 

at most labs. Many LA-ICP-MS facilities using Teledyne-Photon machines laser ablation systems with proprietary Chromium 

(Teledyne Photon Machines, 2020) targeting software save reflected light images of samples during analysis with scaling and 40 

shot location metadata files and provide these files to facility users. Images from these facilities may be full-sample mosaics 

captured prior to analyses or single, grain-centred per-shot images captured during ablation. The former are provided by the 

University of Arizona LaserChron Center (ALC) and the latter by the University of California, Santa Barbara (UCSB) 

Petrochronology Center. Many researchers who have not otherwise imaged their large-n detrital mineral datasets do have 

access to these files, and these can be used to locate and manually measure detrital mineral grains using the offline version of 45 

the Chromium targeting software (Leary et al., 2020a). 

Three limitations to manual grain measurement in Chromium (Leary et al., 2020a) are a) grains may be partially 

exposed or over-polished at the surfaces of epoxy mounts, so measurements are minimum, rather than true dimensions, b) this 

method is extremely time consuming, and c) this method can only produce one-dimensional (i.e., length) measurements. The 

first problem is inherent to reflected light images, but the latter two can be mitigated and solved, respectively, via automated 50 

two-dimensional grain-image segmentation and measurement of segmentation results. Deep learning methods, wherein 

training-optimizable models are used to algorithmically extract information from data (e.g., images) with minimal pre-

processing (Alzubaidi et al., 2021), are at the cutting edge of accuracy in image segmentation and so allow grain image 

segmentation to be automated to a greater degree than other methods (e.g., thresholding). 

We developed the colab_zirc_dims Python package, which contains code to automatically segment and measure 55 

mineral grains from Chromium-scaled LA-ICP-MS reflected light images using deep learning instance segmentation (i.e., 

where grains are treated as separate objects and distinguished from one another) models. Such models are computationally 

expensive to run and can be quite slow without a good, code-compatible graphics processing unit (GPU). In order to maximize 

its accessibility, we implemented our code in Jupyter notebooks (i.e., Kluyver et al., 2016) that can be run either offline or 

online and installation-free using Google Colab (Sitar, 2022). Google Colab is a free service that allows users to run Jupyter 60 

notebooks on cloud-based virtual machines with variably high-end GPUs from the NVIDIA Tesla series (i.e., K80, T4, P100, 

and V100) that are allocated based on availability. Because its user interface is notebook-based, colab_zirc_dims is not a per-

se application but a set of simplified, highly interactive scripts that rely on a backend of code in the colab_zirc_dims package. 
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Deep-learning-based techniques are increasingly applied to geologic image segmentation tasks such as fission track counting 

(Nachtergaele and De Grave, 2021), cobble measurement (Soloy et al., 2020), and photomicrograph grain segmentation (e.g., 65 

Bukharev et al., 2018; Filippo et al, 2021; Jiang et al., 2020; Latif et al., 2022). We expect such techniques to continue to 

proliferate in the future, but the colab_zirc_dims package and processing notebooks represent, to the best of our knowledge, 

the first deep-learning-based approach to per-grain detrital mineral separate measurement. 

2 Established image segmentation techniques and related software 

Automated segmentation of mineral grains in LA-ICP-MS images can be achieved with some success using relatively simple 70 

image segmentation techniques such as k-means clustering, edge detection, and intensity thresholding. Otsu’s thresholding 

method (i.e., Otsu, 1979), wherein image pixels are automatically segmented into background and foreground classes via 

maximization of inter-class intensity variance, is particularly well-suited for reflected light images because mineral grains 

appear as a bright phase against an epoxy background (Fig. 1). Although grain segmentations produced through Otsu 

thresholding are often accurate, they tend to split single fractured grains into multiple sub-grains (Figs. 1c, A1) and can be 75 

wildly inaccurate where image artefacts affecting pixel intensity (e.g., anomalous bright spots; Fig. A1) are present. These 

problems are common to automated segmentation techniques, and edge detection methods additionally contend with mis-

segmentations along artefactitious edges where sub-image boundaries appear within larger, otherwise uniform mosaic images 

(e.g., Fig. A1). Because deep learning models can be optimized through training to ignore image artefacts and intra-grain 

fractures, they are likely the best available tool for achieving fully automated mineral grain segmentations with near-human 80 

accuracy. 

 Some existing software applications enable measurement of mineral grains in images with varying degrees of 

automation. The offline version of the Chromium LA-ICP-MS targeting application supports loading and viewing of scaled 

alignment images and shot locations; users can manually measure the axial dimensions of analysed grains using a ruler-like 

“measure” tool (Leary et al., 2020a; Teledyne Photon Machines, 2020). The ZirconSpotFinder module of the MATLAB-based 85 

AgeCalcML application likewise supports loading and viewing of Chromium-scaled LA-ICP-MS alignment images, but also 

implements semi-automated grain segmentation using user-selected thresholds, filtering of segmented grains by surface area, 

and export of area-filtered shot lists (Sundell et al., 2020). AnalyZr, a new application designed specifically for measurement 

of zircon grains in images, combines Otsu thresholding with a novel boundary separation algorithm to automatically segment 

grains and allows users to edit the resulting segmentations before exporting automatically-generated, grain-specific 90 

dimensional analyses (Scharf et al., 2022). Analytical spot identification and localization in AnalyZr is done manually through 

an interface that also allows input of spot-specific comments and qualitative internal grain zoning descriptors that persist into 

the program’s exports (Scharf et al, 2022). Because AnalyZr supports loading of grain image .png files from any source with 

manual capture of image scale, it can be used to extract more detailed per-grain information (e.g., unobscured grain dimensions 

from transmitted light images) than is obtainable using only reflected light images (Scharf et al., 2022). AnalyZr’s manual spot 95 
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placement and scaling implementations and thresholding-based segmentation algorithm also, however, necessitate substantial 

human involvement in producing accurate grain segmentations and measurements. The colab_zirc_dims package and 

notebooks are likely better suited for rapid measurement of mineral grains in applicable (i.e., with Chromium-scaled images) 

large-n datasets due to their automated image loading, scaling, and generally accurate deep-learning-based automated 

segmentation capabilities. 100 
Figure 1. Visualizations of image thresholding segmentation using Otsu’s method (Otsu, 1979) and its inherent problems in the 
context of reflected light detrital zircon grain images (top row), and of the colab_zirc_dims segmentation and grain measurement 
process (bottom row). (a) An original, unaltered LA-ICP-MS reflected light image. (b) A binary image resulting from segmentation 
of the original image into foreground (white) and background (black) classes using Otsu’s method. (c) The original image with 
“background” masked out using the binary image. Red highlights indicate single grains that have been erroneously eroded, 105 
segmented into multiple grains along fractures, or both. (d) The results (bounding boxes, probability scores, and masks) of instance 
segmentation of the original image using a Mask RCNN model (M-ST-C), as displayed by the Detectron2 “visualizer” module. (e) 
The resulting colab_zirc_dims verification image, scaled in µm and displaying the identified central grain mask (yellow), mask 
centroid (green), minimum-area circumscribing rectangle (blue), and ellipse with the same 2nd order moments as the grain mask 
along with its axes (red). 110 

 

3 Methods 

3.1 Dependencies 

The colab_zirc_dims package was written in Python 3.8 and relies on some non-standard Python packages (Van Rossum, 

2020). Pillow and Matplotlib are respectively used for image loading and to create and save verification segmentation images; 115 
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Matplotlib was additionally used to create figures for this manuscript (Umesh, 2012; J. D. Hunter, 2007). OpenCV (Bradski, 

2000) is used to display images as well as to fit minimum-area circumscribing rectangles to masks (e.g., Figs. 1e, A1c). NumPy 

is used for array operations and conversions, and pandas is used in some contexts for data organization and export (Harris et 

al., 2020; McKinney, 2010). The “measure” module of Scikit-Image is used to produce unscaled dimensional analyses from 

segmented grain masks and to extract mask outlines for conversion into user-editable polygons (van der Walt et al., 2014). 120 

Interactivity in colab_zirc_dims processing notebooks is implemented using IPython (Pérez and Granger, 2007). Detectron2, 

which is a deep learning library that was developed by Facebook and is itself built on PyTorch, also developed by Facebook, 

was used for model construction and training and is used to deploy models within colab_zirc_dims processing notebooks 

(Paszke et al., 2019; Wu et al., 2019). 

 Local and online execution of the colab_zirc_dims notebooks rely, respectively, on Jupyter and Google Colab. We 125 

recognize that Jupyter-style notebooks are an unconventional platform for final deployment of scientific computing algorithms 

and that Google Colab in particular does have some significant disadvantages (e.g., runtimes will automatically disconnect if 

left idle for too long) versus deployment in a standalone, purpose-built local or web-based application. Nevertheless, we believe 

that Google Colab’s benefits in this use-case outweigh its disadvantages, especially with regards to accessibility. The 

colab_zirc_dims notebooks can be run using otherwise-expensive GPUs by anyone with a Google account, regardless of their 130 

local hardware or prior Python experience. We also mitigate potential connection-related issues by implementing automatic 

saving to Google Drive during online automated and semi-automated grain-image processing: if a user’s runtime disconnects, 

they can simply re-connect and resume work from the last sample processed before disconnection. The aforementioned timeout 

and connectivity problems will not affect the processing notebooks if they are run locally (i.e., Sitar, 2022, ‘Advanced Local 

Installation Instructions’). Local notebook execution  consequently remains an option for users who are equipped with suitable 135 

hardware and either chafe against the constraints of Google Colab or are otherwise unable to access Google services. 

3.2 Training-validation dataset 

We present “czd_large”, a new training-validation dataset comprising 16,464 semi-automatically generated per-grain 

annotations in 1,558 LA-ICP-MS reflected light images of mineral grains (Table 1). Constituent images, which are sourced 

from both ALC and UCSB, were compiled via Chromium-metadata-informed (i.e., all images are non-overlapping in real-140 

world space) random selection. ALC source mosaic images (Table 1) were captured during analyses of detrital zircon from the 

Eagle and Paradox basins, USA; dates and Chromium-derived manual grain measurements resulting from these analyses were 

published by Leary et al. (2020a). UCSB images (Table 1) were captured during unpublished analyses of detrital zircon from 

units in east-central Nevada, USA. Automatic per-grain instance segmentations were generated using a Mask-RCNN Resnet-

101 model trained on a smaller, manually annotated dataset compiled from the same sources (Table B1; Sitar, 2022, ‘Training 145 

Datasets’). These automatic segmentations were converted to the VGG image annotation format (Dutta and Zisserman, 2019) 

using a custom Python script, and annotations for every image were then manually reviewed and, where necessary, corrected 

or extended using the VIA Image Annotator (Dutta and Zisserman, 2019). Approximately 15% of the full dataset was split off 
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into a validation subset via sample-stratified random selection (Table 1). We provide granular information (e.g., image sizes 

and scales, training versus validation set image and annotation distributions, etc.) about the dataset and a link to download it 150 

in the ‘Training Datasets’ subdirectory of our project GitHub page (Sitar, 2022). 
Table 1. A summary of the “czd_large” dataset used to train the deep learning model presented in this manuscript for reflected light 
mineral grain segmentation. Please refer to Sitar (2022) for more in-depth information on the composition of the dataset. 

Source 
facility 

Training set 
images 

Validation 
set images 

Training set 
annotations 

Validation set 
annotations 

ALC 1203 212 12923 2326 

UCSB 121 22 1039 176 

Total 1324 234 13962 2502 

1558 16464 

 

 Some training and validation images contain likely detrital apatite grains in addition to zircon, and we segmented all 155 

visible mineral grains into a single “grain” class to avoid harming our models’ generalization abilities in the presence of varying 

image exposure and brightness levels. Models trained on “czd_large” are consequently likely applicable to segmentation of all 

reflected-light bright-phase minerals but are unable to distinguish these minerals from one another. Both automatically and 

manually generated annotations are conservative with regards to interpreting grain extent; we only segmented areas where 

grains are exposed above the epoxy surface except in cases where larger subsurface extents are incontrovertibly apparent. 160 

3.3 Deep learning models 

Using the “czd_large” dataset, we have trained several Detectron2-based instance segmentation models (i.e., configurations 

with trained weights) that can be applied in colab_zirc_dims processing notebooks. As of colab_zirc_dims v1.0.10, said models 

encompass several architectures and variations therein, including Mask-RCNN models with ResNet-FPN backbones, a Mask-

RCNN model with a Swin-T backbone implemented using third-party code (Ye et al., 2021), and a Centermask2 model with 165 

a VovNetV2-99 backbone (Table B1). Given the rapid pace of progress in deep learning research and our own graceless yet 

continual progress in optimizing model hyperparameters for application in colab_zirc_dims, we expect that these models could 

be superseded by more performant models in the future. As such, we host our current models (i.e., configuration files and links 

to weights) and all explanatory information (i.e., training metrics, post-training evaluation metrics, and summary tables and 

diagrams) on a mutable ‘Model Library’ page within the project GitHub repository (Sitar, 2022). Users can refer to this page 170 

to learn more about the current selection of models, and to the linked Jupyter notebook files if they would like to train their 

own models using our training workflow. Models are loaded for application in local and Colab-based colab_zirc_dims 

processing notebooks through a dynamic selection and downloading interface. Our current default model is a Mask-RCNN 

model with a Swin-T-FPN backbone (Table B1), which was selected due to its apparent low propensity for producing 
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aberrantly over-interpretive segmentation masks (Sitar, 2022). This model is herein referred to a “M-ST-C” and was used to 175 

produce all measurements and segmentation images presented in the current study. 

3.4 Dimensional analysis of mineral grains 

The initial step in dimensional analysis of grains using colab_zirc_dims is standardized loading of grain images for 

segmentation such that differently formatted image-datasets can be processed using a single set of algorithms. Shot-centred 

single images (e.g., from UCSB) can be passed to models for segmentation as-is, but segmentation of grains from mosaic 180 

image datasets (e.g., from ALC) is performed on scaled, shot-centred sub-images extracted from mosaics using shot coordinate 

metadata. Grain-centred images are segmented by a deep learning model, and the resulting segmentations (e.g., Figs. 2d, A1c) 

are passed to an algorithm that attempts to identify and return a “central” mask corresponding to the shot target grain LA-ICP-

MS analysis (Fig. 2c). If no mask is found at the actual centre of the image, as may be the case in slightly misaligned images, 

the algorithm searches radially outwards until either a mask is identified or the central ~10% of the image has been checked. 185 

To avoid erroneously returning significantly off-central (i.e., non-target) grains, the algorithm is considered to have “failed” if 

it cannot find a grain mask after this search, and null values are returned for the spot instead of shape parameters. If a central 

grain is found, its dimensions are analysed using functions from OpenCV (Bradski, 2000) and the scikit-image “measure” 

module (van der Walt et al., 2014). The resulting measurements and properties are, where applicable, scaled from pixels to µm 

or µm2 using a Chromium-metadata-derived scale factor. 190 

 Successful grain-image processing by the colab_zirc_dims grain segmentation and measurement algorithm will return 

the following grain-mask properties: area, convex area, eccentricity, equivalent diameter, perimeter, major axis length, minor 

axis length, circularity, long axis rectangular diameter, short axis rectangular diameter, best long axis length, and best short 

axis length. Details on the derivation of all output grain-mask properties can be found on the ‘Processing Outputs’ section of 

the colab_zirc_dims GitHub page (Sitar, 2022), but some properties merit further discussion. Circularity, for instance, is 195 

calculated from scikit-image-derived area and perimeter measurements using Eq. (1); this is a notably simpler and likely less 

robust calculation than would be required for grain roundness (i.e., Resentini et al., 2018). 
Equation 1: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
4𝜋𝜋 ∗ 𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶
𝑃𝑃𝐴𝐴𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶2

 

 200 

 Major and minor axis lengths are calculated from the moments of the grain mask image and reported axes thus 

correspond to “the length of the… axis of the ellipse that has the same normalized second central moments as the region” (van 

der Walt et al., 2014). These axial measurements will consequently fit exactly to perfectly elliptical and circular grain masks 

but may be more approximate in the cases of rectangular and irregularly shaped grains (e.g., Fig. 1e). Rectangular diameter 

measurements correspond to the long and short axes of the minimum area circumscribing rectangle (e.g., Fig. 1e) that can be 205 

fitted to a grain mask using the OpenCV minAreaRect function (Bradski, 2000). Minimum area rectangles will exactly fit to 
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rectangular grain masks, but in the case of more equant grains may be grossly misaligned from the grain axes that a human 

researcher would interpret. The two types of calculated axial measurement parameters each have drawbacks. To split the 

difference, we implement “best” long and short axis measurement fields. These fields return either moment-based or rectangle-

based axial measurements depending on whether each grain mask’s aspect ratio (i.e., moment-based long axis length divided 210 

by moment-based short axis length) is above or below an empirically chosen threshold of 1.8. Minimum-area bounding 

rectangles should trend towards coaxiality with moment-based axes with increasing aspect ratio, so rectangle-based 

measurements are returned for grain masks with higher aspect ratios and moment-based measurements are returned for those 

with lower aspect ratios. 

 4 Implementation 215 

4.1 The colab_zirc_dims package 

Code for loading and parsing Chromium alignment and shot list files, segmenting and measuring grains using deep learning 

models, and interacting with notebooks using widgets is contained within the colab_zirc_dims package. We have made this 

package available on the Python Package Index (Python Package Index - PyPI, 2022) for easy installation to local and virtual 

(i.e., Google Colab) machines. Some colab_zirc_dims modules (e.g., utilities for reading Chromium metadata files and basic 220 

segmentation functions) will work without Detectron2 and other bulky dependencies, but these must be installed for full 

functionality. 

4.2 Dataset organization 

Before using colab_zirc_dims notebooks to automatically or semi-automatically measure grains, users must set up a project 

folder containing their dataset (i.e., image and metadata files). If users plan to use colab_zirc_dims in Google Colab, they must 225 

then upload their project folder to Google Drive (Fig. 2A). Required formats for colab_zirc_dims project folders are simple 

but necessarily differ slightly between dataset types (e.g., ALC mosaics or UCSB per-shot images), and they are thoroughly 

documented in the processing notebook for each type of dataset. Once a project folder has been created and, optionally, 

uploaded to a user’s Google Drive, they can proceed either directly to notebook-based processing in the case of per-shot image 

datasets or to an additional, likewise notebook-based dataset preparation step in the case of mosaic image datasets (Fig. 2A). 230 
Figure 2. A graphical summary of interfaces and workflow options available in colab_zirc_dims processing notebooks. Tasks that 
are handled automatically or semi-automatically by processing notebooks are shown in blue boxes. (a) A summary of possible dataset 
inputs which can be processed or made processable with the provided notebooks.  (b) Summary of the workflow for preparing 
datasets for fully or semi-automated segmentation. (c) Summary of possible workflows for automated or semi-automated grain 
measurement and for exploratory visualization of the resulting measurements. 235 
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4.3 Notebooks 

4.3.1 Dataset preparation tools 

As we note in Sect 3.4, segmentation and measurement of grains in mosaic image datasets requires extraction of shot-specific 

sub-images from larger mosaics using shot locations in corresponding .scancsv shot metadata files. Information on which 240 

mosaic file in a project folder matches which .scancsv file must consequently be provided by users for processing. Because 

deep learning models struggle to identify and segment grains when they cannot see all grain boundaries (e.g., if sub-images 

are smaller than grains), sub-image extraction also requires a user-provided, mosaic-specific sub-image size parameter 

(“Max_grain_size”) for accurate segmentations and measurements. Colab_zirc_dims processing notebooks read the 

aforementioned information from “mosaic_info” .csv files stored in project folders. Although these “mosaic_info” files can be 245 

created manually, they can also be generated quickly and easily using the “Mosaic_Match” colab_zirc_dims notebook (Fig. 

2b) that we provide. The “Mosaic_Match” notebook implements code that automatically finds matches between shot lists and 

mosaics in a project folder and allows users to generate, modify, and export “mosaic_info” tables (Fig 2b). Users can view 

sample shot locations and sub-images using a “Display” function (Fig. 2b), thus allowing interactive mis-alignment correction, 

adjustment of sub-image sizes, and, in cases where multiple mosaics could potentially match a single .scancsv file, 250 

identification and selection of the correct mosaic from a dynamically populated dropdown menu. After exporting a 

“mosaic_info” .csv file, users can proceed to fully or semi-automated segmentation and measurement of their dataset (Figs. 

2b, 2c). 

4.3.2 Fully automated segmentation and measurement 

We provide notebooks for automated and semi-automated processing of both mosaic image (“Mosaic_grain_process”) and 255 

per-shot image (“Single_shot_image_grain_process”) datasets. These notebooks are respectively currently set up to fully 

support processing of ALC and UCSB datasets but will likely work with datasets from other facilities sans-modification. The 

per-shot image notebook additionally supports loading and processing of any grain-centred reflected light grain images without 

Chromium scaling metadata, in which case users can provide custom per-sample scaling information in a .csv file or use a 

default scale of 1 µm/pixel. Researchers with datasets comprised of reflected light images that are not shot-centred and lack 260 

Chromium metadata can adapt (i.e., Fig 2a) their image datasets for use with colab_zirc_dims. This can be done either by using 

Chromium Offline (Teledyne Photon Machines, 2020) to generate scaling and/or shot placement metadata or by manually 

cropping shot-centred images from mosaics (e.g., using ImageJ’s “multicrop” function; Schindelin et al., 2012). Such a 

workflow (Fig. 2a) will, however, bypass most of the automation in the colab_zirc_dims data loading process, and potential 

users are advised that collecting grain measurements using other existing software (i.e., AnalyZr; Scharf et al., 2022) will 265 

likely be less arduous.  

Deep learning segmentation model weights are selected by users from a dropdown menu and downloaded to virtual 

or local machines from an Amazon Web Services S3 repository (provided by us) prior to model initialization and processing. 
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After weight file download and model initialization, users can select options for automated processing (Fig. 2c). These options 

include whether to attempt segmentation with various alternate methods (e.g., zooming out slightly, increasing image contrast 270 

before reapplying the model, or, as a last resort, using Otsu thresholding) if segmentation is initially unsuccessful, and whether 

to save polygons approximating model-produced masks for viewing or modification in the colab_zirc_dims graphical user 

interface (GUI; Fig 2c). During automated processing, per-grain dimensional analyses (Sect. 3.3) in per-sample .csv files are 

saved and exported to the user’s project folder (Fig.2c) alongside verification mask image .png files (e.g., Figs. 1e, A1c). 

4.3.3 Notebook-based GUI for semi-automated segmentation and measurement 275 

We provide a simple, notebook-based GUI (Fig. 2c) extended from code in the Tensorflow Object Detection API (TensorFlow 

Developers, 2022) that allows users to view, modify, and save polygon-based grain segmentation masks. These polygon-masks 

can either be loaded from a previous automated or GUI-based processing session or generated on-the-fly on a per-sample basis. 

After viewing or re-segmenting part or all of a dataset, users can send their grain segmentations for measurement and export 

(Sect. 4.3.2); grain dimension exports from the GUI will include additional tags indicating whether each grain was segmented 280 

by a human or by a deep learning model. 

4.3.4 Notebook-based exploratory data visualization interface 

We do not provide any tools for assessing relationships between grain size or shape and age. Our processing notebooks do, 

however, include a simple interface that allows users to interactively load and filter (e.g., by scan name) colab_zirc_dims 

measurement data from their project folder before visualizing said data using parameterizable bar-whisker, histogram, and 285 

scatter plots (Fig. 2c). 

5 Accuracy evaluations 

We assessed the accuracy of our segmentation models by comparing a manually generated grain-dimension dataset (Leary et 

al., 2022) to automatically generated grain dimensions from the same samples measured using colab_zirc_dims. The test 

dataset from Leary et al. (2022) consists of samples collected from late Palaeozoic strata exposed across Arizona, USA. These 290 

samples were deposited in the same orogenic system—the Ancestral Rocky Mountains—as the Leary et al. (2020a) training 

dataset, and the grain ages and depositional environments are largely similar. The test dataset is unrelated to the training dataset 

from UCSB (see above). The full dataset was automatically processed using model M-ST-C and pure Otsu thresholding via 

the colab_zirc_dims “Mosaic_Process” notebook and the resulting automated best long axis length and best short axis length 

measurements were compared to the manual (measured with the Chromium “Measure” tool) per-grain axial measurements 295 

from the same dataset. For an n=301, sample-stratified random sub-sample of the Leary et al. (2022) dataset, colab_zirc_dims 

measurements of manual segmentation masks generated using the colab_zirc_dims semi-automated measurement GUI were 

also evaluated. 
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Table 2. Evaluation of error in colab_zirc_dims ‘best axis’ length measurements, with human measurements in the Leary et al. 
(2022) dataset used as ‘ground truth’. For the full dataset (top), measurements produced by fully automated segmentation (using 300 
model M-ST-C) are compared against a baseline of Otsu thresholding. For the n=301 sample-stratified random subsample (bottom), 
measurements resulting from automated segmentation by model M-ST-C are compared to those resulting from new manual 
segmentations of the dataset using the colab_zirc_dims semi-automated processing GUI. Per-dataset best results on each metric are 
shown in bold type.  

Dataset Model / 
method na 

Failure 
rateb 
(%) 

Average 
errorc (μm) 

Average 
absolute 

errord (μm) 
Average 

errore (%) 

Average 
absolute 
errorf (%) 

≥ 20% 
absolute error 

rateg (%) 
Grain extent 

underestimate 
rateh (%) 

Average 
segmentation 

time per 
imagei (s) Long 

axis 
Short 
axis 

Long 
axis 

Short 
axis 

Long 
axis 

Short 
axis 

Long 
axis 

Short 
axis 

Long 
axis 

Short 
axis 

Fullj 

M-ST-C 5003 0.02 -2.3 -1.2 5.7 4.3 -2.06 -1.41 7.28 8.57 7.64 9.85 10.91 0.114 

Otsu 
thresholding 5003 0.02 -6.1 -5.7 10.1 7.8 -7.41 -10.94 13.03 15.82 18.19 25.78 27.00 0.011 

Random 
sub-

samplek 

M-ST-C 301 0.0 -2.9 -1.2 6.4 4.5 -2.71 -1.58 7.95 9.09 8.64 9.97 10.30 0.137 

Manual 
segmentationl 301 0.0 3.6 3.9 6.4 4.8 5.84 8.73 8.62 10.65 8.64 14.29 1.66 ~20 

a Number of scan-images within dataset where a "central" grain mask could be identified with confidence ≥ 70%. 

b 100 ∗ �𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑛𝑛
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 
c 1/𝑛𝑛∑ (𝐶𝐶𝑎𝑎𝐶𝐶𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖 − �𝐶𝐶𝑎𝑎𝐶𝐶𝑠𝑠𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿 𝑚𝑚𝑒𝑒 𝑚𝑚𝑎𝑎.�𝑖𝑖

𝑛𝑛
𝑖𝑖=1  

d 1/𝑛𝑛∑ �(𝐶𝐶𝑎𝑎𝐶𝐶𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖 − �𝐶𝐶𝑎𝑎𝐶𝐶𝑠𝑠𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿 𝑚𝑚𝑒𝑒 𝑚𝑚𝑎𝑎.�𝑖𝑖�
𝑛𝑛
𝑖𝑖=1    

e 100 ∗ 1
𝑛𝑛
∑

(𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖−�𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝐿𝐿𝑚𝑚𝑡𝑡𝑚𝑚𝐿𝐿 𝑚𝑚𝑡𝑡 𝑡𝑡𝑡𝑡.�𝑖𝑖
�𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝐿𝐿𝑚𝑚𝑡𝑡𝑚𝑚𝐿𝐿 𝑚𝑚𝑡𝑡 𝑡𝑡𝑡𝑡.�𝑖𝑖

𝑛𝑛
𝑖𝑖=1   

f 100 ∗ 1
𝑛𝑛
∑ �

(𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖−�𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝐿𝐿𝑚𝑚𝑡𝑡𝑚𝑚𝐿𝐿 𝑚𝑚𝑡𝑡 𝑡𝑡𝑡𝑡.�𝑖𝑖
�𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝐿𝐿𝑚𝑚𝑡𝑡𝑚𝑚𝐿𝐿 𝑚𝑚𝑡𝑡 𝑡𝑡𝑡𝑡.�𝑖𝑖

�𝑛𝑛
𝑖𝑖=1   

g 100 ∗ 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑔𝑔𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚 𝑤𝑤𝑖𝑖𝑒𝑒ℎ |% 𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑖𝑖𝑡𝑡ℎ𝑚𝑚𝑚𝑚 𝑡𝑡𝑎𝑎𝑖𝑖𝑚𝑚|≥20% 
𝑛𝑛

 

h 100 ∗ (𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑔𝑔𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚 𝑤𝑤𝑖𝑖𝑒𝑒ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑖𝑖𝑡𝑡ℎ𝑚𝑚𝑚𝑚 𝑡𝑡𝑎𝑎𝑖𝑖𝑚𝑚≤−20%)
𝑛𝑛

 

i Average time for model/method to successfully segment an image and return a measurable mask. Actual per-image processing times 
will be higher due to additional automated mask measurement and verification image saving time. Measured in Colab notebook with 
NVIDIA  T4 GPU. 
j The full Leary et al. (2022) dataset, with 5004 valid measurements. 

k A sample-stratified random subsample of 301 measured grains from the Leary et al. (2022) dataset. 
l By the first author, using the colab_zirc_dims semi-automated segmentation GUI in Google Colab. 
5.1 Machine error 305 

Otsu thresholding as implemented in colab_zirc_dims is a reasonably performant baseline segmentation method and apparently 

produces dimensionally accurate masks for the majority of grains in the Leary et al. (2022) dataset (Table 2). Our default 

model, however, significantly outperforms the baseline method of Otsu thresholding in every metric except for speed (Table 

2). Given that segmentation time for M-ST-C is still a fraction of a second (Table 2) when run on a GPU-equipped computer, 
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deep-learning-based instance segmentation appears to be superior for producing high-quality segmentation masks from 310 

reflected light images. The Leary et al. (2022) image dataset is also mostly free of artefacts (e.g., Fig. A1), and we expect that 

the gulf in accuracy between the two methods would widen if evaluated on a lower-quality dataset. 
Figure 3. Plots displaying error distributions when comparing measurements produced by automated (M-ST-C) colab_zirc_dims 
segmentation against manual measurements (i.e., Leary et al. 2022). (a) Automated (y-axis) versus manual (x-axis; Leary et al., 2022) 
measurement plots for long and short grain axes with linear regression lines plotted and gaussian KDE density shown via heatmap. 315 
Root mean squared error (RMSE) is shown at the bottom-right of each plot. (b) Histogram-KDE plots showing error distributions 
along long and short axes. Statistical information is shown at the bottom right of each plot. 

 
 Per-grain automated (M-ST-C) measurements for the full Leary et al. (2022) dataset generally hew close to ground-

truth measurements but with a significant number of datapoints plotting well below the 1:1 measured versus ground truth (i.e., 320 

Leary et al., 2022) line (Fig. 3a). The apparent dominant cause of this negative skew (i.e., Equation 2; Fig. 3b) is under-

segmentation of grains that are incompletely exposed at the surface of epoxy mounts but whose full grain areas are interpretable 

by humans from “shadows” visible in the (mostly) reflected light images (Fig. 4). We did not train our model to interpret 
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beyond clearly visible grain boundaries and it consequently fails to reproduce human measurements for these grains, but 

models might be able to do so without diminished accuracy on “normal” grains given training on a more interpretively 325 

segmented training dataset. Positive measurement errors are rare (Figs. 3A, 3B) but are probably mainly attributable to 

segmentation masks that merge different grains (Fig. 4). Failure to identify the correct “central grain” in images (Fig. 4) is 

likewise rare but may cause positive, negative, or negligible measurement error depending on the respective sizes of the target 

and mistakenly identified grains. Cases where no grain could be identified are exceedingly rare (Table 2, Fig. 4) and do not 

contribute directly to measurement error but, like all identified errors, necessitate manual re-segmentation of grains for 330 

production of accurate measurements. 
Equation 2: 

𝑃𝑃𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑃𝑃𝑛𝑛′𝑠𝑠 𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝑛𝑛𝐴𝐴𝑠𝑠𝑠𝑠 𝐶𝐶𝑃𝑃𝐴𝐴𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑛𝑛𝐶𝐶 =
3(𝑃𝑃𝐴𝐴𝐶𝐶𝑛𝑛 −𝑃𝑃𝐴𝐴𝑚𝑚𝐶𝐶𝐶𝐶𝑛𝑛)
𝑠𝑠𝐶𝐶𝐶𝐶𝑛𝑛𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚 𝑚𝑚𝐴𝐴𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑛𝑛

 

 
Figure 4. Examples of automated (M-ST-C) segmentation mask error modes with estimated occurrence rates, with axes scaled in 335 
µm and correct grain segmentations outlined in light blue. Rates for “grain boundary underestimate” and “no central grain found” 
errors are estimated from analysis of the entire Leary et al. (2022) dataset (i.e., Table 2). No "grain merging” or “wrong central 
grain” errors were identified in a manual review of the n = 301 sample of the full dataset (i.e., Table 2), and their occurrence rates 
are estimated from their non-appearance therein. 

 340 



15 
 

5.2 Human error 

Automated measurement error metrics (e.g., Table 2) likely encompass some error that would be present even if grains were 

manually segmented, due to differential interpretations of grain areas between researchers. In the n = 301, randomly picked 

sample-stratified grain subsample from the Leary et al. (2022) dataset, we find that our default automated segmentation model 

(M-ST-C) achieves similar axial measurement absolute error metrics to the first author (M.S.) of this manuscript (Table 2). 345 

Though apparently mostly free of interpretive grain extent underestimates, the first author’s measurements tend to be larger 

than dataset measurements (Table 2). Apparent over-interpretations of grain extents by the first author likely reflect different 

image display conditions (e.g., higher zoom and different contrast) during manual re-segmentation versus those present during 

collection of dataset measurements. Various features of colab_zirc_dims, namely automated segmentation of most grains and 

uniform image display conditions during manual segmentation of other grains, may enhance grain measurement dataset 350 

reproducibility in addition to collection speed. 

5.3 Impact of grain exposure 

We find that automated processing using colab_zirc_dims and our default model (M-ST-C) can approximately reproduce 

aggregate long and short grain axis length distributions for most samples in the Leary et al. (2022) mosaic image and 

measurement dataset (Fig. 5). Systemic negative errors along both grain axes are concentrated within four samples (1WM-355 

302, 5PS-58, 2QZ-9, and 2QZ-272; Fig. 5). We found that grains in these samples were consistently underexposed above 

mount surfaces and that “grain extent underestimate” (Table 2; Fig. 4) segmentation errors were as a result common enough 

to negatively impact sample axis length distributions. Because these images are of sufficiently high quality that subsurface 

grain extents were interpretable by Leary et al. (2022), and because model M-ST-C generally only segments grain areas above 

resin surfaces, errors in these samples can also be used as a proxy for dimensional data loss from using reflected light versus 360 

transmitted light images to measure shapes of very poorly exposed grains in cases where reflected light images do not reveal 

any information about subsurface grain extents (Sect. 1; Leary et al., 2020a). In the worst-evaluated sample, 1WM-302 

(n=180), M-ST-C produces axial measurements that underestimated manually measured grain axes by at least 20% 66.6% of 

the time, with average grain measurement errors of -18.0% and -22.0% along long and short axes, respectively. Treating these 

automatically generated axial measurements as ground truth data could result in significantly flawed analysis of relationships 365 

between grain size and age. Such shape parameter underestimates present only a minor (though potentially time-consuming) 

problem for colab_zirc_dims users with poorly exposed grains whose actual areas are still interpretable by humans (e.g., in the 

case of 1WM-302); erroneous segmentation masks can simply be corrected manually using the GUI. Users who observe that 

their mounted crystals are both very poorly exposed and invisible below the resin surface in their reflected light images, though, 

may consider re-imaging their samples using transmitted light and then measuring grains using a different program (e.g., 370 

AnalyZr) to avoid collecting flawed data. Researchers should consider excluding grain mounts that appear heavily over-
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polished from their datasets, as accurate two-dimensional grain dimensions for these mounts will not be resolvable under any 

lighting conditions. 
Figure 5. Top: sample-by-sample boxplot comparison of human (Leary et al., 2022) and automated (M-ST-C) measurements along 
long and short grain axes. Below: additional scatter and bar-whisker plots showing relationships between human and automated 375 
grain long axis length measurements and U-Pb age, with samples binned by depositional period. Bottom: a KDE plot of detrital 
zircon U-Pb ages in the Leary et al. (2022) dataset. Boxplot boxes extend from Q1 to Q3, and whiskers extend from Q1 - 1.5 * (Q3 - 
Q1) to Q3 + 1.5 * (Q3 + Q1); sample medians are indicated by black horizontal lines within each box. 
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6 Viability of fully automated measurement 380 

 Due to low but significant segmentation error rates (Fig. 4) stemming almost entirely from poor grain exposure, we 

believe that manual segmentation verification and correction (i.e., semi-automated measurement) is necessary for production 

of publication-quality grain measurement datasets. Assuming time requirements of 35 minutes total to automatically generate 

segmentation masks, one second per grain to manually check masks, and 20 seconds to correct each mis-segmentation, and, 

conservatively (Fig. 4), that 15% of grains must be re-segmented via GUI, we estimate that it would take about six hours to 385 

semi-automatically collect zircon grain measurements for the full (n = 5,004) Leary et al. (2022) dataset using colab_zirc_dims. 

 We also believe, however, that fully automated measurement using colab_zirc_dims is a viable method for rapid 

approximation of grain dimensions in optimal samples (i.e., with well-exposed grains) as well as in larger datasets where the 

majority of samples have well-exposed grains. Meaningful relationships between grain dimensions and age appear to be 

resolvable solely based on fully automated measurement of such datasets. Leary et al. (2022) used zircon grain-dimension data 390 

to reinterpret the provenance and transport mechanism of 500-800 Ma zircons within the Pennsylvanian-Permian Ancestral 

Rocky Mountains system in southwest Laurentia. This reinterpretation was primarily based on the arrival of dominantly small 

(< 60 µm), 500-800 Ma zircons in that study area at the Pennsylvanian-Permian boundary. Leary et al. (2022) interpreted these 

grains as having been transported into the study area principally by wind and reinterpreted their provenance as Gondwanan (as 

opposed to Arctic and/or northern Appalachian as previously interpreted by Leary et al., 2020b). We find (Fig. 5) that this 395 

relationship is observable in fully automated (i.e., M-ST-C) measurement results from the dataset. Our hope is that the 

increased ability to explore such age-grain-dimension relationships and to generate large grain-dimension datasets from 

toolsets such as those presented here and by Scharf et al. (2022) will improve future provenance interpretations, specifically 

as they relate to grain transport processes (e.g. Lawrence et al., 2011; Ibañez-Mejia et al., 2018; Leary et al., 2020a; Cantine 

et al., 2021). 400 

7 Limitations 

Although our models (e.g., M-ST-C) evidentially generalize well to our test set, and we believe that they will most likely 

generalize well to other datasets, they are still untested on data from facilities not represented in their training dataset (i.e., 

besides ALC and UCSB). And, although they have been exposed to some relatively euhedral detrital zircon grains in the UCSB 

training images, our models are notably also untested on crystals derived from primary igneous and volcanic rocks. Some 405 

uncertainty remains in how well our models will work when applied to more diverse data by colab_zirc_dims users. We hope 

that any users who find that colab_zirc_dims struggles with their image data will share said data with us so that we can use it 

to expand on our training dataset and so improve our models’ utility. 

 Measurements produced using colab_zirc_dims will persist all uncertainties that are innate to the methodology of 

measuring grain dimensions from reflected light images. Although most facilities aspire to polish their laser ablation zircon 410 

mounts to half the thickness of the zircons, it is possible that differences in sample preparation methods could produce 
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significant systematic interfacility or even intra-facility (i.e., between different analysts) biases in measurable two-dimensional 

grain dimensions; it remains somewhat unclear whether data derived through sample preparation and imaging at different 

facilities can be compared. Additionally, because there is some variability in quality of polish achieved at ALC in the test 

dataset (Leary et al., 2020a; see above discussion of samples 1WM-302, 5PS-58, 2QZ-9, and 2QZ-272), careful manual 415 

checking of polish quality will always be required in any dataset as described above. Ultimately, a study in which pre- (e.g. 

Finzel, 2017) and post-mount (Leary et al., 2020a; Scharf et al., 2022; current study) grain dimension measurements can be 

collected on the same samples, or one in which differential preparation methods are simulated (e.g., through slicing of three-

dimensional micro-CT data, as applied to apatite by Cooperdock et al (2019)), will be the best way to quantify the bias 

introduced by polishing and/or by different facilities. However, such a test is well beyond the scope of the current study. 420 

8 Future developments 

The colab_zirc_dims package and Jupyter-style notebooks make it significantly faster and easier to augment an appropriate 

LA-ICP-MS dataset with grain measurements. We will continue to maintain and update colab_zirc_dims, and in the future 

hope to test and, if necessary, modify our code to extend full support to datasets from facilities beyond ALC and UCSB, 

possibly including those using targeting software other than Chromium. Although individual researchers are our intended 425 

userbase for colab_zirc_dims, we also believe that deep learning models hold great potential utility for LA-ICP-MS facilities. 

Such facilities are well-resourced to create large, customized training datasets and could implement trained models in a variety 

of applications including provision of per-spot grain measurements as a standard data product, fully automated spot picking, 

and possibly automated phase identification. Our training-validation dataset and pre-trained models (Sitar, 2022) may lower 

the barrier to entry for researchers and/or facilities hoping to apply machine- or deep-learning-based methods to similar 430 

problems. 

9 Conclusions 

We created a new, large dataset for instance segmentation of detrital zircon grain instances from reflected light images saved 

during LA-ICP-MS analysis. Using this dataset, we trained a suite of deep learning models and developed code that uses the 

models to rapidly extract per-grain dimensional measurements from LA-ICP-MS images collected at facilities using Chromium 435 

targeting software. We present this code as the colab_zirc_dims Python package, and we implement it in a collection of 

interactive Jupyter notebooks. These notebooks allow users to automatically or semi-automatically process datasets and can 

be run locally after installation of code dependencies or online in Google Colab with zero setup, hardware requirements, or 

installation. 

 The colab_zirc_dims deep-learning-based automated measurement algorithm approaches human measurement 440 

accuracy on a sample-by-sample basis and can be used to rapidly approximate grain size distributions for samples with well-
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exposed zircon grains, without any human involvement. Our semi-automated segmentation workflow allows researchers to 

create manually reviewed and corrected grain size measurements for large-n datasets in under a day, although data collected 

through this process inherit all uncertainties related to the methodology of measuring mounted, polished grains in reflected 

light images. 445 

 We believe that colab_zirc_dims makes it drastically easier to augment applicable LA-ICP-MS datasets with grain 

measurements, and hope that allowing more researchers to do so will expand our understanding of the relationships between 

zircon dimensions and age in varied environments. We also hope to extend full colab_zirc_dims support to datasets that do not 

currently work with its processing notebooks in the future and encourage users to share samples of such datasets with the first 

author. 450 

Appendix A: Additional examples of segmentation results 

Figure A1. Comparison between Otsu thresholding and CNN-based instance segmentation results in the presence of diverse grain 
morphologies and image artefacts, including anomalous bright spots (top row), heavily fractured grains (middle row), and tiling 
artefacts (bottom row). (a) Original grain-centred images clipped from ALC mosaics. (b) Segmentation masks produced via Otsu’s 
thresholding method (Otsu, 1979). (c) Instance segmentation results produced by a Mask RCNN model (M-ST-C) (at left) and 455 
resulting colab_zirc_dims verification image plots (at right). 
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Appendix B: Glossary of deep learning terminology 

Table B1: A glossary of deep learning terminology used in this study. 

Term Explanation Reference(s) 

Weights Training-optimizable parameters that are applied to data at various points within a 
neural network.   

Convolutional 
neural network 
(CNN) 

A neural network wherein convolutional layers (roughly, these pass sliding filters over 
inputs) are used to abstract data. This allows processing of larger data (e.g., images) 
with fewer weight parameters. 

  

Backbone network 

A module within a larger model that abstracts input data into an intermediate 'feature 
map' that is passed to other modules to produce the final model outputs. Larger 
model architectures are commonly referred to using the syntax "[model architecture 
name]-[backbone network name]". 

  

FPN 
Feature Pyramid Network' -- a network that enhances feature maps via convolutional 
upsampling. Can be attached to a backbone network within a larger model to improve 
resolution of small objects. 

Lin et al. (2016) 

Mask-RCNN 

A CNN-based model architecture developed by He et al. (2018). Internal modules use 
the feature map returned by a backbone network to propose regions which may 
contain objects. Later, independent modules fit bounding boxes to and create masks 
for each detected object. The most commonly used Mask-RCNN backbone is the 
ResNet network (He et al., 2015). 

He et al. (2015, 
2018) 

Swin-T 

Swin-'Tiny': the smallest variant of the 'Swin' model architecture (Liu et al., 2021), 
which is based on 'transformer' architecture (Vaswani et al., 2017). In transformer 
networks, inputs are respectively translated to and from a higher dimensional space 
by 'encoder' and 'decoder' modules.  These are impractical for direct application to 
images, as computational complexity scales exponentially with pixel count. The Swin 
architecture deals with this by splitting up image data using smaller, shifting windows. 

Liu et al., (2021), 
Vaswani et al. 
(2017) 

Centermask 

A CNN-based model architecture developed by Lee and Park (2020). Similar to Mask-
RCNN, except objects are detected and fit with bounding boxes by a single module, 
without an intermediate region proposal stage, prior to mask generation for each 
object. The standard backbone is VoVNet (Lee et al., 2019). 

Lee et al. (2019), 
Lee and Park 
(2020) 

Code availability 460 

The colab_zirc_dims source code, small example datasets, and links to pre-formatted template project folders and the latest 

versions of colab_zirc_dims Google Colab notebooks are available at the colab_zirc_dims GitHub page (Sitar, 2022): 

https://github.com/MCSitar/colab_zirc_dims. Additional code for reproducing error evaluations and figures presented in this 

manuscript using new or included automatically generated measurements is included in the supplementary data repository 

(Sitar and Leary, 2022): https://doi.org/10.5281/zenodo.7434851. 465 

https://github.com/MCSitar/colab_zirc_dims
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Data availability 

The full Leary et al. (2022) dataset of images and measurements that we used for model evaluation, our training dataset, and 

full measurement and evaluation data supporting the results presented in our manuscript can be found in the supplementary 

data repository (Sitar and Leary, 2022): https://doi.org/10.5281/zenodo.7434851. 
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